

Most Diverse Near-Shortest Paths

Christian Häcker

Panagiotis Bouros

Ernst Althaus

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Theodoros Chondrogiannis

29th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems

- Problem definition
- Evaluation methods
 - An exact approach
 - Heuristic-based approaches
- Experimental analysis
- Conclusions

Outline

Motivation

• Previous work

Motivation

- Alternative routing
 - Need to recommend a set of diverse paths
- Existing works mainly consider
 - Path length as an optimization criterion
 - Path dissimilarity as a constraint
- But,
 - Recommended paths might be too long
 - Setting dissimilarity thresholds/constraints is counterintuitive
- Our proposal, to consider

November 4, 2021

- Path length as a constraint => near-shortest paths
- Dissimilarity as an optimization criterion => most diverse paths

Most Diverse Near-Shortest Paths

Set *P*_{kMDNSP}:

A. of *k* near-shortest paths $\forall p \in P_{kMDNSP} : \ell(p) \leq (1 + \epsilon) \cdot \ell(p_s)$

B. with the highest diversity among all path sets P_A that satisfy Condition A $P_{kMDNSP} = \arg \max_{\forall P \subset P_A} \{Div(P)\}$

Most Diverse Near-Shortest Paths

Set *P*_{kMDNSP}:

A. of *k* near-shortest paths $\forall p \in P_{k \text{MDNSP}} : \ell(p) \leq (1 + \epsilon) \cdot \ell(p_s)$

B. with the highest diversity among all path sets P_A that satisfy Condition A $P_{k\text{MDNSP}} = \arg \max_{\forall P \subseteq P_A} \{Div(P)\}$

Path set diversity $Div(P) = \min_{\forall p, p' \in P} Dis(p, p')$ Path dissimilarity

$$Dis(p,p') = 1 - \frac{\sum_{\forall (n_i,n_j) \in p \cap p'} w(n_i, n_j)}{\sum_{\forall (n_i,n_j) \in p \cup p'} w(n_i, n_j)}$$

Most Diverse Near-Shortest Paths

Set *P*_{kMDNSP}:

A. of *k* near-shortest paths $\forall p \in P_{kMDNSP} : \ell(p) \leq (1 + \epsilon) \cdot \ell(p_s)$

B. with the highest diversity among all path sets P_A that satisfy Condition A

 $P_{k\text{MDNSP}} = \arg \max_{\forall P \subseteq P_A} \{Div(P)\}$

Path set diversity $Div(P) = \min_{\forall p, p' \in P} Dis(p, p')$

Path dissimilarity $Dis(p,p') = 1 - \frac{\sum_{\forall (n_i,n_j) \in p \cap p'} w(n_i,n_j)}{\sum_{\forall (n_i,n_j) \in p \cup p'} w(n_i,n_j)}$

Compute all Near-Shortest Paths Generate Candidate k-Subsets

Compute all Near-Shortest Paths

Generate Candidate k-Subsets

• Path enumeration

- [Carlyle and Wood, Networks'05]
- Traverse the network in depth-first fashion
- Filter out subpaths that violate the near-shortest path constraint w.r.t. $\boldsymbol{\varepsilon}$

Optimization

- Estimate lower bounds for path extensions
- Compute shortest path tree $T_{N \rightarrow t}$

29th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems

15

Exact approach

Compute all Near-Shortest Paths

Generate Candidate k-Subsets

• Path enumeration

- [Carlyle and Wood, Networks'05]
- Traverse the network in depth-first fashion
- Filter out subpaths that violate the near-shortest path constraint w.r.t. $\boldsymbol{\varepsilon}$

• Optimization

- Estimate lower bounds for path extensions
- Compute shortest path tree $T_{N \rightarrow t}$

- "Filling a rucksack" algorithm [Knuth'05]
- Incrementally build a binominal tree of height k
- Represent all subsets with up to k nearshortest paths
- Optimization
 - Upon adding a new path, diversity of subsets can only drop
 - Prune unpromising subsets

Exact approach – critique

• Pros

- Simple, straightforward

• Cons

- Large number of near-shortest paths
- Exponential cost
- Impractical for real-world networks

• Solution

November 4, 2021

- Heuristic-based methods
- Reduce number of computed paths
- Trade quality of the result for performance

(Simple) single-via paths

- Single-via paths (SVP)
 - [Abraham et al., JEA'13]
 - Reverse shortest path tree $T_{s \rightarrow N}$
 - Shortest path tree $T_{N \rightarrow t}$
 - $-p_{sv}(n) = p_s(s \rightarrow n) \circ p_s(n \rightarrow t)$
- Simple single-via paths (SSVP)

$$-p_{ssv}(n) = \begin{cases} p_{sv}(n), \text{ if simple} \\ p_{ssv}(n) = \begin{cases} p_{sv}(n) & -p_{ssv}(n) \\ p_{ssv}(s \rightarrow n) & 0 \end{cases}$$

SSVP-based approach

Compute all Near-Shortest Paths

Generate Candidate k-Subsets

- "Filling a rucksack" algorithm [Knuth'05]
- Incrementally build a binominal tree of height k
- Represent all subsets with up to k nearshortest paths
- Optimization
 - Upon adding a new path, diversity of subsets can only drop
 - Prune unpromising subsets

SSVP-based approach

Compute all Near-Shortest SSVPs

Generate Candidate k-Subsets

- Path enumeration
 - Compute shortest path tree $T_{s \rightarrow N}$
 - Compute reverse shortest path tree $T_{N \rightarrow t}$
 - Construct $p_{ssv}(n)$ for each node $n \in N$

- "Filling a rucksack" algorithm [Knuth'05]
- Incrementally build a binominal tree of height k
- Represent all subsets with up to k nearshortest paths
- Optimization
 - Upon adding a new path, diversity of subsets can only drop
 - Prune unpromising subsets

Penalty-based approach

Built upon [Johnson et al., OSTI'93], [Rouphail et al., AATTE'95]

Compute all Near-Shortest Paths

Compute all Near-Shortest SSVPs

Generate Candidate k-Subsets

- "Filling a rucksack" algorithm [Knuth'05]
- Incrementally build a binominal tree of height k
- Represent all subsets with up to k nearshortest paths
- Optimization
 - Upon adding a new path, diversity of subsets can only drop
 - Prune unpromising subsets

Penalty-based approach

Built upon [Johnson et al., OSTI'93], [Rouphail et al., AATTE'95]

Compute Near-Shortest Paths set

Generate Candidate k-Subsets

• Path computation

- Iterative approach
 - Compute a near-shortest path p
 - Penalize all edges on p
 - Repeat

Optimization

- Dynamically adjusted penalties

- "Filling a rucksack" algorithm [Knuth'05]
- Incrementally build a binominal tree of height k
- Represent all subsets with up to k nearshortest paths
- Optimization
 - Upon adding a new path, diversity of subsets can only drop
 - Prune unpromising subsets

Direct approach

- Both SSVP- and penalty-based approaches
 - Operate in two phases, similar to exact
 - Reduce search space
 - But, still need to generate candidate k-subsets

• Direct approach

- Incrementally build P_{kMDNSP} in k-1 rounds
- Initially, $P_{kMDNSP} = \{p_s\}$
- In each round

November 4, 2021

- Consider last recommended path p
- Alter p to construct the near-shortest p' with the highest dissimilarity to all paths in P_{kMDNSP}
- Add p' to P_{kMDNSP}

Inspired by [Jeong et al., KSCE'09]

Experimental analysis

Setup

- etup
- 2x AMD EPYC 7351 16-Core Processors, 512 GiB 2666Mhz DDR4 RAM
- GNU/Linux 5.4.0-66
- Methods
 - Implemented in C++, compiled with GNU G++ 9
 - EXACT and SSVP, PENTALTY, DIRECT
- Datasets & experiments
 - 5 real-world road networks
 - Different sizes and topologies: city-center, grid-based, ring-based, state-wide
 - Adlershof, Oldenburg, Porto Alegre, Milan, Chicago, Florida
 - Varied number of recommended paths k and near-shortest path factor ε
 - Measured response time and result diversity, counted computed near-shortest paths

November 4. 2021

- Key questions
 - Is computation of kMDNSP with EXACT practical?
 - How good can heuristic-based methods scale?
 - How is result quality affected?

- even state-wide networks
- How is result quality affected?

Findings

SIG**SPATIA**

Adlershof Adlershof 10^{5} 10 • Is EXACT practical? $\begin{bmatrix} 3 & 10^4 \\ 10^3 \\ 10^2 \end{bmatrix}$ S 10^{4} Only for toy-networks with up to some 100's of nodes time [m 10^{3} EXACT ———— 10^{2} PENALTY -PENALTY - $\frac{100}{10^{10}}$ and 10¹ DIRECT $-\ominus$ $DIRECT_{yy} \rightarrow 0$ Already orders of magnitude ^{Ses} 10⁶ slower 10^{-1} 10 0.01 0.05 0.1 0.2 0.3 2 3 4 5 ŀ **Porto Alegre** Florida How good heuristic-based 10^{5} 14000 5500 PENALTY -5000 12000 DIRECT \rightarrow [] 10⁴ $\begin{bmatrix} 10^5 \\ 10^6 \end{bmatrix}$ ່ຮ່ 4500 methods scale? <u>Ĕ</u> 4000 e 3500 3000 10^{3} time SSVP —* PENALTY — DIRECT — 8000 PENALTY ----- SSVP can handle networks with PENALTY -----DIRECT -----6000 DIRECT ----- $\frac{10^3}{10^2}$ se \$ 2500 10^{2} less then 100,000 of nodes <u>a</u> 2000 4000 Resp 10^{1} a 1500 Re 2000 PENALTY and DIRECT can handle 1000 500 10 0.1 0.2 0.3 0.01 0.05 0.01 0.05 0.1 0.2 0.3 3 4 2 2 3 4 5 k Adlershof Adlershof **Porto Alegre** Florida PENALTY — DIRECT — 0.9 PENALTY -0.9 0.9 09 DIRECT -----0.8 0.8 0.7 0.0 0.5 0.5 Div(P_{kMDNSP}) 0.0 8.0 8.0 8.0 Div(P_{kMDNSP}) 0.0 0.0 0.0 Best heuristic SSVP, followed by PENALTY 0.6 0.4 EXACT -SSVP ———— SSVP ————— 0.3 0.5 0.5 PENALTY -PENALTY -0.4 0.2 DIRECT -----DIRECT $- \ominus -$ 0.4 0.4 0.1 0.3 0.05 0.1 0.2 0.3 2 3 5 0.2 0.3 0.01 4 0.01 0.05 0.1 2 3 4 5 November 4, 2021

To sum up...

• Contributions

- A novel instance of alternative routing problem
- Recommend k near-shortest paths with the highest diversity
- Exact and heuristic-based solutions
- Future work
 - Other evaluation approaches, e.g., flow algorithms
 - Alternative definitions of path diversity
 - Visualize and compare results

Questions ?

