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Example 1 - Scenic Route Planning
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Example 2 - Familiar Roads
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Example 3 - Bicycle Routes
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Road Network
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Preferred Network
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Most Preferred Unrestricted Path

• Find the path which minimizes the time 
spent outside the Preferred Network
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Most Preferred Unrestricted Path
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HyperEdges

• Introduced by Aljubayrin et al in ICDE 2015 
(Safest Path via Safe Zones) 

• Offline phase: Hypergraph construction 
1. Zones become HyperNodes 
2. HyperEdges are added between HyperNodes/Zones 
3. Weights are determined by shortest paths 

connecting different zones
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HyperEdges
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HyperEdges

• Introduced by Aljubayrin et al [ICDE’15]
(Safest Path via Safe Zones) 

• Offline phase: Hypergraph construction 
1. Zones become HyperNodes 
2. HyperEdges are added between HyperNodes/Zones 
3. Weights are determined by shortest paths 

connecting different zones 

• Online phase: Query Processing 
1. Add source and target nodes to Hypergraph 
2. Run shortest path query over the Hypergraph
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HyperEdges
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Compressed Network

• Offline phase: Build Compressed Network 
1. Replace every zone with a node 
2. Add edges between each new node and each node 

previously connected with the associated zone 
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Compressed Network
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Compressed Network

• Offline phase: Build Compressed Network 
1. Replace every zone with a node 
2. Add edges between each new node and each node 

previously connected with the associated zone 

• Online phase: Query Processing 
Run shortest path query over the Compressed 
Network
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Compressed Network
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Experimental Evaluation MPUP

• Two datasets: 
‣ Berlin (37,126 nodes and 102,260 edges) 
‣ New York (264,346 nodes and 730,100 edges) 

• Two experiments: 
‣ varying number of zones |Z| 
‣ varying radius of zones r

• Default values: |Z| = 100, r = 1500m 

• We use Contraction Hierarchies to optimize 
both preprocessing and query processing
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MPUP - Preprocessing
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MPUP - Query Processing
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Most Preferred Near Shortest Path

• Find the path which 
(1) minimizes the time spent outside the  

Preferred Network 
(2) is at most X% longer than the shortest path
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Most Preferred Near Shortest Path
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Most Preferred Near Shortest Path
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Algorithms 

• Advanced Route Skyline Computation (ARSC)
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Advanced Route Skyline Computation

• Compute the entire Route Skyline 

• Then retrieve the MPNSP
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Algorithms 

• Advanced Route Skyline Computation (ARSC) 
‣ prunes dominated paths 

• Algorithm ALGO-U 
‣ prunes dominated paths 
‣ employs upper bounds for the unpreferred time 

ALGO-U directs the search towards the 
desired result of the skyline
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Algorithm ALGO-U

s t

n

TU(n→t)

UT(n→t)
<Tp,Up>

p

Upper Bound U*

min Up+TU(n→t).U,  if  Tp+TU(n→t).T ≤ (1+ε)·d(s,t)
Up+UT(n→t).U,  if  Tp+UT(n→t).T ≤ (1+ε)·d(s,t){

if the extension does not violate ε
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Experimental Evaluation MPNSP

• Two datasets: 
‣ Berlin (37,126 nodes and 102,260 edges) 
‣ New York (264,346 nodes and 730,100 edges) 

• Two experiments: 
‣ varying number of zones |Z| 
‣ varying radius of zones r 
‣ varying threshold ε 

• Default values: |Z| = 100, r = 1500m, ε = 30%
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Experimental Evaluation MPNSP
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Experimental Evaluation MPNSP
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Experimental Evaluation MPNSP
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Conclusions and Future Work

• Conclusions 
✓ We studied the problem of Finding the Most 

Preferred Path on road networks 
✓ The Compressed Network approach improves the 

state-of-the-art for MPUP 
✓ We introduced MPNSP along with ALGO-U which 

also improves the state-of-the-art  

• Future Work 
✓ Investigate pre-processing methods for MPNSP 
✓ Study methods to extract Preferred Zones



Thank you!


