Spatio-Textual Similarity Joins

Panagiotis Bouros1,2, Shen Ge1, Nikos Mamoulis1

1 University of Hong Kong
2 Humboldt-Universität zu Berlin

39th International Conference on Very Large Data Bases
August 29, 2013
Complex data

• Data are becoming more complex
 – FLICKR, Foursquare, Twitter, Facebook...
 • Spatial locations
 • Textual description
 • Timestamps
 • Connectivity information (social)
 – Emerging geo-scientific fields, oceanography, seismology
 • Numerical attributes (measurements)
• Challenges for new complex queries
 – Research and industry, space as another dimension for set-value data
Motivation examples

• Social recommendation
 • Match men and women
 • Spatial locations
 • Interests

• Data de-duplication
 • Find FLICKR duplicates
 • Spatial locations
 • Tags description

39th International Conference on Very Large Data Bases
August 29, 2013
Problem definition

- **Spatio-textual objects** $o(id, loc, text)$
- **ST-SJOIN(R, S, ε, θ)**
 - Pair of objects close in space with similar textual description
 - Euclidean spatial distance
 \[dist_l(r, s) = dist(r.loc, s.loc) \]
 - Jaccard textual similarity
 \[sim_t(r, s) = \frac{|r.text \cap s.text|}{|r.text \cup s.text|} \]
 - Subset of R x S with $dist_l(r, s) \leq \varepsilon$ and $sim_t(r, s) \geq \theta$
Problem definition (cont’d)

\[
\text{ST-SJOIN}(R, R, \varepsilon = 0.2, \theta = 0.7)
\]

\[
\begin{align*}
 x_1 & \quad \{B,C\} & x_6 & \quad \{C,D,E,F\} \\
 x_2 & \quad \{E,F\} & x_7 & \quad \{A,B,C,D,F\} \\
 x_3 & \quad \{D,E,F\} & x_8 & \quad \{A,B,D,E,F\} \\
 x_4 & \quad \{A,B,E,F\} & x_9 & \quad \{A,B,C,D,E\} \\
 x_5 & \quad \{C,D,E,F\} \\
\end{align*}
\]
Problem definition (cont’d)

ST-SJOIN(R, R, \(\epsilon = 0.2 \), \(\theta = 0.7 \))

- \(x_1 \) \{B,C\}
- \(x_2 \) \{E,F\}
- \(x_3 \) \{D,E,F\}
- \(x_4 \) \{A,B,E,F\}
- \(x_5 \) \{C,D,E,F\}
- \(x_6 \) \{C,D,E,F\}
- \(x_7 \) \{A,B,C,D,F\}
- \(x_8 \) \{A,B,D,E,F\}
- \(x_9 \) \{A,B,C,D,E\}
Problem definition (cont’d)

ST-SJOIN(R, R, $\varepsilon = 0.2$, $\theta = 0.7$)

- $x_1 \{B, C\}$
- $x_2 \{E, F\}$
- $x_3 \{D, E, F\}$
- $x_4 \{A, B, E, F\}$
- $x_5 \{C, D, E, F\}$
- $x_6 \{C, D, E, F\}$
- $x_7 \{A, B, C, D, F\}$
- $x_8 \{A, B, D, E, F\}$
- $x_9 \{A, B, C, D, E\}$
Outline

• Introduction
• Background on set similarity joins
• Computing spatio-textual similarity joins
• Experimental analysis
• Conclusions and future work
Set similarity joins and PPJOIN

[Xiao et al @ WWW’08]

- Inverted index to compute overlaps [Sarawagi et al @ SIGMOD’04]
- Prefix filtering [Chaudhuri et al @ ICDE’06]
- Two-phase method [Bayardo et al @ WWW’07]
 - Objects by length
 - Read-Probe-Index
- Positional filter
- Suffix filter

Hamming distance lower bound
Overlap upper bound
Computing ST-SJOIN

• **Textual similarity** join
 – Build upon **PPJOIN**

• **Spatial distance** join
 – Filtering, dynamic grid partitioning, R-tree

• **Methods**
 – PPJ
 – PPJ-I
 – PPJ-C
 – PPJ-R

• **Grouping**
Spatial filtering and PPJ

- **Straightforward approach**
 - Extend PPJOIN
 - Add another filter before positional and suffix

\[\text{dist}_I(r,s) \leq \varepsilon \]

ST-SJOIN(R, R, \varepsilon = 0.2, \theta = 0.7)

\[
\begin{align*}
 x_1 & \quad \{B,C\} & x_6 & \quad \{C,D,E,F\} \\
 x_2 & \quad \{E,F\} & x_7 & \quad \{A,B,C,D,F\} \\
 x_3 & \quad \{D,E,F\} & x_8 & \quad \{A,B,D,E,F\} \\
 x_4 & \quad \{A,B,E,F\} & x_9 & \quad \{A,B,C,D,E\} \\
 x_5 & \quad \{C,D,E,F\}
\end{align*}
\]
Spatial filtering and PPJ

• **Straightforward approach**
 – Extend PPJOIN
 – Add another filter before positional and suffix

 $\text{dist}_1(r,s) \leq \varepsilon$

• **Problem**
 – Lack of spatial indexing
 – Examines objects no matter how far from x_3

$\text{ST-SJOIN}(R, R, \varepsilon = 0.2, \theta = 0.7)$

$x_1 \{B, C\}$ $x_6 \{C, D, E, F\}$
$x_2 \{E, F\}$ $x_7 \{A, B, C, D, F\}$
$x_3 \{D, E, F\}$ $x_8 \{A, B, D, E, F\}$
$x_4 \{A, B, E, F\}$ $x_9 \{A, B, C, D, E\}$
$x_5 \{C, D, E, F\}$
Dynamic grid partitioning

- Grid partitioning
 - On the fly
 - Extend of a grid cell equals ε
 - Numbering from left to right from bottom to top

39th International Conference on Very Large Data Bases August 29, 2013
Dynamic grid partitioning

- Grid partitioning
 - On the fly
 - Extend of a grid cell equals ϵ
 - Numbering from left to right from bottom to top

- Property
 - Objects spatially joinable inside at most 9 cells
 - Still need to verify w.r.t. ϵ
Dynamic grid partitioning

- Grid partitioning
 - On the fly
 - Extend of a grid cell equals ϵ
 - Numbering from left to right from bottom to top

- Property
 - Objects spatially joinable inside at most 9 cells
 - Still need to verify w.r.t. ϵ
Dynamic grid partitioning and PPJ-I

• Spatial information inside inverted index
 – Sort postings by cell id
 – Lightweight index on top of postings

Spatial distance join with space filling curve
Dynamic grid partitioning and PPJ-I

- **Spatial information inside inverted index**
 - Sort postings by cell id
 - Lightweight index on top of postings

- **Joinable neighborhood**
 - At most three cell intervals

- **Spatial distance join with space filling curve**

<table>
<thead>
<tr>
<th>c1</th>
<th>c2</th>
<th>c3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- c\(_{37}\): [28,30], [36,38], [44,46]
- c\(_{2}\): [1,3], [9,11]

39\(^{th}\) International Conference on Very Large Data Bases
August 29, 2013
Dynamic grid partitioning and PPJ-C

• Working at the cell-level
• For each cell
 – Build inverted index
 – Define set $A[c]$, cells among 9 adjacent with smaller or equal id

$A[c_{37}] = \{c_{28}, c_{29}, c_{30}, c_{36}, c_{37}\}$

$A[c_{2}] = \{c_{1}, c_{2}\}$
Dynamic grid partitioning and PPJ-C

- Working at the cell-level
- For each cell
 - Build inverted index
 - Define set $A[c]$, cells among 9 adjacent with smaller or equal id
 - ST-$SJOIN(c, c, \varepsilon, \theta)$
 - ST-$SJOIN(c, c', \varepsilon, \theta)$ for each cell c' in $A[c]$
 - Discard c after finish with all cell in $A[c]$
R-tree and PPJ-R

- **Similar** to PPJ-C but:
 - *Static* partitioning, objects **indexed offline** by R-tree
 - **No connection** to ε
- **ST-SJOIN** based on **ε-distance join using R-trees**
 - Traversing R-tree determines which partitions to join
Grouping

<table>
<thead>
<tr>
<th>object</th>
<th>x.text</th>
<th>(\text{ppref}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>{B,C}</td>
<td>{B}</td>
</tr>
<tr>
<td>(x_2)</td>
<td>{E,F}</td>
<td>{E}</td>
</tr>
<tr>
<td>(x_3)</td>
<td>{D,E,F}</td>
<td>{D}</td>
</tr>
<tr>
<td>(x_4)</td>
<td>{A,B,E,F}</td>
<td>{A,B}</td>
</tr>
<tr>
<td>(x_5)</td>
<td>{C,D,E,F}</td>
<td>{C,D}</td>
</tr>
<tr>
<td>(x_6)</td>
<td>{C,D,E,F}</td>
<td>{C,D}</td>
</tr>
<tr>
<td>(x_7)</td>
<td>{A,B,C,D,F}</td>
<td>{A,B}</td>
</tr>
<tr>
<td>(x_8)</td>
<td>{A,B,D,E,F}</td>
<td>{A,B}</td>
</tr>
<tr>
<td>(x_9)</td>
<td>{A,B,C,D,E}</td>
<td>{A,B}</td>
</tr>
</tbody>
</table>

- **Problems**
 - Same prefix index more than once
Grouping

<table>
<thead>
<tr>
<th>object</th>
<th>x.text</th>
<th>ppref(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>{B,C}</td>
<td>{B}</td>
</tr>
<tr>
<td>x_2</td>
<td>{E,F}</td>
<td>{E}</td>
</tr>
<tr>
<td>x_3</td>
<td>{D,E,F}</td>
<td>{D}</td>
</tr>
<tr>
<td>x_4</td>
<td>{A,B,E,F}</td>
<td>{A,B}</td>
</tr>
<tr>
<td>x_5</td>
<td>{C,D,E,F}</td>
<td>{C,D}</td>
</tr>
<tr>
<td>x_6</td>
<td>{C,D,E,F}</td>
<td>{C,D}</td>
</tr>
<tr>
<td>x_7</td>
<td>{A,B,C,D,F}</td>
<td>{A,B}</td>
</tr>
<tr>
<td>x_8</td>
<td>{A,B,D,E,F}</td>
<td>{A,B}</td>
</tr>
<tr>
<td>x_9</td>
<td>{A,B,C,D,E}</td>
<td>{A,B}</td>
</tr>
</tbody>
</table>

Problems

- Same prefix index more than once
- Some overlap calculated more than once
Grouping

<table>
<thead>
<tr>
<th>group</th>
<th>object</th>
<th>x.text</th>
<th>ppref(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_1</td>
<td>x_1</td>
<td>{B,C}</td>
<td>{B}</td>
</tr>
<tr>
<td>g_2</td>
<td>x_2</td>
<td>{E,F}</td>
<td>{E}</td>
</tr>
<tr>
<td>g_3</td>
<td>x_3</td>
<td>{D,E,F}</td>
<td>{D}</td>
</tr>
<tr>
<td></td>
<td>x_5</td>
<td>{C,D,E,F}</td>
<td>{C,D}</td>
</tr>
<tr>
<td>g_4</td>
<td>x_4</td>
<td>{A,B,E,F}</td>
<td>{A,B}</td>
</tr>
<tr>
<td></td>
<td>x_6</td>
<td>{C,D,E,F}</td>
<td>{C,D}</td>
</tr>
<tr>
<td></td>
<td>x_7</td>
<td>{A,B,C,D,F}</td>
<td>{A,B}</td>
</tr>
<tr>
<td></td>
<td>x_8</td>
<td>{A,B,D,E,F}</td>
<td>{A,B}</td>
</tr>
<tr>
<td></td>
<td>x_9</td>
<td>{A,B,C,D,E}</td>
<td>{A,B}</td>
</tr>
</tbody>
</table>

Problems
- Same prefix index more than once
- Some overlap calculated more than once

Grouping objects by prefix
- Massive pruning
Grouping for ST-SJOIN

• **Textually**
 – Group objects by *length and prefix*
 – Examination order retained, PPJOIN fully applicable
 – If $|g_x| \geq |g_y|$ then $|x| \geq |y|$ for x in g_x and y in g_y

• **Spatially**
 – PPJ: group objects *no matter how far*
 – PPJ-I,PPJ-C: group objects inside *grid cells*

• **Join process**
 – Probing and indexing *over groups*
 – Suffix filter *not useful*
 – *Unfold groups during verification*
Experimental analysis

- **Real** collections
 - FLICKR, NY, |R| = 1.5M, |T| = 730K, avg size 10.5
 - POI-USCA, California state, |R| = 1.5M, |T| = 16K, avg size 4.4
 - POI-AU, Australia, |R| = 700K, |T| = 2.6K, avg size 4.7

- **Synthetic** collections
 - |R| = {30K, 100K, 500K, 1M, 3M}
 - |T| = {5K, 10K, 50K, 100K, 300K}
 - Spatial distribution, uniform or clustered
 - Correlated

- **Experiments**
 - Measure response time
 - Vary $\varepsilon = \{0.001, 0.005, 0.01, 0.05, 0.1\}$ synthetic $\{0.001, 0.005, 0.01, 0.05\}$ real
 - Vary $\theta = \{0.5, 0.6, 0.7, 0.8, 0.9\}$ synthetic, $\{0.6, 0.7, 0.8, 0.9\}$ real
To group or not to group

FLICKR $\varepsilon = 0.005$, $\theta = 0.9$

POI-AU $\varepsilon = 0.05$, $\theta = 0.7$
Comparison with baseline methods

FLICKR

<table>
<thead>
<tr>
<th>Number of results</th>
<th>Response time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53M</td>
<td>10^5</td>
</tr>
<tr>
<td>44M</td>
<td>10^4</td>
</tr>
<tr>
<td>22M</td>
<td>10^3</td>
</tr>
<tr>
<td>17M</td>
<td>10^2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϵ/θ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001/0.6</td>
<td>RT</td>
</tr>
<tr>
<td>0.005/0.7</td>
<td>PPJOIN</td>
</tr>
<tr>
<td>0.01/0.8</td>
<td>PPJ</td>
</tr>
<tr>
<td>0.05/0.9</td>
<td>PPJ-R</td>
</tr>
</tbody>
</table>

POI-USCA

<table>
<thead>
<tr>
<th>Number of results</th>
<th>Response time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44M</td>
<td>10^6</td>
</tr>
<tr>
<td>100M</td>
<td>10^5</td>
</tr>
<tr>
<td>130M</td>
<td>10^4</td>
</tr>
<tr>
<td>700M</td>
<td>10^3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϵ/θ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001/0.6</td>
<td>RT</td>
</tr>
<tr>
<td>0.005/0.7</td>
<td>PPJOIN</td>
</tr>
<tr>
<td>0.01/0.8</td>
<td>PPJ</td>
</tr>
<tr>
<td>0.05/0.9</td>
<td>PPJ-R</td>
</tr>
</tbody>
</table>

39th International Conference on Very Large Data Bases
August 29, 2013
IR-tree and PPJ-IR

FLICKR

POI-USCA

Response time (sec)

Number of results

247M 218M 127M 126M

401M 773M 353M 516M

$\frac{\epsilon}{\theta}$

$0.001/3$ $0.005/5$ $0.01/7$ $0.05/9$

$0.001/1$ $0.005/2$ $0.01/3$ $0.05/4$

PPJ-IR PPJ-R PPJ-C
Conclusions and future work

• Conclusions
 – New join query, ST-SJOIN
 – Evaluation algorithms
 • State-of-the-art on set similarity joins
 • Spatial indexing
 • PPJ-C in general most efficient method

• Future work
 – Study PPJ-C’s advantage on distributed environments
 – Consider other dimensions, e.g., time or graph
Questions?
Backup slides
Set similarity joins

- For every term t in object S: [Sarawagi et al @ SIGMOD’04]
 - Probe inverted index, traverse postings list L_t
 - Compute overlap $O[\text{ }, \text{ }]$ with every object

- Optimization
 - Build inverted index on the fly, incrementally
 - Compute overlap between two object only once
Set similarity joins

- Prefix filtering [Chaudhuri et al @ ICDE’06]
 - Global ordering of terms, canonicalized objects
 - Prefixes w.r.t. \(\theta \) should share at least one term
Set similarity joins

- AllPairs [Bayardo et al @ WWW’07]
 - Builds upon prefix-filtering
 - Examine objects by length, ascending
 - Reduce indexing cost
 - Index prefix of an object
 - Length filter
Set similarity joins

- **PPJOIN** [Xiao et al @ WWW’08]
 - Builds upon AllPairs
 - Positional filter
 - Suffix filter

[Diagram showing set similarity join process with objects and inverted index filtering.]
Dynamic grid partitioning and PPJ-I

- When examining x_4 in c_7

c_7: [1,3], [6,8], [11,13]
- c_{15} is not inside the joinable neighborhood of c_7
Dynamic grid partitioning and PPJ-I

- When examining x_5 in c_{19}
 - c_{25} is inside the joinable neighborhood of c_{19}
 - Need to check Euclidean distance

```
\begin{align*}
&c_{19}: [13,15], [18,20], [23,25] \\
&- c_{25} \text{ is inside the joinable neighborhood of } c_{19}
\end{align*}
```

<table>
<thead>
<tr>
<th>x_1</th>
<th>${B,C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_2</td>
<td>${E,F}$</td>
</tr>
<tr>
<td>x_3</td>
<td>${D,E,F}$</td>
</tr>
<tr>
<td>x_4</td>
<td>${A,B,E,F}$</td>
</tr>
<tr>
<td>x_5</td>
<td>${C,D,E,F}$</td>
</tr>
<tr>
<td>x_6</td>
<td>${C,D,E,F}$</td>
</tr>
<tr>
<td>x_7</td>
<td>${A,B,C,D,F}$</td>
</tr>
<tr>
<td>x_8</td>
<td>${A,B,D,E,F}$</td>
</tr>
<tr>
<td>x_9</td>
<td>${A,B,C,D,E}$</td>
</tr>
</tbody>
</table>

ST-SJOIN(R, R, $\varepsilon = 0.2$, $\theta = 0.7$)