Routing Directions: Keeping it Fast and Simple

Dimitris Sacharidis¹ Panagiotis Bouros²

¹Institute for the Management of Information Systems, R.C. Athena, Greece ²Department of Computer Science, Humboldt-Universität zu Berlin, Germany

motivation

the **fastest route** is not always the best option for routing directions

tourist asking for walking directions to a landmark

- unfamiliar neighborhood: simple instructions
- emergency evacuation plan
 - distress situation: concise and clear to follow instructions

the simplest route minimizes complexity of the routing directions in terms of turns (road changes)

- for simplicity, all turns have equal cost
- the generalization to non-uniform costs (right/left turns, orientation changes, etc.) is straighforward

goal of this work: study the trade-off between fastest and simplest routes

terminology

- a road r is a sequence of distinct nodes (road intersections)
- the road network is a directed graph $G_{R}(V, E)$
 - V is the set of nodes
 - \blacksquare E contains an edge $e_{ij} = (n_i, n_j)$ where n_i, n_j are consecutive nodes in some road.
- **a route** ρ is a sequence of nodes defined by a path on G_R
- \blacksquare the length $L(\rho)$ of a route is the sum of lengths of its edges
- the complexity C(p) of a route is the number of turns (road changes)

note:

- path is a general term referring to a sequence of vertices of some graph
- a route is a path on the road network graph G_R

terminology

- a fastest route has the smallest length
- \blacksquare a near-fastest route has length at most $(1+\epsilon)$ times the smallest length
- a simplest route has the lowest complexity
- a near-simplest route has complexity at most (1 + ε) times the lowest complexity
- ϵ is a user defined parameter

note:

a fastest route is essentially a shortest path on the road network graph G_R

problem definition

given a source node n_s and a target n_t

- fastest simplest route (FSR): find a route that has the smallest length among all simplest routes
- simplest fastest route (SFR) find a route that has the lowest complexity among all fastest routes
- fastest near-simplest route (FNSR): find a route that has the smallest length among all near-simplest routes
- simplest near-fastest route (SNFR) find a route that has the lowest complexity among all near-fastest routes
- FSR is studied in a past work

SFR, FNSR, SNFR are studied for the first time (to the best of our knowledge)

◆□▶ ◆課 ▶ ◆理 ▶ ◆理 ▶ ─ 臣 ─ のへで

7 roads, 12 nodes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

7 roads, 12 nodes , 5 routes from $n_{\rm s}$ to $n_{\rm t}$

・ロト (雪) (日) (日)

-

7 roads, 12 nodes , 5 routes from n_s to n_t ρ_1 is simplest fastest, ρ_2 is fastest simplest

7 roads, 12 nodes , 5 routes from n_s to n_t ρ_1 is simplest fastest, ρ_2 is fastest simplest for $\epsilon = 1$, ρ_3 is simplest near-fastest, ρ_4 is fastest near-simplest

fastest simplest route: baseline approach (BSL)

■ intersection graph $G_{I}(R, I)$

- R is the set of roads
- \blacksquare I contains an intersection $(n_x,r_i,r_j),$ where node n_x belongs to roads $r_i,\,r_j$

multiple source/target roads associated with the source/target node n_s/n_t

BSL algorithm

key idea: a simplest route is related to a shortest path on $\mathcal{G}_{\mathbb{I}}$

- find a shortest path on G_I from any source road to any target road
 - the number of vertices in this path is 1 plus the complexity of the simplest route
- enumerate all shortest paths on G_I

convert each path into a route and compute its length

among the constructed routes, return the fastest

fastest simplest route: our approach (FS)

operates directly on the road network graph G_R

but, principle of sub-route optimality does not hold: a fastest simplest route may not contain a fastest simplest sub-route

- and extend to routes ρ_2 , ρ_5 , with $L(\rho_2) = L(\rho_5) = 40$ and $C(\rho_2) = 1$, $C(\rho_5) = 2$

fastest simplest route: our approach (FS)

idea: define a conceptual expanded graph $G_{\sf E}(V', {\sf E}')$ and a distance metric so that the optimality principle holds

- $\blacksquare~V'$ contains an expanded node (n_{x},r_{i})
- E' contains an edge from (n_x, r_i) to (n_y, r_j) if n_x is on both roads and n_y follows n_x on r_j (r_i and r_j could be the same road)
- \blacksquare an expanded route $\rho_{\mathcal{E}}$ is a path on \mathcal{G}_{E}
 - \blacksquare length $L(\rho_{\mathcal{E}})$ and complexity $\mathcal{C}(\rho_{\mathcal{E}})$ are defined appropriately
 - important: costs are additive, i.e., $L(\rho_{\mathcal{E}}^1 \rho_{\mathcal{E}}^2) = L(\rho_{\mathcal{E}}^1) + L(\rho_{\mathcal{E}}^2)$, $C(\rho_{\mathcal{E}}^1 \rho_{\mathcal{E}}^2) = C(\rho_{\mathcal{E}}^1) + C(\rho_{\mathcal{E}}^2)$ (it does not hold for paths on G_R)
- \blacksquare distance metric: $\rho_{\mathcal{E}}^1$ is FS-shorter than $\rho_{\mathcal{E}}^2$, if $\rho_{\mathcal{E}}^1$ is
 - \blacksquare simpler, i.e., $\textit{C}(\rho_{\mathcal{E}}^{1}) < \textit{C}(\rho_{\mathcal{E}}^{1})$, or
 - as simple but faster, i.e., $C(\rho_{\mathcal{E}}^1) = C(\rho_{\mathcal{E}}^1)$ and $L(\rho_{\mathcal{E}}^1) < L(\rho_{\mathcal{E}}^1)$

principle of expanded sub-route optimality holds for FS-shorter

fastest simplest route: our approach (FS)

one-to-many relationship between routes and expanded routes

 \blacksquare an expanded route $\rho_{\mathcal{E}}$ corresponds to a unique route ρ

 \blacksquare an expanded node (n_x,r_y) of $\rho_{\mathcal{E}}$ corresponds to node n_x in ρ

theorem: an FS-shortest expanded route corresponds to a fastest simplest route

there exist multiple expanded source and target nodes

FS algorithm

find the FS-shortest expanded route, using any shortest-path algorithm

convert FS-shortest expanded route to a route

analysis: the number of labels increases by a factor of δ , the number of edge relaxations by a factor of δ^2 (δ is the maximum number of roads a node belongs to)

simplest near-fastest route

no optimality principle, because the answer route is not optimal

only option: enumerate routes, use pruning criteria to eliminate sub-routes

consider a route ρ from n_s to n_x

- $\blacksquare \text{ prune by length: } L(\rho) + L_{sf}(n_x \! \rightsquigarrow \! n_t) > (1 + \epsilon) \cdot L_{sf}(n_s \! \rightsquigarrow \! n_t) \\$
- $\blacksquare \text{ prune by complexity: } \mathcal{C}(\rho) + \mathcal{C}_{fs}(n_x \leadsto n_t) > \mathcal{C}^+_{snf}(n_s \leadsto n_t)$

where L_{sf} is the minimum length of the shortest fastest route, C_{fs} is the minimum complexity of the fastest shortest route,

computed by running a single source shortest path from n_t

and $\mathcal{C}_{\text{snf}}^+$ is an upper bound on the complexity of the simplest near-fastest route

- computed as $C_{snf}^+(n_s \rightsquigarrow n_t) = C(\rho') + 1 + C_{fs}(n_x \rightsquigarrow n_t)$, for any ρ' such that $L(\rho') + L_{fs}(n_x \rightsquigarrow n_t) < (1 + \epsilon) \cdot L_{sf}(n_s \rightsquigarrow n_t)$
 - (L_{fs} is the minimum length of the fastest shortest route)

simplest near-fastest route: algos

SNF-DFS

DFS-based route enumeration using a stack

Iow memory footprint, but does not guide the search

SNF-A*

- A*-based route enumeration, label-setting using a heap
- \blacksquare a heap entry is a **label** representing a route ρ up to n_x
 - $\begin{array}{l} \blacksquare \ A^{\star} \ estimation \ on \ the \ costs \ of \ the \ FS-extension \ of \ \rho \ to \ n_{t}: \\ L(\rho) + L_{fs}(n_{x} \leadsto n_{t}), \mathcal{C}(\rho) + \mathcal{C}_{fs}(n_{x} \leadsto n_{t}) \end{array}$
- labels sorted on FS-shorter order
- stop when a label for n_t is deheaped

note: multiple labels per node (no optimality principle)

 \blacksquare but, remove ρ' if $L(\rho')>L(\rho)$ and $\mathcal{C}(\rho')>\mathcal{C}(\rho)+1$

experiments

methods

- fastest simplest route: BSL, FS
- simplest near-fastest route: SNF-DFS, SNF-A*, SNF-A*-WB (without precomputed FS, SF routes or bounds)

datasets

network	# roads	# nodes	avg. degree
OLB	1,672	2,383	2.09
BER	15,246	25,321	2.15
VIE	20,224	27,563	2.17
ATH	76,896	108,156	2.19

experiments - fastest simplest route

	BSL		FS	
road network	response time (sec)	routes examined	response time (sec)	routes examined
OLB	68.7	121,236,000	0.003	2,286
BER	—	—	0.055	27,226
VIE	—	—	0.057	29,301
ATH	_	_	0.346	117,973

BSL is impractical

FS is several orders of magnitude faster for the smallest network

experiments - simplest near-fastest route

as ε increases

- the number of candidate routes increases (SNF-DFS suffers)
- but it becomes easier to identify a good candidate (SNF-A* gains)

thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三■ ◆○へ⊙