

A Two-layer Partitioning for Non-point Spatial Data

Dimitrios Tsitsigkos^{1,3} Konstantinos Lampropoulos³ Panagiotis Bouros² Nikos Mamoulis³ Manolis Terrovitis¹

¹Athena RC, Greece

²Johannes Gutenberg University Mainz, Germany

³University Of Ioannina, Greece

Range Query

- Range query is a fundamental operation in managing spatial data:
 - Geographic Information Systems (e.g., management of huge meshes)
 - Neuroscience (e.g., building and indexing a spatial model of brain)
 - Location-based analytics (e.g., managing spatial influence region of mobile users in order to facilitate effective POI recomm)
- Retrieve all spatial objects which intersect with the area of R

Motivation (1/2)

- Focus on non-point data
- Space-Oriented Partitioning:
 - Divide the space into spatially disjoint partitions
 - Data replication
 - Grid, quad-tree, etc.
- Data-Oriented Partitioning:
 - No data replication
 - Balanced structure
 - R-tree family, etc.

Motivation (1/2)

- Focus on non-point data
- Space-Oriented Partitioning:
 - Divide the space into spatially disjoint partitions
 - Data replication
 - Grid, quad-tree, etc.
- Data-Oriented Partitioning:
 - No data replication
 - Balanced structure
 - R-tree family, etc.

Motivation (2/2)

- Core challenge
 - Duplicated results
- Previous techniques
 - Find all results then duplicate elimination
 - Hashing, sorting
 - Reference point (Dittrich & Seeger, ICDE 2000)
- Our technique
 - Duplicate avoidance
 - Divide each tile into four classes that cannot generate duplicates

Two-layer Partitioning

- First layer
 - Standard Space-Oriented Partitioning
 - Divide the space into disjoint spatial partitions, called tiles
- Second layer
 - Additional in our approach
 - Divide each tile into four classes A, B, C, and D

Example

Tile	primary partitioning (standard)	secondary partitioning (our approach)
T ₀	{r1,r2}	A= {r1, r2}
T ₁	{r2,r3}	A = {r3}, C= {r2}
T ₂	{r3}	C = {r3}
T ₄	{r2}	B = {r2}
T ₅	{r2}	D = {r2}
T ₆	{r4}	A = {r4}
T ₇	{r4}	C = {r4}
T ₁₀	{r5}	A = {r5}
T ₁₁	{r6}	A = {r6}
T ₁₅	{r6}	B = {r6}

Query processing

- Identify the tiles relevant to the query
- For each relevant tile
 Select relevant classes
 - For each relevant class
 - Identify intersecting rectangles

Query processing

- Identify the tiles relevant to the query
- For each relevant tile

• Select relevant classes

For each relevant class

Identify intersecting rectangles

Select Relevant Classes

Select Relevant Classes

- Query W intersects tile T
- W starts before T in dimension x
- Disregard classes C and D
- Examples: T2, T3, T4, T6, T7, T8, T10, T11, T12

Select Relevant Classes

Observation 1

- Query W intersects tile T
- W starts before T in dimension x
- Disregard classes C and D
- Examples: T2, T3, T4, T6, T7, T8, T10, T11, T12

- Query W intersects tile T
- W starts before T in dimension y
- Disregard classes B and D
- Examples: T5, T6, T7, T8, T9, T10, T11, T12

• Intersection test

- Normally, four comparisons
- Minimize the number of comparisons if W is bigger than tile size

• Observation 1

- Tile covered by window in a dimension
- o No intersection test in this dimension

• Observation 2

- o Query W ends in a Tile T
- o W starts before T in dimension d
- o One comparison : rectangle.dl \leq W.du

- o Query W starts in a tile T
- o W ends after T in dimension d
- One comparison: rectangle.du \geq W.dl

			di	men	sion x				
	 ARCD	TI	AB	<i>T</i> 2	ΔB	TS		TA	
1	$r.x_u \ge V$	$V.x_l$	$r.y_u \ge$	$W.y_l$	$r.y_u \ge$	$W.y_l$	$r.y_u \ge 1$	$W.y_l$	
	$r.y_u \ge V$	$V.y_l$					$r.x_l \leq 1$	$W.x_u$	
din	 A,C	T5	A	Тб	A	<i>T</i> 7	A	TS	
nens	$r.x_u \ge V$	$V.x_l$					$r.x_l \leq 1$	W_{x_u}	
ion			no compa	risons	no compa	risons			
	^{A,C} ₩	T9	A	<i>T10</i>	A	T11	A	T 12	
ł	$\begin{aligned} r.x_u &\geq V\\ r.y_l &\leq V \end{aligned}$	$V.x_l$ $V.y_u$	$r.y_l \leq$	$W.y_u$	$r.y_l \leq$	$W.y_u$	$\begin{array}{c} r.x_l \leq r\\ r.y_l \leq r\end{array}$	$W.x_u$ $W.y_u$	

• Intersection test

- Normally, four comparisons
- Minimize the number of comparisons if W is bigger than tile size

• Observation 1

- Tile covered by window in a dimension
- o No intersection test in this dimension

• Observation 2

- o Query W ends in a Tile T
- o W starts before T in dimension d
- o One comparison : rectangle.dl \leq W.du

- o Query W starts in a tile T
- o W ends after T in dimension d
- One comparison: rectangle.du \geq W.dl

			di	men	sion x				
	A,B,C,D		A,B	<i>T2</i>	А,В	<i>T3</i>	A,B	T^{4}	
	$r.x_u \ge V$	$V.x_l$	$r.y_u \ge$	$W.y_l$	$r.y_u \ge$	$W.y_l$	$r.y_u \ge$	$w.y_l$	
	$r.y_u \ge V$	$v.y_l$					$r.x_l \leq$	$W.x_u$	
Ť	A,C	T5	А	Тб	А	<i>T</i> 7	А	<u>T</u> 8	
Iensio	$r.x_u \ge V$	$V.x_l$					$r.x_l \leq$	W_{x_u}	
ă			no compa	risons	no compa	risons			
	A,C W	T9	A	<i>T10</i>	A	T11	A	T 12	
¥	$r.x_u \ge V$ $r.u_i < V$	$V.x_l$	r.m <	W.u.	$r.y_l <$	W.y.,	$r.x_l \leq r.m \leq$	$\overline{W}.x_u$ W.u	
	 $r \cdot g_l \ge r$	r,g_u	· ·91 _	,, .yu	- '04 <u></u>		· ·9t _	,, . <i>gu</i>	

• Intersection test

- Normally, four comparisons
- Minimize the number of comparisons if W is bigger than tile size

• Observation 1

- Tile covered by window in a dimension
- No intersection test in this dimension

• Observation 2

- o Query W ends in a Tile T
- o W starts before T in dimension d
- o One comparison : rectangle.dl \leq W.du

- o Query W starts in a tile T
- o W ends after T in dimension d
- One comparison: rectangle.du \geq W.dl

			di	men	sion x				
	 			77 0		(T)			
	A,B,C,D $r,x_n > V$	TI V.x.	A, B	$\frac{T2}{Wm}$	A, B r u >	13 W m	A,B $r.y_u \ge 1$	14 W.y	
	$r.y_u \ge V$	$V.y_l$	$r \cdot gu \leq$,, .yı	<i>·</i> · <i>9u</i> ≤		$r.x_l \leq$	$\underline{W}.x_u$	l.
dim	 A,C	T5	A	<i>T6</i>	А	<i>T</i> 7	А	TS	
ensic	$r.x_u \ge V$	$V.x_l$					$r.x_l \leq 1$	$W.x_u$	
ŭ			no compa	risons	no compa	risons			
	^{A,C} ₩	T9	A	T10	A	T11	A	T 12	
ł	$\begin{aligned} r.x_u &\geq V\\ r.y_l &\leq W \end{aligned}$	$V.x_l$ $V.y_u$	$r.y_l \leq 1$	$W.y_u$	$r.y_l \le$	$W.y_u$	$\begin{array}{l} r.x_l \leq \\ r.y_l \leq \end{array}$	$\overline{W.} x_u$ $W.y_u$	
									Γ

• Intersection test

- Normally, four comparisons
- Minimize the number of comparisons if W is bigger than tile size

• Observation 1

- Tile covered by window in a dimension
- o No intersection test in this dimension

• Observation 2

- o Query W ends in a Tile T
- o W starts before T in dimension d
- o One comparison : rectangle.dl \leq W.du

- o Query W starts in a tile T
- o W ends after T in dimension d
- One comparison: rectangle.du \geq W.dl

			di	men	sion x				
	A,B,C,D	TI V_{T}	A, B	12 W m	A, B	13 W w	A,B $r,y_u > 1$	14 W.w	
	$r.y_u \ge V$	$V.y_l$	$\gamma \cdot g_u \ge$	w.g	$\gamma \cdot g_u \ge$	w.g	$r.x_l \leq r$	$\underline{W}.x_u$	
lim	 A,C	<i>T5</i>	А	<i>T6</i>	А	<i>T7</i>	А	TS	
ensio	$r.x_u \ge V$	$V.x_l$					$r.x_l \leq 1$	$W.x_u$	
ŭ			no compa	risons	no compa	risons			
	^{A,C} ₩	T9	A	<i>T10</i>	A	T11	A	T 12	
ł	$\begin{aligned} r.x_u &\geq V\\ r.y_l &\leq V \end{aligned}$	$W.x_l$ $V.y_u$	$r.y_l \le$	$W.y_u$	$r.y_l \le$	$W.y_u$	$\begin{array}{l} r.x_l \leq \\ r.y_l \leq \end{array}$	$\overline{W.} x_u$ $W.y_u$	
									\square

Storage Optimization

- Store the MBRs using the Decomposition Storage Model
 - Reduces the query cost
 - Improves data access locality
- Each table contains (coordinate, id) pairs
 - Sorted by coordinate
 - Used for queries where one endpoint is needed
- Not necessary to store all decompositions
- Cons
 - Requires additional storage
 - Expensive to update

required tables
L _{xl} ^A ,L _{xu} ^A ,L _{yl} ^A ,L _{yu} ^A
L _{xl} ^B , L _{xu} ^B , L _{yu} ^B
L _{xu} ^C , L _{yl} ^C , L _{yu} ^C
L _{xu} ^D , L _{yu} ^D
dimension x T2 A,B T3 A,B T4 T2 A,B T3 A,B T4 r.yu $\geq W.y_l$ $\geq W.y_l$ $r.y_u \geq W.y_l$ $r.y_u \geq W.y_l$ $r.y_l \leq W.y_u$ T6 A T7 A T8 no comparisons T10 A T11 A T12 $\leq W.y_u$ $r.y_l \leq W.y_u$ $r.x_l \leq W.x_u$ $r.x_l \leq W.y_u$
$W.y_u r.y_l$

Disk Query

- If previous tile in x dimension intersects with the query -> A,C
- If previous tile in y dimension intersects with the query -> A,B
- if tile is full covered by query -> A
- If previous tiles does not intersect with the query in both dimensions -> A,B,C,D

Accelerate Refinement

- Secondary filtering before refinement
- Observation
 - At least one side of an MBR inside the query
 - Object does not need refinement step

Batch Query Processing

- Single-threaded and multi-threaded implementations
- Queries-based approach
 - Process each query independently
 - Assign queries to available threads in round robin
 - Cache-agnostic
- Tiles-based approach
 - \circ $\,$ For each tile
 - Find intersecting queries
 - Combine relevant classes for all queries
 - Process each tile independently
 - Assign tiles to available threads in round robin
 - Cache-conscious

Setup & Datasets

- Hardware:
 - Processor: dual Index(R) Xeon(R) CPU E5-2630 v4 clocked at 2.20Ghz with 384 GBs of RAM
 - Hyper-threading enabled for batch processing, up to 40 threads
- Implementation:
 - Programming Language: C++
 - Operation System: CentOs Linux 7.6.1810

parameter values Default cardinality 1M, 5M, 10M, 50M, 100M 10M area 10^{-∞}, 10⁻¹⁴, 10⁻¹², 10⁻⁸, 10⁻⁶ 10⁻¹⁰ distribution Uniform or Zipfian (a = 1)

Synthetic dataset

dataset card. type avg. xavg. yextend extend ROADS linestrings 20M 0.00001173 0.00000915 **EDGES** polygons 70M 0.00000491 0.00000383 TIGER 98M 0.00000740 0.00000576 mixed

Real dataset

Filtering vs Refinement

Compared Methods and their Throughput

Туре	index	throughput	throughput (queries/sec)			
		ROADS	EDGES			
SOP	2-layer	30981	9406			
	2-layer⁺	36444	10855			
	1-layer	12597	4403			
	quad-tree	10949	3640			
	quad-tree, 2-layer	16883	5831			
DOP	R-tree	7888	2011			
	R*-tree	6415	1610			
	BLOCK	< 1	<1			
	MXCIF quad-tree	8	2			

Query Processing: Real Data

Batch query processing (window queries)

Conclusion

- Contributions
 - Our two-layer partitioning:
 - Easy to implement
 - Can be applied to any SOP index
 - Reduces the number of comparisons
 - Duplicate avoidance
 - Our secondary filtering technique avoids refinement step for the majority of the query results
 - Efficient processing of multiple queries in batch and in parallel
- Future work
 - Implementation of two-layer partitioning for 3D data
 - Apply two-layer partitioning in distributed data management
 - Consider other popular queries types, such as KNN and spatial join

Thank you for your attention

Questions