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•  Applica;ons	
–  Temporal	databases	
– Mul;dimensional	data	management	
–  Uncertain	data	management	
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Our	focus	

•  Efficient	evalua;on	of	interval	joins	
– Single-threaded	processing	
•  Simple	plane	sweep	based	method	
•  Compe;;ve	to	state-of-the-art	

– Parallel	processing	
•  Par;;oning-based	join	
•  Share	nothing	
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SINGLE-THREADED	PROCESSING	
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•  Endpoint-Based	Join	(EBI/LEBI)	
[Piatov	et	al.,	ICDE’16]	

–  Sweep	line	stops	both	on	start	and	end	
–  Backwards	scan,	Gapless	hash	map	buffers	open	intervals	
✓ No	endpoint	comparisons	
✓ Tailored	to	modern	hardware,	main	memory	cache-aware	
✓ Fast	
✗  Special	structure	needed	
	

•  Forward	Scan	based	(FS)	
[Brinkhoff	et	al.,	SIGMOD’93]	

–  Sweep	lines	stops	only	on	start	
✓ Simple,	no	special	structure	needed	
✓ |R|	+	|S|	+	|R						S|	comparisons	in	total	

Plane	sweep	methods	
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PARALLEL	PROCESSING	
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•  Idea	
–  Randomly	split	each	input	into	k	par;;ons	using	hash	func;on	h	
–  Evaluate	k2	independent	par;;on	joins	
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Hash-based	par;;oning	

Pros	
ü  Simple	
ü  Load	balancing	

Cons	
✗  Domain-point	comparisons	rise	

–  2.k.(|R|+|S|)	for	EBI/LEBI,	k.(|R|+|S|)	for	FS	
✗  Degree	of	parallelism	

–  n	CPU	cores	à	k	=	√n	par;;ons	

Aug	31,	2017	

R	

R1	

R2	

Rk	

…	
S	h	

S1	

S2	

Sk	

…	
h	

•  Idea	
–  Randomly	split	each	input	into	k	par;;ons	using	hash	func;on	h	
–  Evaluate	k2	independent	par;;on	joins	

43rd	Interna;onal	Conference	on	Very	Large	Data	Bases	

[Piatov	et	al.,	ICDE’16]	

8	



Domain-based	par;;oning	
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Mini-joins	break	down	
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Greedy	scheduling	
•  Idea	

–  Distribute	1	+	5.(k-1)	mini-joins	to	different	cores	
–  Evenly	distribute	load	à	minimize	max	load	
–  NP-hard	problem	

•  Greedy	approxima;on	algorithm	
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Adap;ve	par;;oning	

•  Idea	
– Create	an	ini;al	uniform	par;;oning	
– Employ	a	very	fine	;ling	–	granules	
– Move	load	between	neighboring	;les	
•  Move	granules	between	neighboring	;les	
•  Reposi;on	borders	of	;les	
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EXPERIMENTAL	ANALYSIS	
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Setup	
•  Hardware	

–  dual	10-core	Intel(R)	Xeon(R)	CPU	E5-2687W	v3	@	3.10	GHz	
with	128	GBs	of	RAM	

–  Hyper-threading	enabled,	up	to	40	threads	
	

•  Sooware	
–  Workload	[ICDE’16]	à	XOR	of	start		
–  Loop	unrolling	forced,	OpenMP	for	mul;-threading	
	

•  Datasets	
–  WEBKIT	git	repo,	interval	=	period	of	;me	file	unchanged	
–  BOOKS	Aarhus	libraries,	interval	=	period	of	;me	book	lent	
–  Synthe;c	

•  Interval	dura;on	follows	exponen;al	distribu;on,	uniformly	
distributed	start	plus	peaks	

	

•  Experiments	
–  Execu;on	;me,	#	comparisons,	memory	footprint	
–  Both	self	joins	and	non-self	joins	
–  Vary	|R|/|S|,	#	cores	(threads)	

Aug	31,	2017	
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Figure 6: Comparisons for single-threaded processing

the bundle of its corresponding 5 mini-joins to the same core, and
uniform to denote the (non-adaptive) uniform initial partitioning of
the domain. We tested the following setups:8

(1) atomic/uniform is the baseline domain-based partitioning of
Section 5.2 with all optimizations deactivated;

(2) mj+atomic/uniform splits each partition-join of the baseline
domain-based paradigm into 5 mini-joins which are all exe-
cuted on the same CPU core;

(3) atomic/adaptive employs only adaptive partitioning;
(4) mj+greedy/uniform splits each partition-join of the baseline do-

main-based paradigm into 5 mini-joins which are greedily dis-
tributed to the available CPU cores;

(5) mj+greedy/adaptive employs all proposed optimizations.

Figures 7(a) and (b) report the total execution time of bgFS for each
optimization combination (1)–(5) while Figures 7(c) and (d) report
the ratio of the average idle time over the total execution time.

We observe the following. First, setups (2)–(5) all manage to en-
hance the parallel computation of the join. Their execution time is
lower than the time of baseline atomic/uniform; an exception arises
for mj+atomic/uniform under 4 available cores. The most efficient
setups always include the mj+greedy combination regardless of ac-
tivating adaptive partitioning or not. In practice, splitting every
partition-join into 5 mini-joins creates mini-jobs of varying costs
(2 of them are cross-products and other 2 are also quite cheap),
which facilitates the even partitioning of the total join cost to pro-
cessors. For example, if one partition is heavier overall compared
to the others, one core would be dedicated to its most expensive
mini-join and the other mini-joins would be handled by less loaded
CPU cores. Also, notice that the mj optimization is beneficial even
when the 5 defined mini-joins are all executed on the same CPU
core (i.e., mj+atomic/uniform). This is because breaking down a
partition-join into 5 mini-joins greatly reduces the overall cost of
the partition-join (again, recall that 4 of the mini-joins are cheap).

Adaptive partitioning seems to have a smaller impact compared
to the other two optimizations. Among the setups that do not em-
ploy the greedy scheduling, atomic/adaptive ranks first (both in
8Based on our assumption in Section 6.1, greedy/uniform or
greedy/adaptive setups are meaningless since the number of par-
titions equals the number of available CPU cores.
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databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.
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databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.
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databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.
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databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.
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databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.
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Figure 7: Optimizing the domain-based partitioning: bgFS on
WEBKIT

terms of the execution time the average idle time ratio) but when
activated on top of the mj+greedy/uniform setup, adaptive parti-
tioning enhances the join evaluation when the number of cores is
low, e.g., 4 or 9; notice how faster is the mj+greedy/adaptive setup
compared to mj+greedy/uniform in case of 4 available CPU cores.

Overall, (i) the mj optimization greatly reduces the cost of a parti-
tion join and adds flexibility in load balancing, (ii) the
mj+greedy/uniform and mj+greedy/adaptive schemes peform very
well in terms of load balancing, by reducing the average idle time
of any core to less than 20% of the total execution time in almost
all cases (|R|/|S| = 0.25 is the only exception). To take full ad-
vantage of all proposed optimizations, we setup the domain-based
paradigm as mj+greedy/adaptive for the remaining of this analysis.

6.5 Comparisons: Parallel Processing
In this section, we first compare the domain-based partitioning

against the hash-based proposed in [18]; this study is independent
of the join algorithm we may use to compute partition- or mini-
joins. Further, we compare our proposed implementation of FS

with all optimizations (i.e., bgFS) to the state-of-the-art (as shown
in Section 6.3) LEBI for parallel computation of interval joins.

Hence, we implemented the domain-based and the hash-based
paradigms of Section 5 coupled with both LEBI and our best method
bgFS, denoted by h-LEBI, d-LEBI and h-bgFS, d-bgFS; note that
the mj+greedy/adaptive optimizations evaluated in the previous sec-
tion are all activated on the LEBI powered implementation of the
domain-based paradigm. As discussed in Section 5.1, [18] sorts
each input collection prior to partitioning. We experimented also
with a variant of the hash-based paradigm, which does not perform
this pre-sorting step and proved to be always faster. Thus, for the
rest of this subsection we run our variant of the hash-based parti-
tioning. Figures 8(a)–(d) and Figures 9(a)–(d) report on this first
comparison for both WEBKIT and BOOKS datasets; we show the
speedup achieved by each parallel paradigm over the single-core
evaluation (either with LEBI or bgFS) and the number of conducted
endpoint comparisons. To better prove our points, we also include
a third paradigm denoted as theoretical which exhibits a linear to
the number of available cores, speedup and reduction of the con-
ducted comparisons. We observe that our domain-based paradigm

|R|/|S| [1 core] |R|/|S| [1 core]

WEBKIT	 GREEND	
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Figure 6: Comparisons for single-threaded processing

the bundle of its corresponding 5 mini-joins to the same core, and
uniform to denote the (non-adaptive) uniform initial partitioning of
the domain. We tested the following setups:8

(1) atomic/uniform is the baseline domain-based partitioning of
Section 5.2 with all optimizations deactivated;

(2) mj+atomic/uniform splits each partition-join of the baseline
domain-based paradigm into 5 mini-joins which are all exe-
cuted on the same CPU core;

(3) atomic/adaptive employs only adaptive partitioning;
(4) mj+greedy/uniform splits each partition-join of the baseline do-

main-based paradigm into 5 mini-joins which are greedily dis-
tributed to the available CPU cores;

(5) mj+greedy/adaptive employs all proposed optimizations.

Figures 7(a) and (b) report the total execution time of bgFS for each
optimization combination (1)–(5) while Figures 7(c) and (d) report
the ratio of the average idle time over the total execution time.

We observe the following. First, setups (2)–(5) all manage to en-
hance the parallel computation of the join. Their execution time is
lower than the time of baseline atomic/uniform; an exception arises
for mj+atomic/uniform under 4 available cores. The most efficient
setups always include the mj+greedy combination regardless of ac-
tivating adaptive partitioning or not. In practice, splitting every
partition-join into 5 mini-joins creates mini-jobs of varying costs
(2 of them are cross-products and other 2 are also quite cheap),
which facilitates the even partitioning of the total join cost to pro-
cessors. For example, if one partition is heavier overall compared
to the others, one core would be dedicated to its most expensive
mini-join and the other mini-joins would be handled by less loaded
CPU cores. Also, notice that the mj optimization is beneficial even
when the 5 defined mini-joins are all executed on the same CPU
core (i.e., mj+atomic/uniform). This is because breaking down a
partition-join into 5 mini-joins greatly reduces the overall cost of
the partition-join (again, recall that 4 of the mini-joins are cheap).

Adaptive partitioning seems to have a smaller impact compared
to the other two optimizations. Among the setups that do not em-
ploy the greedy scheduling, atomic/adaptive ranks first (both in
8Based on our assumption in Section 6.1, greedy/uniform or
greedy/adaptive setups are meaningless since the number of par-
titions equals the number of available CPU cores.
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databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.
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databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.
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databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.
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databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.
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Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT
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tees at most |R| + |S| endpoint comparisons that do not

produce results.
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index the input collections. Zhang et al. [23] focus on find-
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the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version
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proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the
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avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.
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Figure 7: Optimizing the domain-based partitioning: bgFS on
WEBKIT

terms of the execution time the average idle time ratio) but when
activated on top of the mj+greedy/uniform setup, adaptive parti-
tioning enhances the join evaluation when the number of cores is
low, e.g., 4 or 9; notice how faster is the mj+greedy/adaptive setup
compared to mj+greedy/uniform in case of 4 available CPU cores.

Overall, (i) the mj optimization greatly reduces the cost of a parti-
tion join and adds flexibility in load balancing, (ii) the
mj+greedy/uniform and mj+greedy/adaptive schemes peform very
well in terms of load balancing, by reducing the average idle time
of any core to less than 20% of the total execution time in almost
all cases (|R|/|S| = 0.25 is the only exception). To take full ad-
vantage of all proposed optimizations, we setup the domain-based
paradigm as mj+greedy/adaptive for the remaining of this analysis.

6.5 Comparisons: Parallel Processing
In this section, we first compare the domain-based partitioning

against the hash-based proposed in [18]; this study is independent
of the join algorithm we may use to compute partition- or mini-
joins. Further, we compare our proposed implementation of FS

with all optimizations (i.e., bgFS) to the state-of-the-art (as shown
in Section 6.3) LEBI for parallel computation of interval joins.

Hence, we implemented the domain-based and the hash-based
paradigms of Section 5 coupled with both LEBI and our best method
bgFS, denoted by h-LEBI, d-LEBI and h-bgFS, d-bgFS; note that
the mj+greedy/adaptive optimizations evaluated in the previous sec-
tion are all activated on the LEBI powered implementation of the
domain-based paradigm. As discussed in Section 5.1, [18] sorts
each input collection prior to partitioning. We experimented also
with a variant of the hash-based paradigm, which does not perform
this pre-sorting step and proved to be always faster. Thus, for the
rest of this subsection we run our variant of the hash-based parti-
tioning. Figures 8(a)–(d) and Figures 9(a)–(d) report on this first
comparison for both WEBKIT and BOOKS datasets; we show the
speedup achieved by each parallel paradigm over the single-core
evaluation (either with LEBI or bgFS) and the number of conducted
endpoint comparisons. To better prove our points, we also include
a third paradigm denoted as theoretical which exhibits a linear to
the number of available cores, speedup and reduction of the con-
ducted comparisons. We observe that our domain-based paradigm
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To	sum	up	
•  Contribu;ons	

–  Efficient	evalua;on	of	interval	joins	
–  Single-threaded	processing	

•  Op;mized	bgFS,	compe;;ve	to	state-of-the-art	EBI/LEBI	
•  Lower	memory	footprint	

–  Parallel	processing	
•  Novel	domain-based	par;;oning	paradigm	
•  Higher	speedup	

•  Future	work	
–  Other	types	of	temporal	joins	
–  Other	types	of	temporal	operators	
–  Parallel	processing	

•  Data-level	parallelism,	share	data	between	threads	

Aug	31,	2017	 43rd	Interna;onal	Conference	on	Very	Large	Data	Bases	 19	



Ques;ons	?	

Aug	31,	2017	 43rd	Interna;onal	Conference	on	Very	Large	Data	Bases	 20	



EXTRAS	

Aug	31,	2017	 43rd	Interna;onal	Conference	on	Very	Large	Data	Bases	 21	



Endpoint-Based	Join	(EBI/LEBI)	
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[Piatov	et	al.,	ICDE’16]	

22	

r2	

s2	
s1	

s3	 s4	

r1	

s5	
domain	

Endpoint	indices	
EIR	=	{r1.start,	r2.start,	r1.end,	r2.end}	
EIS	=	{s1.start,	s1.end,	s2.start,	s2.end,	s3.start,	s3.end,	s4.start,	s5.start,	s4.end,	s5.end}		

AcCve	sets	
AR	=	{}	
AS	=	{}	
	
Result	
{}	
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Pros	
ü  No	domain-point	comparisons	when	producing	results	
ü  Tailored	to	modern	hardware	
ü  Main	memory	cache-aware	
ü  Fast	

Cons	
✗  Special	data	structure	needed	for	ac;ve	sets,	support	for	efficient	

updates	and	scans	
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Cons	
✗  Each	join	result	requires	a	domain-point	comparison,	

|R|	+	|S|	+	|R						S|	comparisons	in	total	

Pros	
ü  Simple	
ü  No	special	structure	needed	
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