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Dynamic skyline queries (DSL) 
•  Extension of skyline 
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Intuition (1) 

•  Traditional SL algorithms need to run 
anew for each DSL query 

• Our idea 
– Exploit results from past queries to reduce 

processing cost for future DSL queries 
– Cache past queries 
– Decide which queries in cache are useful 
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Intuition (2) 
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Intuition (2) 

•  2 past DSL queries 
– qa, qb 

•  Each query partitions 
space in 4 quadrants 
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Intuition (3) 
•  A new query q arrives 
•  Consider DSL for qa 

–  p1 is contained DSL(qa) 
–  p1 dominates p2, p3, p4 

•  p1 lies in upper right 
quadrant w.r.t. qa 

•  qa lies in upper right 
quadrant w.r.t. q 

•  p1 dominates also p2, p3, 
p4 w.r.t. to q 
–  Exclude p2, p3, p4 from 

dominance test for DSL(q) 
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•  Shaded area denotes 
points dominated by p1 
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Contribution in brief 

•  Caching past DSL queries cannot reduce 
processing cost for future ones 
– We need more information about dominance 

relationships 
•  Introduce orthant skylines (OSL) and examine 

their relationship with DSL  
•  Extend Bitmap algorithm to compute OSL in 

parallel with DSL 
•  Cache OSL to enhance DSL queries evaluation 

– Present 3 cache replacement policies 
•  LRU, LFU, LPP 

•  Experimental evaluation of caching mechanism 
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Related work 

•  Non-indexed methods 
– Block-Nested Loops (BnL) 
– Bitmap  
– Multidimensional Divide and Conquer (DnC) 
– Sort First Scan (SFS) 

•  Index-based methods 
– B-tree 

•  sort points according to the lowest valued coordinate 
– R-tree 

•  Nearest neighbor based (NN) 
•  Branch and bound (BBS) 
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Bitmap 

•  BnL variant 
•  Suitable for domains with low cardinality and 

discrete 
•  In brief 

– Computes a bitmap representation of the points in the 
dataset 

– Examines each point separately (dominance test) 
•  Checks whether it is contained in the skyline or not 
•  Exploits fast bitwise operations OR/AND 
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Bitmap – Dominance test 

•  For each point p  
– Define A = A1 & A2 & … & Ad 

• Denotes the points as good as p in all dimensions 
– Define B = B1 | B2 | … | Bd 

• Denotes the points strictly better than p in at least 
one dimension 

– Dominance test: 
•  If C = A & B has all bits set to 0 then p is in SL 
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Orthant skyline (OSL) 
•  OSL provides more information 

about dominance relationships 
than DSL 
–  Useful for pruning 

•  Given a dataset of d-
dimensional points and a query 
point q 
–  Space partitioned in 2d 

orthants 
–  o-th orthant skyline (OSL) of q 

contains points of the o-th 
orthant not dynamically 
dominated by others inside 
orthant o w.r.t q 
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OSL and DSL relationship 
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OSL and DSL relationship 

•  Map points from 
quadrants 1,2,3 to 
points inside quadrant 
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Computing orthant skylines 

•  Algorithm DBM 
– Extends Bitmap to compute DSL and OSLs at 

the same time 
• Method: 

– Compute bitmap representation  
• Transform each point coordinates w.r.t. to query q 

– Dominance test, point p, orthant o 
• p not in OSLo and not in DSL 
• p not in DSL, but in OSLo 
• p in DSL and in OSLo 
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Dynamic skylines Via Caching 
•  Cache OSLs instead of DSLs 

–  Query cache contains (query point qj, OSLs) 
–  OSLs encode by bitmaps 

•  Algorithm cDBM 
–  OSL contains information about dominance test inside orthant 
–  Discard points inside orthants from dominance tests 

•  Method: 
–  Compute bitmap representation 
–  For each point p consider its position (orthant) w.r.t. to cache 

queries qj 
–  If p in the same orthant o w.r.t qj as qj w.r.t. q and p not in OSLo

(qj) then exclude it from OSLo(q), DSL(q) 
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Cache Replacement Policies 

• General idea 
– Limited cache space 
– Identify least useful query point in cache 
– Replace it with new one 
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Usage-based policies 
•  Only a few queries in 

cache are useful 
•  Log cache query usage 
•  Given a new query q 

–  Consider as input the query 
point cache Q 

–  Only query points in OSL of 
Q w.r.t. q are useful 

–  Update cache - remove: 
•  Least Recently Used 

(LRU) query point 
•  Least Frequently Used 

(LFU) query point 
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Pruning power-based policy 
•  Usage-based policies do 

not indicate usefulness 
•  Useful cached query 

–  Great pruning power 
•  Probability that a query can 

prune points of dataset from 
DSL computation 

–  Depends on 
•  Points dominated by query 

in an orthant j 
•  Points contained in the 

antisymetric orthant of j 
•  Update cache – remove 

–  Query point with less pruning 
power (LPP) 
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Experimental Evaluation 
•  Synthetic datasets 

–  Distribution types 
•  Independent, correlated, anti-correlated 

–  Number of points N 
•  10k, 20k, 50k, 100k, 

–  Dimensionality 
•  d = {2,3,4,5,6}  

–  Domain size for dimension 
•  |D| = {10,20,50} 

•  Compare 
–  Bitmap (NO-CACHE) 
–  cDBM with LFU,LRU,LPP cache replacement policies 
–  Query cache 

•  |Q| = {10,20,30,40,50} past query points 
•  Cache size is |Q|*N bits uncompressed 
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Varying query cache size 

•  Dataset: N = 50k points, with d = 4 dimensions of |D| = 20 
domain size 

•  LFU,LRU cache queries not representative for future ones 
•  LPP caches queries with great pruning power 

Anti-correlated Independent 



July 11 SSDBM'08 

Effect of distribution parameters 

•  Relative improvement in running time over NO-CACHE 
•  Vary number of points N 

–  d = 4 dimensions of |D| = 20 domain size 
•  Vary number of dimensions d 

–  N = 50k, |D| = 20 

Correlated vary d Correlated vary N 
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Conclusions and Future work 

•  Conclusions 
–  Introduced orthant skylines (OSLs) and discussed its 

relationship with DSL 
– Extended Bitmap to compute OSLs and DSL at the 

same time (DBM algorithm) 
– Proposed caching mechanism of OSLs to reduce cost 

for future DSL queries 
•  LRU, LFU, LPP cache replacement policies 

– Experimentally verified the efficiency of caching 
mechanism 

•  Future work 
– Apply caching mechanism to index-based methods 
– Further increase pruning power of cached queries 
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Questions ? 


