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Range Query
● Range query is a fundamental operation in managing spatial data:

○ Geographic Information Systems (e.g., management of huge meshes)
○ Neuroscience (e.g., building and indexing a spatial model of brain)
○ Location-based analytics (e.g., managing spatial influence region of 

mobile users in order to facilitate effective POI recomm)
● Retrieve all spatial objects which intersect with the area of R



Motivation (1/2)
● Focus on non-point data

● Space-Oriented Partitioning:
○ Divide the space into spatially disjoint

partitions
○ Data replication
○ Grid, quad-tree, etc.

● Data-Oriented Partitioning:
○ No data replication
○ Balanced structure
○ R-tree family, etc.
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Motivation (2/2)
● Core challenge

○ Duplicated results

● Previous techniques
○ Find all results then duplicate elimination
○ Hashing, sorting
○ Reference point (Dittrich & Seeger, ICDE 

2000)

● Our technique
○ Duplicate avoidance
○ Divide each tile into four classes that 

cannot generate duplicates

W



Two-layer Partitioning
● First layer

○ Standard Space-Oriented Partitioning
○ Divide the space into disjoint spatial partitions, called tiles

● Second layer
○ Additional in our approach
○ Divide each tile into four classes A, B, C, and D



Example
Tile primary partitioning 

(standard)
secondary partitioning 
(our approach) 

T0 {r1,r2} A= {r1, r2}

T1 {r2,r3} A = {r3}, C= {r2}

T2 {r3} C = {r3}

T4 {r2} B = {r2}

T5 {r2} D = {r2}

T6 {r4} A = {r4}

T7 {r4} C = {r4}

T10 {r5} A = {r5}

T11 {r6} A = {r6}

T15 {r6} B = {r6}



Query processing

● Identify the tiles relevant to the query
● For each relevant tile
○ Select relevant classes
○ For each relevant class
■ Identify intersecting rectangles
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Select Relevant Classes 



Select Relevant Classes 

● Observation 1
○ Query W intersects tile T
○ W starts before T in dimension x
○ Disregard classes C and D
○ Examples: T2, T3, T4, T6, T7, T8, T10, 

T11, T12

● Observation 2
○ Query W intersects tile T
○ W starts before T in dimension y
○ Disregard classes B and D
○ Examples: T5, T6, T7, T8, T9, T10, T11, T12
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Identify Intersecting Rectangles

● Intersection test 
○ Normally, four comparisons
○ Minimize the number of comparisons if W is bigger than tile

size

● Observation 1
○ Tile covered by window in a dimension
○ No intersection test in this dimension

● Observation 2
○ Query W ends in a Tile T
○ W starts before T in dimension d
○ One comparison : rectangle.dl ≤  W.du

● Observation 3
○ Query W starts in a tile T
○ W ends after T in dimension d
○ One comparison: rectangle.du ≥ W.dl
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Storage Optimization

● Store the MBRs using the Decomposition 
Storage Model
○ Reduces the query cost
○ Improves data access locality

● Each table contains (coordinate, id) pairs
○ Sorted by coordinate
○ Used for queries where one endpoint is needed

● Not necessary to store all decompositions

● Cons
○ Requires additional storage
○ Expensive to update

partition required tables

TA Lxl
A,Lxu

A,Lyl
A,Lyu

A

TB Lxl
B, Lxu

B, Lyu
B

TC Lxu
C, Lyl

C, Lyu
C

TD Lxu
D, Lyu

D



Disk Query

● If previous tile in x dimension intersects
with the query -> A,C

● If previous tile in y dimension intersects
with the query -> A,B

● if tile is full covered by query -> A

● If previous tiles does not intersect with 
the query in both dimensions -> A,B,C,D



Accelerate Refinement

● Secondary filtering before refinement
● Observation

○ At least one side of an MBR inside the query
○ Object does not need refinement step



Batch Query Processing

● Single-threaded and multi-threaded implementations
● Queries-based approach

○ Process each query independently
○ Assign queries to available threads in round robin
○ Cache-agnostic

● Tiles-based approach
○ For each tile

■ Find intersecting queries
■ Combine relevant classes for all queries

○ Process each tile independently
○ Assign tiles to available threads in round robin 
○ Cache-conscious



Setup & Datasets
● Hardware: 

○ Processor: dual Index(R) Xeon(R) CPU E5-2630 v4 clocked at 2.20Ghz with 
384 GBs of RAM

○ Hyper-threading enabled for batch processing, up to 40 threads
● Implementation:

○ Programming Language: C++
○ Operation System: CentOs Linux 7.6.1810

parameter values Default
cardinality 1M, 5M, 10M, 50M, 100M 10M

area 10-∞, 10-14, 10-12, 10-8, 10-6 10-10

distribution Uniform or Zipfian (a = 1) -

dataset type card. avg. x-
extend

avg. y-
extend

ROADS linestrings 20M 0.00001173 0.00000915

EDGES polygons 70M 0.00000491 0.00000383

TIGER mixed 98M 0.00000740 0.00000576

Synthetic dataset Real dataset



Filtering vs Refinement



Compared Methods and their Throughput

Type index throughput (queries/sec)

SOP 2-layer
2-layer+
1-layer
quad-tree
quad-tree, 2-layer

30981
36444
12597
10949
16883

DOP R-tree
R*-tree
BLOCK
MXCIF quad-tree

7888
6415
< 1
8

ROADS EDGES

9406
10855
4403
3640
5831

2011
1610
< 1
2



Query Processing: Real Data



Batch query processing (window queries)



Conclusion

● Contributions
○ Our two-layer partitioning:

■ Easy to implement
■ Can be applied to any SOP index
■ Reduces the number of comparisons
■ Duplicate avoidance

○ Our secondary filtering technique avoids refinement step for the majority
of the query results

○ Efficient processing of multiple queries in batch and in parallel

● Future work
○ Implementation of two-layer partitioning for 3D data
○ Apply two-layer partitioning in distributed data management
○ Consider other popular queries types, such as KNN and spatial join



Thank you for your attention

Questions
?


