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Motivation

• Alternative routing
– Need to recommend a set of diverse paths

• Existing works mainly consider
– Path length as an optimization criterion
– Path dissimilarity as a constraint

• But,
– Recommended paths might be too long
– Setting dissimilarity thresholds/constraints is 

counterintuitive

• Our proposal, to consider
– Path length as a constraint => near-shortest

paths
– Dissimilarity as an optimization criterion => 

most diverse paths
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Road network G
Source s
Target t
Requested paths k
Length constraint threshold ε ≥ 0
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Problem definition

Most Diverse Near-Shortest Paths
Set PkMDNSP:

A. of k near-shortest paths

B. with the highest diversity among all path 
sets PA that satisfy Condition A
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Road network G
Source s
Target t
Requested paths k
Length constraint threshold ε ≥ 0

kMDNSP(G,s,t,k,ε)

<latexit sha1_base64="xf2NKtICByfvCQ3Nj6FpDdt1BTs="></latexit>

8p 2 PkMDNSP : `(p)  (1 + ✏) · `(ps)

<latexit sha1_base64="2jWSzTEKg9c7ZD3TUqlgUpSXDYg="></latexit>

PkMDNSP = argmax8P✓PA
{Div(P )}
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Div(P ) = min
8p,p02P

Dis(p, p0)

Path dissimilarity
<latexit sha1_base64="2LmrFP8z8R6sTMqripHvQjDmhRk="></latexit>

Dis(p, p0) = 1�
P

8(ni,nj)2p\p0 w(ni, nj)P
8(ni,nj)2p[p0 w(ni, nj)
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Compute all Near-Shortest Paths

• Path enumeration 
– [Carlyle and Wood, Networks’05]
– Traverse the network in depth-first 

fashion
– Filter our paths that violate the near-

shortest path constraint w.r.t. ε
• Optimization

– Estimate lower bounds for path 
extensions

– Compute shortest path tree N ⤳ t

Generate Candidate !-Subsets

• Dynamic programming
– “Filling a rucksack” algo [Knuth 05]
– Incrementally build a binominal tree 

of height k
– Represent all subsets with up to k 

near-shortest paths 

• Optimization
– Upon adding a new path, diversity of 

subsets can only drop
– Prune unpromising subsets

Exact approach
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Exact approach – critique

• Pros
– Simple, straightforward

• Cons
– Large number of near-shortest paths
– Exponential cost
– Impractical for real-world networks

• Solution
– Heuristic-based methods
– Reduce number of computed paths
– Trade quality of the result for performance
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• Single-via paths (SVP)
– [Abraham et al., JEA’13]
– Reverse shortest path tree Ts ⤳ N
– Shortest path tree TN⤳ t
– psv(n) = ps(s ⤳ n) o ps(n ⤳ t)

• Simple single-via paths (SSVP)

psv(n), if simple

– pssv(n)

ps(s ⤳ n) o Dijkstra(G’, n, t) or Dijkstra(G”, s, n) o ps(n ⤳ t), otherwise

(Simple) single-via paths
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paths. Given a source s and a target t , the single-via path of a node n
is de�ned by the concatenation of the shortest path from s to n and
the shortest path from n to t . The authors also propose to evaluate
each single-via path against a set of user-de�ned constraints, i.e.,
length, local optimality and stretch. In Section 5.1, we present how
kMDNSP can bene�t from an extension to the single-via paths [? ].

Last, there also exist methods that, in contrast to our work, utilize
additional information about the network to recommend paths that
can be seen as alternative routes. For instance, pareto-optimal paths
or the route skyline [? ? ? ] can be directly seen as alternative routes
or can be further examined in a post-processing phase to provide
the �nal result.

3 NOTATION AND PROBLEM DEFINITION
We model a road network G = (N ,E) as a directed weighted graph
with a set of nodes N and a set of edges E ✓ N ⇥ N . Every edge
e = (ni ,nj ) 2 E is assigned a positive weight w(e) or w(ni ,nj ),
which captures the cost of moving from node ni to node nj . A
(simple) pathp(s{t) from a source node s to a target t is a connected
and cycle-free sequence of edges h(s,ni ), . . . , (nj , t)i. The length
`(p) of a path p is the sum of the weights of all contained edges, i.e.,

`(p) =
’

8(ni ,nj )2p
w(ni ,nj ) (1)

The shortest path ps (s{t) has the lowest length among all paths
from node s to t . Further, a path p(s{t) is called near-shortest if its
length is within a 1 + � factor of the ps (s{t) shortest path length,
i.e., `(p)  (1 + �) · `(ps ), where � � 0 is a user-de�ned parameter.

Let p, p0 be two paths from node s to t . We de�ne their dissimi-
larity based on the Jaccard coe�cient (similar to [? ? ]), i.e.,

Dis(p,p0) = 1 �
Õ
8(ni ,nj )2p\p0 w(ni ,nj )Õ
8(ni ,nj )2p[p0 w(ni ,nj )

(2)

We also de�ne the diversity of a set of paths P as the lowest pairwise
dissimilarity among the contained paths, i.e.,

Di�(P) = min
8p,p0 2P

Dis(p,p0) (3)

We now formally de�ne the problem of �nding the most diverse
near-shortest paths.

P������ 1 (kMDNSP). Given a road networkG = (N ,E), a source
s and a target t , both in N , a requested number of paths k , and a
length constraint threshold � � 0, �nd the PkMDNSP set of k paths
from s to t , such that:
(A) all paths in PkMDNSP are near-shortest, with respect to the shortest

path ps (s{t), i.e.,
8p 2 PkMDNSP : `(p)  (1 + �) · `(ps )

(B) PkMDNSP has the highest diversity among every subset of k paths
PA that satisfy Condition A, i.e.,

PkMDNSP = argmax
8P ✓PA

{Di�(P)}, with |P | = k

Example 3.1. Consider the road network G in Figure 2 and the
query kMDNSP(G, s, t ,k=3, �=0.7). The ps (s{t) = h(s,n2), (n2, t)i
shortest path has a length of 35; hence, the length of a recom-
mended near-shortest path cannot exceed the (1 + �) · `(ps ) = 59
threshold. Besides ps , the paths that abide by this constraint are

s

n2 n4

t

Figure 2: Running example

p1 = h(s,n2), (n2,n4), (n4, t)i with `(p1) = 40, p2 = h(s,n1), (n1,n3),
(n3, t)i with `(p2) = 46, p3 = h(s,n1), (n1,n3), (n3,n4), (n4, t)i with
`(p3) = 46 andp4 = h(s,n1), (n1,n2), (n2, t)i with `(p4) = 55. We ap-
ply Formulas 2 and 3 to compute the diversity of all distinct sets that
contain k = 3 out of these paths. The answer to the kMDNSP query
is PkMDNSP = {p1,p2,p4} with Di�(PkMDNSP) = min{Dis(p1,p2),
Dis(p1,p4),Dis(p2,p4)} = 0.89.

Finally, we elaborate on the complexity of the kMDNSP problem.

T������ 3.2. The kMDNSP problem is weakly NP-hard for k = 2
and strongly NP-hard if k is part of the input.

P����. To prove the �rst part of the theorem, we make a re-
duction from the Partition-Problem, a known weakly NP-complete
problem. For the second part of the theorem, we make a reduc-
tion from the Disjoint-Path-Problem, a known strongly NP-hard
problem. The full proof is available in the appendix. ⇤

4 AN EXACT APPROACH
A naïve approach for kMDNSP would �rst construct all possible
paths from source s to target t and �lter out those that violate Con-
dition A in Problem 1. Then, it would examine all possible k-subsets
of near-shortest paths to �nd the one that satis�es Condition B.
Such an approach is clearly impractical. In view of this, we present
an exact approach which directly computes the set of near-shortest
paths and e�ciently generates only promising k-subsets.

4.1 The EXACT Algorithm
Algorithm 1 illustrates a high-level pseudocode of EXACT . The al-
gorithm invokes the GetNearShortestPaths function to compute
the set of all near-shortest paths PNSP from source s to target t
with respect to threshold � (cf. Section 4.2). Between Lines 3 to 7,
EXACT iterates through the contents of PNSP; let p be the current
near-shortest path. The �rst step is to compute the dissimilarities of
p to the rest of the paths in PNSP (Line 4). Then, the algorithm exam-
ines the k-subsets of PNSP that contain p as candidate solutions to
Problem 1. Their diversity is then compared to the diversity of cur-
rent PkMDNSP and the result set is updated, if necessary (Lines 5-7).
We elaborate on the computation of these k-subsets in Section 4.3.
Finally, the result set PkMDNSP is returned in Line 8.

4.2 Computing Near-Shortest Paths
As EXACT does not examine the near-shortest paths in any par-
ticular order, we build upon the path enumeration method from
[? ? ] for their computation. Function 1 details the pseudocode of
GetNearShortestPaths. The key idea is to traverse the network
in a depth-�rst fashion, �ltering out paths that violate the near-
shortest path constraint. At each stage, a single path is maintained
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P����. To prove the �rst part of the theorem, we make a re-
duction from the Partition-Problem, a known weakly NP-complete
problem. For the second part of the theorem, we make a reduc-
tion from the Disjoint-Path-Problem, a known strongly NP-hard
problem. The full proof is available in the appendix. ⇤

4 AN EXACT APPROACH
A naïve approach for kMDNSP would �rst construct all possible
paths from source s to target t and �lter out those that violate Con-
dition A in Problem 1. Then, it would examine all possible k-subsets
of near-shortest paths to �nd the one that satis�es Condition B.
Such an approach is clearly impractical. In view of this, we present
an exact approach which directly computes the set of near-shortest
paths and e�ciently generates only promising k-subsets.

4.1 The EXACT Algorithm
Algorithm 1 illustrates a high-level pseudocode of EXACT . The al-
gorithm invokes the GetNearShortestPaths function to compute
the set of all near-shortest paths PNSP from source s to target t
with respect to threshold � (cf. Section 4.2). Between Lines 3 to 7,
EXACT iterates through the contents of PNSP; let p be the current
near-shortest path. The �rst step is to compute the dissimilarities of
p to the rest of the paths in PNSP (Line 4). Then, the algorithm exam-
ines the k-subsets of PNSP that contain p as candidate solutions to
Problem 1. Their diversity is then compared to the diversity of cur-
rent PkMDNSP and the result set is updated, if necessary (Lines 5-7).
We elaborate on the computation of these k-subsets in Section 4.3.
Finally, the result set PkMDNSP is returned in Line 8.

4.2 Computing Near-Shortest Paths
As EXACT does not examine the near-shortest paths in any par-
ticular order, we build upon the path enumeration method from
[? ? ] for their computation. Function 1 details the pseudocode of
GetNearShortestPaths. The key idea is to traverse the network
in a depth-�rst fashion, �ltering out paths that violate the near-
shortest path constraint. At each stage, a single path is maintained

Most Diverse Near-Shortest Paths SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

paths. Given a source s and a target t , the single-via path of a node n
is de�ned by the concatenation of the shortest path from s to n and
the shortest path from n to t . The authors also propose to evaluate
each single-via path against a set of user-de�ned constraints, i.e.,
length, local optimality and stretch. In Section 5.1, we present how
kMDNSP can bene�t from an extension to the single-via paths [? ].

Last, there also exist methods that, in contrast to our work, utilize
additional information about the network to recommend paths that
can be seen as alternative routes. For instance, pareto-optimal paths
or the route skyline [? ? ? ] can be directly seen as alternative routes
or can be further examined in a post-processing phase to provide
the �nal result.

3 NOTATION AND PROBLEM DEFINITION
We model a road network G = (N ,E) as a directed weighted graph
with a set of nodes N and a set of edges E ✓ N ⇥ N . Every edge
e = (ni ,nj ) 2 E is assigned a positive weight w(e) or w(ni ,nj ),
which captures the cost of moving from node ni to node nj . A
(simple) pathp(s{t) from a source node s to a target t is a connected
and cycle-free sequence of edges h(s,ni ), . . . , (nj , t)i. The length
`(p) of a path p is the sum of the weights of all contained edges, i.e.,

`(p) =
’

8(ni ,nj )2p
w(ni ,nj ) (1)

The shortest path ps (s{t) has the lowest length among all paths
from node s to t . Further, a path p(s{t) is called near-shortest if its
length is within a 1 + � factor of the ps (s{t) shortest path length,
i.e., `(p)  (1 + �) · `(ps ), where � � 0 is a user-de�ned parameter.

Let p, p0 be two paths from node s to t . We de�ne their dissimi-
larity based on the Jaccard coe�cient (similar to [? ? ]), i.e.,

Dis(p,p0) = 1 �
Õ
8(ni ,nj )2p\p0 w(ni ,nj )Õ
8(ni ,nj )2p[p0 w(ni ,nj )

(2)

We also de�ne the diversity of a set of paths P as the lowest pairwise
dissimilarity among the contained paths, i.e.,

Di�(P) = min
8p,p0 2P

Dis(p,p0) (3)

We now formally de�ne the problem of �nding the most diverse
near-shortest paths.

P������ 1 (kMDNSP). Given a road networkG = (N ,E), a source
s and a target t , both in N , a requested number of paths k , and a
length constraint threshold � � 0, �nd the PkMDNSP set of k paths
from s to t , such that:
(A) all paths in PkMDNSP are near-shortest, with respect to the shortest

path ps (s{t), i.e.,
8p 2 PkMDNSP : `(p)  (1 + �) · `(ps )

(B) PkMDNSP has the highest diversity among every subset of k paths
PA that satisfy Condition A, i.e.,

PkMDNSP = argmax
8P ✓PA

{Di�(P)}, with |P | = k

Example 3.1. Consider the road network G in Figure 2 and the
query kMDNSP(G, s, t ,k=3, �=0.7). The ps (s{t) = h(s,n2), (n2, t)i
shortest path has a length of 35; hence, the length of a recom-
mended near-shortest path cannot exceed the (1 + �) · `(ps ) = 59
threshold. Besides ps , the paths that abide by this constraint are

s

n n4

t

Figure 2: Running example

p1 = h(s,n2), (n2,n4), (n4, t)i with `(p1) = 40, p2 = h(s,n1), (n1,n3),
(n3, t)i with `(p2) = 46, p3 = h(s,n1), (n1,n3), (n3,n4), (n4, t)i with
`(p3) = 46 andp4 = h(s,n1), (n1,n2), (n2, t)i with `(p4) = 55. We ap-
ply Formulas 2 and 3 to compute the diversity of all distinct sets that
contain k = 3 out of these paths. The answer to the kMDNSP query
is PkMDNSP = {p1,p2,p4} with Di�(PkMDNSP) = min{Dis(p1,p2),
Dis(p1,p4),Dis(p2,p4)} = 0.89.

Finally, we elaborate on the complexity of the kMDNSP problem.

T������ 3.2. The kMDNSP problem is weakly NP-hard for k = 2
and strongly NP-hard if k is part of the input.

P����. To prove the �rst part of the theorem, we make a re-
duction from the Partition-Problem, a known weakly NP-complete
problem. For the second part of the theorem, we make a reduc-
tion from the Disjoint-Path-Problem, a known strongly NP-hard
problem. The full proof is available in the appendix. ⇤

4 AN EXACT APPROACH
A naïve approach for kMDNSP would �rst construct all possible
paths from source s to target t and �lter out those that violate Con-
dition A in Problem 1. Then, it would examine all possible k-subsets
of near-shortest paths to �nd the one that satis�es Condition B.
Such an approach is clearly impractical. In view of this, we present
an exact approach which directly computes the set of near-shortest
paths and e�ciently generates only promising k-subsets.

4.1 The EXACT Algorithm
Algorithm 1 illustrates a high-level pseudocode of EXACT . The al-
gorithm invokes the GetNearShortestPaths function to compute
the set of all near-shortest paths PNSP from source s to target t
with respect to threshold � (cf. Section 4.2). Between Lines 3 to 7,
EXACT iterates through the contents of PNSP; let p be the current
near-shortest path. The �rst step is to compute the dissimilarities of
p to the rest of the paths in PNSP (Line 4). Then, the algorithm exam-
ines the k-subsets of PNSP that contain p as candidate solutions to
Problem 1. Their diversity is then compared to the diversity of cur-
rent PkMDNSP and the result set is updated, if necessary (Lines 5-7).
We elaborate on the computation of these k-subsets in Section 4.3.
Finally, the result set PkMDNSP is returned in Line 8.

4.2 Computing Near-Shortest Paths
As EXACT does not examine the near-shortest paths in any par-
ticular order, we build upon the path enumeration method from
[? ? ] for their computation. Function 1 details the pseudocode of
GetNearShortestPaths. The key idea is to traverse the network
in a depth-�rst fashion, �ltering out paths that violate the near-
shortest path constraint. At each stage, a single path is maintained

ps(s⤳ n) ps(n⤳ t)

Ts ⤳ N TN⤳ t
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Compute all Near-Shortest Paths

• Path enumeration 
– [Carlyle and Wood, Networks’05]
– Traverse the network in depth-first 

fashion
– Filter our paths that violate the near-

shortest path constraint w.r.t. ε
• Optimization

– Estimate lower bounds for path 
extensions

– Compute shortest path tree N ⤳ t

SSVP-based approach

29th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems 18

Generate Candidate !-Subsets

• Dynamic programming
– “Filling a rucksack” algorithm [Knuth’05]
– Incrementally build a binominal tree of 

height k
– Represent all subsets with up to k near-

shortest paths 

• Optimization
– Upon adding a new path, diversity of 

subsets can only drop
– Prune unpromising subsets
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Compute all Near-Shortest SSVPs

• Path enumeration
– Compute shortest path tree Ts ⤳ N
– Compute reverse shortest path tree TN⤳ t
– Construct pssv(n) for each node n ∈ N

SSVP-based approach

Generate Candidate !-Subsets

• Dynamic programming
– “Filling a rucksack” algorithm [Knuth’05]
– Incrementally build a binominal tree of 

height k
– Represent all subsets with up to k near-

shortest paths 

• Optimization
– Upon adding a new path, diversity of 

subsets can only drop
– Prune unpromising subsets
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Compute all Near-Shortest Paths
Compute all Near-Shortest SSVPs

• Path enumeration
– Iterative approach

• Compute a near-shortest path p
• Penalize all edges on p
• Repeat

• Optimization
– Dynamically adjusted penalties

Penalty-based approach
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Built upon [Johnson et al., OSTI’93], [Rouphail et al., AATTE’95]

Generate Candidate !-Subsets

• Dynamic programming
– “Filling a rucksack” algorithm [Knuth’05]
– Incrementally build a binominal tree of 

height k
– Represent all subsets with up to k near-

shortest paths 

• Optimization
– Upon adding a new path, diversity of 

subsets can only drop
– Prune unpromising subsets
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Compute Near-Shortest Paths set

• Path computation
– Iterative approach

• Compute a near-shortest path p
• Penalize all edges on p
• Repeat

• Optimization
– Dynamically adjusted penalties

Penalty-based approach
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Built upon [Johnson et al., OSTI’93], [Rouphail et al., AATTE’95]

Generate Candidate !-Subsets

• Dynamic programming
– “Filling a rucksack” algorithm [Knuth’05]
– Incrementally build a binominal tree of 

height k
– Represent all subsets with up to k near-

shortest paths 

• Optimization
– Upon adding a new path, diversity of 

subsets can only drop
– Prune unpromising subsets

November 4, 2021



• Both SSVP- and penalty-based approaches
– Operate in two phases, similar to exact 
– Reduce search space
– But, still need to generate candidate k-subsets

• Direct approach
– Incrementally build PkMDNSP in k-1 rounds
– Initially, PkMDNSP = {ps}
– In each round

• Consider last recommended path p
• Alter p to construct the near-shortest p’ with the highest dissimilarity to all paths in PkMDNSP
• Add p’ to PkMDNSP

Direct approach
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Inspired by [Jeong et al., KSCE’09]
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Experimental analysis
• Setup

– 2x AMD EPYC 7351 16-Core Processors, 512 GiB 2666Mhz DDR4 RAM
– GNU/Linux 5.4.0-66

• Methods
– Implemented in C++, compiled with GNU G++ 9
– EXACT and SSVP, PENTALTY, DIRECT

• Datasets & experiments
– 5 real-world road networks

• Different sizes and topologies: city-center, grid-based, ring-based, state-wide
• Adlershof, Oldenburg, Porto Alegre, Milan, Chicago, Florida

– Varied number of recommended paths k and near-shortest path factor ε
– Measured response time and result diversity, counted computed near-shortest paths

• Key questions
– Is computation of kMDNSP with EXACT practical?
– How good can heuristic-based methods scale?
– How is result quality affected?
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Findings

• Is EXACT practical?
– Only for toy-networks with up to 

some 100’s of nodes
– Already orders of magnitude 

slower

• How good heuristic-based 
methods scale?

– SSVP can handle networks with 
less then 100,000 of nodes

– PENALTY and DIRECT can handle 
even state-wide networks

• How is result quality affected?
– Best heuristic SSVP, followed by 
PENALTY
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To sum up…

• Contributions
– A novel instance of alternative routing problem
– Recommend k near-shortest paths with the highest diversity
– Exact and heuristic-based solutions

• Future work
– Other evaluation approaches, e.g., flow algorithms
– Alternative definitions of path diversity
– Visualize and compare results
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Thank you

Questions
?
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