
July 11 SSDBM'08

Caching Dynamic Skyline
Queries

D. Sacharidis1, P. Bouros1, T. Sellis1,2
1National Technical University of Athens

2Institute for Management of Information Systems – R.C. Athena

July 11 SSDBM'08

Outline

•  Introduction
– Skyline (SL) and dynamic skyline queries (DSL)

•  Related work
•  Evaluating dynamic skyline queries

– Computing orthant skylines (OSL)
– Computing dynamic skyline via caching

•  LRU, LFU, LPP cache replacement policies

•  Experimental evaluation
•  Conclusions and Future work

July 11 SSDBM'08

Skyline queries (SL)

•  Given a dataset of d-
dimensional points
– SL contains points not

dominated by others
– x dominates y iff x as

good as y in all
dimensions and strictly
better in at least one

July 11 SSDBM'08

Skyline queries (SL)

•  Given a dataset of d-
dimensional points
– SL contains points not

dominated by others
– x dominates y iff x as

good as y in all
dimensions and strictly
better in at least one

•  Example
– Dataset of hotels
– Prefer cheap hotels

close to the sea

Distance from sea

P
ric

e

July 11 SSDBM'08

Skyline queries (SL)

•  Given a dataset of d-
dimensional points
– SL contains points not

dominated by others
– x dominates y iff x as

good as y in all
dimensions and strictly
better in at least one

•  Example
– Dataset of hotels
– Prefer cheap hotels

close to the sea

Distance from sea

P
ric

e

Skyline points

July 11 SSDBM'08

Skyline queries (SL)

•  Given a dataset of d-
dimensional points
– SL contains points not

dominated by others
– x dominates y iff x as

good as y in all
dimensions and strictly
better in at least one

•  Example
– Dataset of hotels
– Prefer cheap hotels

close to the sea

Distance from sea

P
ric

e

Skyline points

p1

July 11 SSDBM'08

Skyline queries (SL)

•  Given a dataset of d-
dimensional points
– SL contains points not

dominated by others
– x dominates y iff x as

good as y in all
dimensions and strictly
better in at least one

•  Example
– Dataset of hotels
– Prefer cheap hotels

close to the sea

Distance from sea

P
ric

e

Skyline points

p1 p2

July 11 SSDBM'08

Dynamic skyline queries (DSL)
•  Extension of skyline

queries
–  Given a query point q
–  DSL contains points not

dynamically dominated by
others w.r.t q

–  x dynamically dominates y
iff x as preferable as y w.r.t.
q in all dimensions and
strictly more preferable
w.r.t. q in at least one

•  Can be treated as static
SL
–  Transform points w.r.t. q

July 11 SSDBM'08

Dynamic skyline queries (DSL)
•  Extension of skyline

queries
–  Given a query point q
–  DSL contains points not

dynamically dominated by
others w.r.t q

–  x dynamically dominates y
iff x as preferable as y w.r.t.
q in all dimensions and
strictly more preferable
w.r.t. q in at least one

•  Can be treated as static
SL
–  Transform points w.r.t. q

•  Example
– User defines “ideal”

hotel q

Distance from sea

P
ric

e

Query point q

July 11 SSDBM'08

Dynamic skyline queries (DSL)
•  Extension of skyline

queries
–  Given a query point q
–  DSL contains points not

dynamically dominated by
others w.r.t q

–  x dynamically dominates y
iff x as preferable as y w.r.t.
q in all dimensions and
strictly more preferable
w.r.t. q in at least one

•  Can be treated as static
SL
–  Transform points w.r.t. q

•  Example
– User defines “ideal”

hotel q

Distance from sea

P
ric

e

Dynamic
Skyline points

q

July 11 SSDBM'08

Dynamic skyline queries (DSL)
•  Extension of skyline

queries
–  Given a query point q
–  DSL contains points not

dynamically dominated by
others w.r.t q

–  x dynamically dominates y
iff x as preferable as y w.r.t.
q in all dimensions and
strictly more preferable
w.r.t. q in at least one

•  Can be treated as static
SL
–  Transform points w.r.t. q

•  Example
– User defines “ideal”

hotel q

Distance from sea

P
ric

e

Dynamic
Skyline points

q

p4

p5

July 11 SSDBM'08

Intuition (1)

•  Traditional SL algorithms need to run
anew for each DSL query

• Our idea
– Exploit results from past queries to reduce

processing cost for future DSL queries
– Cache past queries
– Decide which queries in cache are useful

July 11 SSDBM'08

Intuition (2)

Distance from sea

P
ric

e

July 11 SSDBM'08

Intuition (2)

•  2 past DSL queries
– qa, qb

•  Each query partitions
space in 4 quadrants

Distance from sea

P
ric

e

qa

qb

July 11 SSDBM'08

Intuition (3)
•  A new query q arrives
•  Consider DSL for qa

–  p1 is contained DSL(qa)
–  p1 dominates p2, p3, p4

•  p1 lies in upper right
quadrant w.r.t. qa

•  qa lies in upper right
quadrant w.r.t. q

•  p1 dominates also p2, p3,
p4 w.r.t. to q
–  Exclude p2, p3, p4 from

dominance test for DSL(q)

Distance from sea

P
ric

e

qa

qb

p1

p2

p3

p4

q

•  Shaded area denotes
points dominated by p1

July 11 SSDBM'08

Contribution in brief

•  Caching past DSL queries cannot reduce
processing cost for future ones
– We need more information about dominance

relationships
•  Introduce orthant skylines (OSL) and examine

their relationship with DSL
•  Extend Bitmap algorithm to compute OSL in

parallel with DSL
•  Cache OSL to enhance DSL queries evaluation

– Present 3 cache replacement policies
•  LRU, LFU, LPP

•  Experimental evaluation of caching mechanism

July 11 SSDBM'08

Related work

•  Non-indexed methods
– Block-Nested Loops (BnL)
– Bitmap
– Multidimensional Divide and Conquer (DnC)
– Sort First Scan (SFS)

•  Index-based methods
– B-tree

•  sort points according to the lowest valued coordinate
– R-tree

•  Nearest neighbor based (NN)
•  Branch and bound (BBS)

July 11 SSDBM'08

Related work

•  Non-indexed methods
– Block-Nested Loops (BnL)
– Bitmap
– Multidimensional Divide and Conquer (DnC)
– Sort First Scan (SFS)

•  Index-based methods
– B-tree

•  sort points according to the lowest valued coordinate
– R-tree

•  Nearest neighbor based (NN)
•  Branch and bound (BBS)

July 11 SSDBM'08

Bitmap

•  BnL variant
•  Suitable for domains with low cardinality and

discrete
•  In brief

– Computes a bitmap representation of the points in the
dataset

– Examines each point separately (dominance test)
•  Checks whether it is contained in the skyline or not
•  Exploits fast bitwise operations OR/AND

July 11 SSDBM'08

Bitmap – Dominance test

•  For each point p
– Define A = A1 & A2 & … & Ad

• Denotes the points as good as p in all dimensions
– Define B = B1 | B2 | … | Bd

• Denotes the points strictly better than p in at least
one dimension

– Dominance test:
•  If C = A & B has all bits set to 0 then p is in SL

July 11 SSDBM'08

Orthant skyline (OSL)
•  OSL provides more information

about dominance relationships
than DSL
–  Useful for pruning

•  Given a dataset of d-
dimensional points and a query
point q
–  Space partitioned in 2d

orthants
–  o-th orthant skyline (OSL) of q

contains points of the o-th
orthant not dynamically
dominated by others inside
orthant o w.r.t q

July 11 SSDBM'08

Orthant skyline (OSL)
•  OSL provides more information

about dominance relationships
than DSL
–  Useful for pruning

•  Given a dataset of d-
dimensional points and a query
point q
–  Space partitioned in 2d

orthants
–  o-th orthant skyline (OSL) of q

contains points of the o-th
orthant not dynamically
dominated by others inside
orthant o w.r.t q

Quadrant 2 Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

Query point q

July 11 SSDBM'08

Orthant skyline (OSL)
•  OSL provides more information

about dominance relationships
than DSL
–  Useful for pruning

•  Given a dataset of d-
dimensional points and a query
point q
–  Space partitioned in 2d

orthants
–  o-th orthant skyline (OSL) of q

contains points of the o-th
orthant not dynamically
dominated by others inside
orthant o w.r.t q

Quadrant 2 Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

Query point q

July 11 SSDBM'08

Orthant skyline (OSL)
•  OSL provides more information

about dominance relationships
than DSL
–  Useful for pruning

•  Given a dataset of d-
dimensional points and a query
point q
–  Space partitioned in 2d

orthants
–  o-th orthant skyline (OSL) of q

contains points of the o-th
orthant not dynamically
dominated by others inside
orthant o w.r.t q

Quadrant 2 Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

Query point q

Quadrant 2
skyline points

July 11 SSDBM'08

OSL and DSL relationship

Quadrant 2 Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

July 11 SSDBM'08

OSL and DSL relationship

Quadrant 2 Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

July 11 SSDBM'08

OSL and DSL relationship

•  Map points from
quadrants 1,2,3 to
points inside quadrant
0

Quadrant 2 Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

July 11 SSDBM'08

OSL and DSL relationship

•  Map points from
quadrants 1,2,3 to
points inside quadrant
0

•  Compute DSL w.r.t. q

Quadrant 2 Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

July 11 SSDBM'08

OSL and DSL relationship

•  Map points from
quadrants 1,2,3 to
points inside quadrant
0

•  Compute DSL w.r.t. q
•  Union of all OSLs is

superset of DSL w.r.t.
to q

Quadrant 2 Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

July 11 SSDBM'08

OSL and DSL relationship

•  Map points from
quadrants 1,2,3 to
points inside quadrant
0

•  Compute DSL w.r.t. q
•  Union of all OSLs is

superset of DSL w.r.t.
to q

Quadrant 2 Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

p1

p2

July 11 SSDBM'08

OSL and DSL relationship

•  Map points from
quadrants 1,2,3 to
points inside quadrant
0

•  Compute DSL w.r.t. q
•  Union of all OSLs is

superset of DSL w.r.t.
to q

Quadrant 2 Distance from sea

P
ric

e

Quadrant 0

Quadrant 3

Quadrant 1

q

p3

p2

July 11 SSDBM'08

Computing orthant skylines

•  Algorithm DBM
– Extends Bitmap to compute DSL and OSLs at

the same time
• Method:

– Compute bitmap representation
• Transform each point coordinates w.r.t. to query q

– Dominance test, point p, orthant o
• p not in OSLo and not in DSL
• p not in DSL, but in OSLo
• p in DSL and in OSLo

July 11 SSDBM'08

Dynamic skylines Via Caching
•  Cache OSLs instead of DSLs

–  Query cache contains (query point qj, OSLs)
–  OSLs encode by bitmaps

•  Algorithm cDBM
–  OSL contains information about dominance test inside orthant
–  Discard points inside orthants from dominance tests

•  Method:
–  Compute bitmap representation
–  For each point p consider its position (orthant) w.r.t. to cache

queries qj
–  If p in the same orthant o w.r.t qj as qj w.r.t. q and p not in OSLo

(qj) then exclude it from OSLo(q), DSL(q)

July 11 SSDBM'08

Cache Replacement Policies

• General idea
– Limited cache space
– Identify least useful query point in cache
– Replace it with new one

July 11 SSDBM'08

Usage-based policies
•  Only a few queries in

cache are useful
•  Log cache query usage
•  Given a new query q

–  Consider as input the query
point cache Q

–  Only query points in OSL of
Q w.r.t. q are useful

–  Update cache - remove:
•  Least Recently Used

(LRU) query point
•  Least Frequently Used

(LFU) query point

July 11 SSDBM'08

Usage-based policies
•  Only a few queries in

cache are useful
•  Log cache query usage
•  Given a new query q

–  Consider as input the query
point cache Q

–  Only query points in OSL of
Q w.r.t. q are useful

–  Update cache - remove:
•  Least Recently Used

(LRU) query point
•  Least Frequently Used

(LFU) query point

Distance from sea

P
ric

e

qa

qb
qc

qd

q

July 11 SSDBM'08

Usage-based policies
•  Only a few queries in

cache are useful
•  Log cache query usage
•  Given a new query q

–  Consider as input the query
point cache Q

–  Only query points in OSL of
Q w.r.t. q are useful

–  Update cache - remove:
•  Least Recently Used

(LRU) query point
•  Least Frequently Used

(LFU) query point

Distance from sea

P
ric

e

qa

qb
qc

qd

q

Redundant
queries

July 11 SSDBM'08

Usage-based policies
•  Only a few queries in

cache are useful
•  Log cache query usage
•  Given a new query q

–  Consider as input the query
points in cache Q

–  Only query points in OSL of
Q w.r.t. q are useful

–  Update cache - remove:
•  Least Recently Used

(LRU) query point
•  Least Frequently Used

(LFU) query point

Distance from sea

P
ric

e

qa

qb
qc

qd

q

Redundant
queries

July 11 SSDBM'08

Usage-based policies
•  Only a few queries in

cache are useful
•  Log cache query usage
•  Given a new query q

–  Consider as input the query
points in cache Q

–  Only query points in OSL of
Q w.r.t. q are useful

–  Update cache - remove:
•  Least Recently Used

(LRU) query point
•  Least Frequently Used

(LFU) query point

Distance from sea

P
ric

e

qa

qb
qc

qd

q

Redundant
queries

July 11 SSDBM'08

Pruning power-based policy
•  Usage-based policies do

not indicate usefulness
•  Useful cached query

–  Great pruning power
•  Probability that a query can

prune points of dataset from
DSL computation

–  Depends on
•  Points dominated by query

in an orthant j
•  Points contained in the

antisymetric orthant of j
•  Update cache – remove

–  Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

July 11 SSDBM'08

Pruning power-based policy
•  Usage-based policies do

not indicate usefulness
•  Useful cached query

–  Great pruning power
•  Probability that a query can

prune points of dataset from
DSL computation

–  Depends on
•  Points dominated by query

in an orthant j
•  Points contained in the

antisymetric orthant of j
•  Update cache – remove

–  Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

2:2
4

5:2
4

3:2
4

74:2
4

July 11 SSDBM'08

Pruning power-based policy
•  Usage-based policies do

not indicate usefulness
•  Useful cached query

–  Great pruning power
•  Probability that a query can

prune points of dataset from
DSL computation

–  Depends on
•  Points dominated by query

in an orthant j
•  Points contained in the

antisymetric orthant of j
•  Update cache – remove

–  Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

2:3
4

5:7
4

3:4
4

74:88
4

July 11 SSDBM'08

Pruning power-based policy
•  Usage-based policies do

not indicate usefulness
•  Useful cached query

–  Great pruning power
•  Probability that a query can

prune points of dataset from
DSL computation

–  Depends on
•  Points dominated by query

in an orthant j
•  Points contained in the

antisymetric orthant of j
•  Update cache – remove

–  Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

2:3
176

5:7
4

3:4
4

74:88
4

July 11 SSDBM'08

Pruning power-based policy
•  Usage-based policies do

not indicate usefulness
•  Useful cached query

–  Great pruning power
•  Probability that a query can

prune points of dataset from
DSL computation

–  Depends on
•  Points dominated by query

in an orthant j
•  Points contained in the

antisymetric orthant of j
•  Update cache – remove

–  Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

2:3
176

5:7
20

3:4
21

74:88
222

July 11 SSDBM'08

Pruning power-based policy
•  Usage-based policies do

not indicate usefulness
•  Useful cached query

–  Great pruning power
•  Probability that a query can

prune points of dataset from
DSL computation

–  Depends on
•  Points dominated by query

in an orthant j
•  Points contained in the

antisymetric orthant of j
•  Update cache – remove

–  Query point with less pruning
power (LPP)

Distance from sea

P
ric

e

qa

q

2:3
176

5:7
20

3:4
21

74:88
222

July 11 SSDBM'08

Experimental Evaluation
•  Synthetic datasets

–  Distribution types
•  Independent, correlated, anti-correlated

–  Number of points N
•  10k, 20k, 50k, 100k,

–  Dimensionality
•  d = {2,3,4,5,6}

–  Domain size for dimension
•  |D| = {10,20,50}

•  Compare
–  Bitmap (NO-CACHE)
–  cDBM with LFU,LRU,LPP cache replacement policies
–  Query cache

•  |Q| = {10,20,30,40,50} past query points
•  Cache size is |Q|*N bits uncompressed

July 11 SSDBM'08

Varying query cache size

•  Dataset: N = 50k points, with d = 4 dimensions of |D| = 20
domain size

•  LFU,LRU cache queries not representative for future ones
•  LPP caches queries with great pruning power

Anti-correlated Independent

July 11 SSDBM'08

Effect of distribution parameters

•  Relative improvement in running time over NO-CACHE
•  Vary number of points N

–  d = 4 dimensions of |D| = 20 domain size
•  Vary number of dimensions d

–  N = 50k, |D| = 20

Correlated vary d Correlated vary N

July 11 SSDBM'08

Conclusions and Future work

•  Conclusions
–  Introduced orthant skylines (OSLs) and discussed its

relationship with DSL
– Extended Bitmap to compute OSLs and DSL at the

same time (DBM algorithm)
– Proposed caching mechanism of OSLs to reduce cost

for future DSL queries
•  LRU, LFU, LPP cache replacement policies

– Experimentally verified the efficiency of caching
mechanism

•  Future work
– Apply caching mechanism to index-based methods
– Further increase pruning power of cached queries

July 11 SSDBM'08

Questions ?

