Spatio-Textual Similarity Joins

Panagiotis Bouros^{1,2}, Shen Ge¹, Nikos Mamoulis¹

¹ University of Hong Kong
 ² Humboldt-Universität zu Berlin

Complex data

- Data are becoming more complex
 - FLICKR, Foursquare, Twitter, Facebook...
 - Spatial locations
 - Textual description
 - Timestamps
 - Connectivity information (social)
 - Emerging geo-scientific fields, oceanography, seismology
 - Numerical attributes (measurements)
- Challenges for new complex queries
 - Research and industry, space as another dimension for setvalue data

Motivation examples

- Social recommendation
 - Match men and women
 - **Spatial locations**
 - **Interests**

- Find FLICKR duplicates
- **Spatial locations**
- Tags description

Problem definition

- Spatio-textual objects o(id, loc, text)
- ST-SJOIN(R,S,ε,θ)
 - Pair of objects close in space with similar textual description
 - Euclidean spatial distance

$$dist_l(r,s) = dist(r.loc,s.loc)$$

Jaccard textual similarity

$$sim_{t}(r,s) = \frac{|r.text \cap s.text|}{|r.text \cup s.text|}$$

- Subset of R x S with $dist_l(r,s)$ ≤ ε and $sim_t(r,s)$ ≥ θ

Problem definition (cont'd)

$$x_1$$
 {B,C} x_6 {C,D,E,F} x_2 {E,F} x_7 {A,B,C,D,F} x_3 {D,E,F} x_8 {A,B,D,E,F} x_4 {A,B,E,F} x_9 {A,B,C,D,E} x_5 {C,D,E,F}

Problem definition (cont'd)

Problem definition (cont'd)

Outline

- Introduction
- Background on set similarity joins
- Computing spatio-textual similarity joins
- Experimental analysis
- Conclusions and future work

Set similarity joins and PPJOIN

[Xiao et al @ WWW'08]

- Inverted index to compute overlaps [Sarawagi et al @ SIGMOD'04]
- Prefix filtering [Chaudhuri et al @ ICDE'06]
- - Objects by length
 - Read-Probe-Index
- Positional filter
- **Suffix filter**

Computing ST-SJOIN

- Textual similarity join
 - Build upon PPJOIN
- Spatial distance join
 - Filtering, dynamic grid partitioning, R-tree
- Methods
 - PPJ
 - PPJ-I
 - PPJ-C
 - PPJ-R
- Grouping

Spatial filtering and PPJ

- Straightforward approach
 - Extend PPJOIN
 - Add another filter before positional and suffix $dist_{l}(r,s) \leq \varepsilon$

ST-SJOIN(R, R, $\varepsilon = 0.2$, $\theta = 0.7$)

 $x_1 = \{B,C\}$

 x_6 {C,D,E,F}

 x_2 {E,F}

 x_7 {A,B,C,D,F}

 x_3 {D,E,F}

 x_8 {A,B,D,E,F}

 x_4 {A,B,E,F}

 x_9 {A,B,C,D,E}

 x_5 {C,D,E,F}

Spatial filtering and PPJ

- Straightforward approach
 - Extend PPJOIN
 - Add another filter before positional and suffix $dist_l(r,s) \leq \varepsilon$
- Problem
 - Lack of spatial indexing
 - Examines objects no matter how far from x₃

$$x_1 \quad \{\underline{B},C\}$$

$$x_6 \quad \{\underline{C},\underline{D},E,F\}$$

$$x_2 = \{\underline{E},F\}$$

$$x_7 \quad {\underline{A},\underline{B},C,D,F}$$

$$x_3 \quad \{\underline{D}, E, F\}$$

$$x_8 \quad {\underline{A},\underline{B},D,E,F}$$

$$x_4 \quad {\underline{A},\underline{B},E,F}$$

$$x_9 \quad {\underline{A},\underline{B},C,D,E}$$

$$x_5 \quad \{\underline{C},\underline{D},E,F\}$$

Dynamic grid partitioning

- Grid partitioning
 - On the fly
 - Extend of a grid cell equals ε
 - Numbering from left to right from bottom to top

Dynamic grid partitioning

Grid partitioning

- On the fly
- Extend of a grid cell equals ε
- Numbering from left to right from bottom to top

Property

- Objects spatially joinable inside at most 9 cells
- Still need to verify w.r.t. ε

Dynamic grid partitioning

Grid partitioning

- On the fly
- Extend of a grid cell equals ε
- Numbering from left to right from bottom to top

Property

- Objects spatially joinable inside at most 9 cells
- Still need to verify w.r.t. ε

Dynamic grid partitioning and PPJ-I

- Spatial information inside inverted index
 - Sort postings by cell id
 - Lightweight index on top of postings

	ī	ī	ī	ī		ī		1
			44	45	46			
			36	37	38			
			28	29	30			
9	10	11						G
1	2	3						٤
							3	

Dynamic grid partitioning and PPJ-I

- Spatial information inside inverted index
 - Sort postings by cell id
 - Lightweight index on top of postings

- Joinable neighborhood
 - At most three cell intervals
- Spatial distance join with space filling curve

C ₃₇	: [28,	30], [36,38], [44	,46]			
			44	45	46			
			36	37	38			
			28	29	30			
9	10	11	c ₂ :	[1,3]	, [9,1	1]		
1	2	3						
							ε	

Dynamic grid partitioning and PPJ-C

- Working at the cell-level
- For each cell
 - Build inverted index
 - Define set A[c], cells among 9 adjacent with smaller or equal id

		A[c ₃₇] = {c	₂₈ ,C ₂₉ ,	C ₃₀ ,C ₃	₆ ,c ₃₇ }		
				44	45	46		
				36	37	38		
				28	29	30		
9	10	11						
1	2	3	A[c ₂]	= {c ₁	,c ₂ }			
							ε	

Dynamic grid partitioning and PPJ-C

- Working at the cell-level
- For each cell
 - Build inverted index
 - Define set A[c], cells among 9 adjacent with smaller or equal id
 - ST-SJOIN(c, c, ε , θ)
 - ST-SJOIN(c, c', ϵ , θ) for each cell c' in A[c]
 - Discard c after finish with all cell in A[c]

R-tree and PPJ-R

- Similar to PPJ-C but:
 - Static partitioning, objects indexed offline by Rtree
 - No connection to ε
- ST-SJOIN based on ε-distance join using Rtrees
 - Traversing R-tree determines which partitions to join

Grouping

Problems

Same prefix index more than once

Grouping

x.text	ppref(x)
{B,C}	{B}
{E,F}	{E}
$\{D,E,F\}$	{D}
$\{A,B,E,F\}$	{A,B}
$\{C,D,E,F\}$	{C,D}
$\{C,D,E,F\}$	{C,D}
$\{A,B,C,D,F\}$	{A,B}
$\{A,B,D,E,F\}$	{A,B}
$\{A,B,C,D,E\}$	{A,B}
	{B,C} {E,F} {D,E,F} {A,B,E,F} {C,D,E,F} {C,D,E,F} {A,B,C,D,F} {A,B,D,E,F}

Problems

- Same prefix index more than once
- Some overlap calculated more than once

Grouping

group	object	x.text	ppref(x)
gı	x_{l}	$\{B,C\}$	{B}
g_2	x_2	{E,F}	{E}
g ₃	x_3	$\{D,E,F\}$	{D}
g 4	x_5	$\{C,D,E,F\}$	$\{C,D\}$
	x ₆	$\{C,D,E,F\}$	$\{C,D\}$
	x_4	$\{A,B,E,F\}$	{A,B}
	x ₇	$\{A,B,C,D,F\}$	{A,B}
8 5	x ₈	$\{A,B,D,E,F\}$	{A,B}
	X 9	$\{A,B,C,D,E\}$	{A,B}

Problems

- Same prefix index more than once
- Some overlap calculated more than once
- Grouping objects by prefix
 - Massive pruning

Grouping for ST-SJOIN

Textually

- Group objects by length and prefix
- Examination order retained, PPJOIN fully applicable
- If $|g_x| \ge |g_y|$ then $|x| \ge |y|$ for x in g_x and y in g_y

Spatially

- PPJ: group objects no matter how far
- PPJ-I,PPJ-C: group objects inside grid cells
- Join process
 - Probing and indexing over groups
 - Suffix filter not useful
 - Unfold groups during verification

Experimental analysis

Real collections

- FLICKR, NY, |R| = 1.5M, |T| = 730K, avg size 10.5
- POI-USCA, California state, |R| = 1.5M, |T| = 16K, avg size 4.4
- POI-AU, Australia, |R| = 700K, |T| = 2.6K, avg size 4.7

Synthetic collections

- $|R| = {30K, 100K, 500K, 1M, 3M}$
- $|T| = \{5K, 10K, 50K, 100K, 300K\}$
- Spatial distribution, uniform or clustered
- Correlated

Experiments

- Measure response time
- Vary $\varepsilon = \{0.001, 0.005, 0.01, 0.05, 0.1\}$ synthetic $\{0.001, 0.005, 0.01, 0.05\}$ real
- Vary $\theta = \{0.5, 0.6, 0.7, 0.8, 0.9\}$ synthetic, $\{0.6, 0.7, 0.8, 0.9\}$ real

To group or not to group

FLICKR $\varepsilon = 0.005$, $\theta = 0.9$

POI-AU ε = 0.05, θ = 0.7

Comparison with baseline methods

IR-tree and PPJ-IR

Conclusions and future work

- Conclusions
 - New join query, ST-SJOIN
 - Evaluation algorithms
 - State-of-the-art on set similarity joins
 - Spatial indexing
 - PPJ-C in general most efficient method
- Future work
 - Study PPJ-C's advantage on distributed environments
 - Consider other dimensions, e.g., time or graph

Questions?

Backup slides

- For every term t in object [Sarawagi et al @ SIGMOD'04]
 - Probe inverted index, traverse postings list L_t
 - Compute overlap O[,] with every object
- Optimization
 - Build inverted index on the fly, incrementally
 - Compute overlap between two object only once

- Prefix filtering [Chaudhuri et al @ ICDE'06]
 - Global ordering of terms, canonicalized objects
 - Prefixes w.r.t. θ should share at least one term

- AllPairs [Bayardo et al @ WWW'07]
 - Builds upon prefix-filtering
 - Examine objects by length, ascending
 - Reduce indexing cost
 - Index prefix of an object
 - Length filter

Hamming distance lower bound

- PPJOIN [Xiao et al @ WWW'08]
 - Builds upon AllPairs
 - Positional filter
 - Suffix filter

Dynamic grid partitioning and PPJ-I

• When examining x_4 in c_7

c₇: [1,3], [6,8], [11,13]

c₁₅ is not inside the joinable neighborhood of c₇

ST-SJOIN(R, R, $\varepsilon = 0.2$, $\theta = 0.7$)

 $x_1 = \{\underline{B}, C\}$

 $x_6 \quad \{\underline{C},\underline{D},E,F\}$

- $x_2 = \{\underline{E},F\}$
- $x_7 \quad {\underline{A},\underline{B},C,D,F}$
- $x_3 = \{\underline{D}, E, F\}$
- $x_8 \quad {\underline{A},\underline{B},D,E,F}$
- $x_4 \quad {\underline{A}, \underline{B}, E, F}$
- $x_9 \quad {\underline{A},\underline{B},C,D,E}$

 $x_5 \quad \{\underline{C},\underline{D},E,F\}$

Dynamic grid partitioning and PPJ-I

When examining x₅ in

- c₂₅ is inside the joinable neighborhood of c₁₉
- Need to check Euclidean distance

ST-SJOIN(R, R, $\varepsilon = 0.2$, $\theta = 0.7$)

 $x_1 = \{\underline{B}, C\}$

 $x_6 \quad \{\underline{C},\underline{D},E,F\}$

 $x_2 = \{\underline{E},F\}$

 $x_7 \quad {\underline{A},\underline{B},C,D,F}$

 $x_3 \quad \{\underline{D}, E, F\}$

 $x_8 \quad {\underline{A},\underline{B},D,E,F}$

 $x_4 \quad {\underline{A},\underline{B},E,F}$

 $x_9 \quad {\underline{A},\underline{B},C,D,E}$

 $x_5 \quad \{\underline{C},\underline{D},E,F\}$