Routing Directions: Keeping it Fast and Simple

Dimitris Sacharidis ! Panagiotis Bouros 2

IInstitute for the Management of Information Systems, R.C. Athena, Greece

2Department of Computer Science, Humboldt-Universitdt zu Berlin, Germany

motivation

the fastest route is not always the best option for routing
directions

m fourist asking for walking directions to a landmark
m unfamiliar neighborhood: simple instructions

B emergency evacuation plan
m distress situation: concise and clear to follow instructions

the simplest route minimizes complexity of the routing directions
in terms of turns (road changes)
m for simplicity, all furns have equal cost

m the generalization to non-uniform costs (right/left turns,
orientation changes, etfc.) is straighforward

goal of this work: study the trade-off between fastest and sim-
plest routes

terminology

a road r is a sequence of distinct nodes (road intersections)
the road network is a directed graph Gr(V, E)

m Vs the set of nodes
= E contains an edge e;; = (n;, nj) where n;, nj are consecutive
nodes in some road.

a route p is a sequence of nodes defined by a path on Gy

the length L(p) of a route is the sum of lengths of its edges

the complexity C(p) of a route is the number of turns (road
changes)

note:

m path is a general term referring to a sequence of vertices
of some graph

m aroute is a path on the road network graph Gr

terminology

m a fastest route has the smallest length

® a near-fastest route has length at most (1 + ¢) times the
smallest length

m asimplest route has the lowest complexity
® a near-simplest route has complexity at most (1 + ¢) times
the lowest complexity

¢ is a user defined parameter

note:

m a fastest route is essentially a shortest path on the road
network graph Gg

problem definition

given a source node n; and a target n;
m fastest simplest route (FSR): find a route that has the
smallest length among all simplest routes

m simplest fastest route (SFR) find a route that has the lowest
complexity among all fastest routes

m fastest near-simplest route (FNSR): find a route that has
the smallest length among all near-simplest routes

m simplest near-fastest route (SNFR) find a route that has
the lowest complexity among all near-fastest routes

FSR is studied in a past work

SFR, FNSR, SNFR are studied for the first time (to the best of
our knowledge)

example

Ta Tp Te Ta

7 roads, 12 nodes

example

7 roads, 12 nodes , 5 routes from ng to n:

Cl(p)

°p1

example

Ps

5 FS
L(p)

7 roads, 12 nodes , 5 routes from ng to n:
p; is simplest fastest, p, is fastest simplest

C(p) SF
°p1
P3o
simplest
T
fastest

example

Clp) SF
°p1
p3.SNF
near
FNS
fastest ;)4 e
simplest L>ar o FS
P simplest P2
T L(p)
fastest

7 roads, 12 nodes , 5 routes from ng to n:
p; is simplest fastest, p, is fastest simplest
for € = 1, ps is simplest near-fastest, p, is fastest near-simplest

fastest simplest route: baseline approach (BSL)

B intersection graph Gr(R,I)
m R is the set of roads
= I contains an intersection (n,,r,r;), where node n, belongs to
roads r;, r;

m multiple source/target roads associated with the
source/target node ns/n;

BSL algorithm
key idea: a simplest route is related to a shortest path on 61

m find a shortest path on 61 from any source road to any
target road

m the number of vertices in this path is 1 plus the complexity
of the simplest route

m enumerate all shortest paths on Gt
m convert each path into a route and compute its length

m among the constructed routes, return the fastest

fastest simplest route: our approach (FS)

operates directly on the road network graph G

but, principle of sub-route optimality does not hold: a fastest
simplest route may not contain a fastest simplest sub-route

Ta Tp Te Ta

E sub-routes from ng to ny;
p5 = (ns, ne, g, ni1) and
p5 = (ns,n7,n11) have
L=20andC =1

m and extend to routes p,, ps,
with L(p,) = L(p5) = 40 and
Clpz) =1,C(ps) =2

fastest simplest route: our approach (FS)

idea: define a conceptual expanded graph Gg(V', E’) and a distance
metric so that the optimality principle holds

m V' contains an expanded node (ny, r;)

m E’ contains an edge from (ny, ri) to (ny,r;) if ny is on both
roads and ny follows ny on rj (ri and rj could be the same road)

® an expanded route p¢ is a path on Gg

m length L(p¢) and complexity C(p.) are defined appropriately
m important: costs are additive, i.e., L(pLp%) = L(pL) + L(pZ),
Clptp2) = C(pL) + C(pZ) (it does not hold for paths on Gr)

m distance metric: pL is FS-shorter than p2, if p is
m simpler, ie., C(pL) < C(pL), or
m as simple but faster, i.e., C(pL) = C(pL) and L(pL) < L(p})

principle of expanded sub-route optimality holds for FS-shorter

fastest simplest route: our approach (FS)

one-to-many relationship between routes and expanded routes
B an expanded route pgc corresponds to a unique route p
= an expanded node (ny,ry) of pe corresponds to node n, in p

m theorem: an FS-shortest expanded route corresponds to a
fastest simplest route

m there exist multiple expanded source and target nodes

FS algorithm
m find the FS-shortest expanded route, using any
shortest-path algorithm
m convert FS-shortest expanded route to a route
analysis: the number of labels increases by a factor of &, the

number of edge relaxations by a factor of 3°
(6 is the maximum number of roads a node belongs to)

simplest near-fastest route
no optimality principle, because the answer route is not optimal

only option: enumerate routes, use pruning criteria to eliminate
sub-routes

consider a route p from ns to ny

m prune by length: L(p) + Lss(nc~>ni) > (14 ¢) - Leg(ns~>ny)
® prune by complexity: C(p) + Cgs(nx~=ni) > CJ . (ng~=ny)

where Ly is the minimum length of the shortest fastest route,
Css is the minimum complexity of the fastest shortest route,

m computed by running a single source shortest path from n;

and C;;f is an upper bound on the complexity of the simplest
near-fastest route
m computed as C_, .(ns~nt) = C(p) 4+ 1+ Ces(nc~=ny), for any

p’ such that L(p’) + Lts(ng~nt) < (1+¢€) - Leg(ns~~ny)
m (L¢s is the minimum length of the fastest shortest route)

simplest near-fastest route: algos

SNF-DFS

DFS-based route enumeration using a stack

low memory footprint, but does not guide the search

SNF-A*

A*-based route enumeration, label-setting using a heap
a heap entry is a label representing a route p up to ny

m A* estimation on the costs of the FS-extension of p to n;:
L(p) + Les(ng~>nt), C(p) + Ces(nx~~ny)

m labels sorted on FS-shorter order
m stop when a label for n; is deheaped

note: multiple labels per node (no optimality principle)
m but, remove p’ if L(p’) > L(p) and C(p’) > C(p) +1

experiments

® methods

m fastest simplest route: BSL, FS
m simplest near-fastest route: SNF-DFS, SNF-A*, SNF-A*-WB
(without precomputed FS, SF routes or bounds)

®m datasets

network # roads # nodes avg. degree

oLB 1,672 2,383 2.09
BER 15,246 25,321 2.15
VIE 20,224 27,563 2.17

ATH 76,896 108,156 2.19

experiments - fastest simplest route

BSL Fs
road response routes response routes
network time (sec) examined time (sec) examined
OLB 68.7 121,236,000 0.003 2,286
BER — — 0.055 27,226
VIE — — 0.057 29,301
ATH — — 0.346 117,973

BSL is impractical
FS is several orders of magnitude faster for the smallest network

experiments - simplest near-fastest route

1 : 1
SNE-DFS 00 L
S SNE-A*-WB ¥~ I
2 SNF-A* 4 2
Q 5 e K.
£ 01| £ 10 | SNE-A%-WB - ¥
g 2 SNF-A* 4
= =]
o o
o (=¥
R &
""" % A A A A
0.01 4 % 14
0.01 005 01 0203 0.01 005 01 0203
€ €
OLB ATH

as ¢ increases
m the number of candidate routes increases (SNF-DFS suffers)

m but it becomes easier to identify a good candidate (SNF-A*
gains)

thank youl

