
HINT on Steroids:
Batch Query Processing for Interval Data

Panagiotis Bouros

Artur Titkov

Christian Rauch George Christodoulou Nikos Mamoulis

Interval data

127th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

Bob
Jane

Hugo

year

employee start end

Jane 1990 1993

Bob 1995 1996

Hugo 1997 2003

Helen 2005 2008

Tom 2006 2009

Range query

Helen
Tom

1994 2002

Range query
• Find all employees working at the company from 1994 to 2002

Interval data

227th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

Bob
Jane

Hugo

year

Range query

Helen
Tom

1994 2002

Range query
• Find all employees working at the company from 1994 to 2002

employee start end

Jane 1990 1993

Bob 1995 1996

Hugo 1997 2003

Helen 2005 2008

Tom 2006 2009

Need for batch processing

Setting
• Query-heavy workflows
• Thousands or millions of incoming queries per second
• Modern OLTP systems and cloud services

– Big IT companies, Amazon, Google etc
– Amazon S3 receives 1M requests per second

Solution
• Process the queries in batches

– Share and save resources
– Reduce the overall time

327th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

Setting
• Query-heavy workflows
• Thousands or millions of incoming queries per second
• Modern OLTP systems and cloud services

– Big IT companies, Amazon, Google etc
– Amazon S3 receives 1M requests per second

Solution
• Process the queries in batches

– Share and save resources
– Reduce the overall time

Need for batch processing

427th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

Never done
for querying

intervals

Background

527th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

Indexing intervals

HINT: a hierarchical index for intervals
• Hierarchy of 1D grids
• Long intervals on high levels
• Intervals in at most 2 partitions per level

Query processing
• Duplicate avoidance
• Bottom-up query processing
• Optimizations

– Subdivisions POin, POaft, PRin, PRaft
– Space decomposition
– Reduce cache misses
– Deal with skewness & sparsity

• Allen algebra relationships

627th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

[G. Christodoulou, P. Bouros, N. Mamoulis, HINT: A Hierarchical Index for Intervals in Main Memory, ACM SIGMOD Conference 2022]
[G. Christodoulou, P. Bouros, N. Mamoulis, HINT: a hierarchical interval index for Allen relationships, VLDB Journal 33(1), 2024]

Hierarchical partitioning of space

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

011 100

0101

Range queries

P0,0

P1,0 P1,1

P2,1 P2,2

P3,2 P3,3 P3,4

P4,5 P4,6 P4,7 P4,8 P4,9

q
10010101

010

q

Batch processing challenges

Locality
• Avoid jumps in memory to access relevant

partitions
• Horizontal jumps

– Queries cover different parts of the index
– Example, q1, q3 versus q2

• Vertical jumps
– Bottom-up traversal
– Climb hierarchy for q1, then for q2, and lastly for q3

Save resources
• Share computations among queries

727th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Strategies

827th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

Query-based

Idea
• Evaluate queries in serial fashion
• Every query independently probs HINT, bottom-up

Pros
✓ Simple and straightforward

Cons
✕Cache agnostic
✕Horizontal and vertical jumps

Improvement
• Examine queries by their start

927th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Query-based

Idea
• Evaluate queries in serial fashion
• Every query independently probs HINT, bottom-up

Pros
✓ Simple and straightforward

Cons
✕Cache agnostic
✕Horizontal and vertical jumps

Improvement
• Examine queries by their start

1027th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@] TRUE;
3 2><?;0BC [@] TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5 ?A4 5 8G (✓,@.BC) ; ù first overlapping partition

8 ; ?A4 5 8G (✓,@.4=3) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@] FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@] FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.

Query-based

Idea
• Evaluate queries in serial fashion
• Every query independently probs HINT, bottom-up

Pros
✓ Simple and straightforward

Cons
✕Cache agnostic
✕Horizontal and vertical jumps

Improvement
• Consume queries by their start

1127th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@] TRUE;
3 2><?;0BC [@] TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5 ?A4 5 8G (✓,@.BC) ; ù first overlapping partition

8 ; ?A4 5 8G (✓,@.4=3) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@] FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@] FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.

Level-based

1227th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Idea
• Consume queries by their start
• Operate in a per-level fashion

– Access all relevant partitions on a level
– Move to the next

Pros
✓Cache-aware
✓Vertical jumps

Cons
✕Horizontal jumps

Level-based

Idea
• Consume queries by their start
• Operate in a per-level fashion

– Access all relevant partitions on a level
– Move to the next

Pros
✓Cache-aware
✓Vertical jumps

Cons
✕Horizontal jumps

1327th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@] TRUE;
3 2><?;0BC [@] TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5 ?A4 5 8G (✓,@.BC) ; ù first overlapping partition

8 ; ?A4 5 8G (✓,@.4=3) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@] FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@] FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.

Level-based

Idea
• Consume queries by their start
• Operate in a per-level fashion

– Access all relevant partitions on a level
– Move to the next

Pros
✓Cache-aware
✓Vertical jumps

Cons
✕Horizontal jumps

1427th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@] TRUE;
3 2><?;0BC [@] TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5 ?A4 5 8G (✓,@.BC) ; ù first overlapping partition

8 ; ?A4 5 8G (✓,@.4=3) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@] FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@] FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.

Partition-based

Idea
• Consume queries by their start
• Operate in a per-level fashion

– Access all relevant partitions on a level
– Move to the next

• Evaluate all queries for a partition before moving to next

Pros
✓Cache-aware
✓Horizontal jumps
✓Vertical jumps

1527th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Partition-based

Idea
• Consume queries by their start
• Operate in a per-level fashion

– Access all relevant partitions on a level
– Move to the next

• Evaluate all queries for a partition before moving to next

Pros
✓Cache-aware
✓Horizontal jumps
✓Vertical jumps

1627th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@] TRUE;
3 2><?;0BC [@] TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5 ?A4 5 8G (✓,@.BC) ; ù first overlapping partition

8 ; ?A4 5 8G (✓,@.4=3) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@] FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@] FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.

Partition-based

Idea
• Consume queries by their start
• Operate in a per-level fashion

– Access all relevant partitions on a level
– Move to the next

• Evaluate all queries for a partition before moving to next

Pros
✓Cache-aware
✓Horizontal jumps
✓Vertical jumps

1727th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

P0,0

P1,0 P1,1
P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,8 P4,9 P4,10P4,11P4,12P4,13 P4,14P4,15

q1 q3 q2

Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@] TRUE;
3 2><?;0BC [@] TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5 ?A4 5 8G (✓,@.BC) ; ù first overlapping partition

8 ; ?A4 5 8G (✓,@.4=3) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@] FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@] FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.

Experiments

1827th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

Setup
Hardware

• Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz with 384 GBs of RAM running CentOS Linux

Software

• All strategies implemented in C++, compiled with -O3, -mavx and -march=native flags

• HINT variant with subdivisions, sorting, skewness & sparsity and cache misses optimizations

Datasets

• BOOKS: periods of time book lent in Aarhus city libraries in 2013
• WEBKIT: periods of time file unchanged in git repository from 2001 to 2016

• TAXIS: period of taxi trips in New York City in 2013

• GREEND: power usage from households in Austria and Italy from 2010 to 2014

• Synthetic: interval duration follows exponential distribution, uniformly distributed starts

Experiments

• Total execution time of query batch

• Vary batch size (# queries) and query extent

1927th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

FS
gFS

bgFS

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 9 16 25HT 36HT

S
p
ee

d
u
p
 [

x
]

theoretical
h-bgFS
d-bgFS

Real datasets

2027th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

Query-based Query-based with sorting

10
2

10
3

10
4

10
5

stab 0.01 0.05 0.1 0.5 1

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

query extent [%]

ua
aa

uma
ama

umg
amg Level-based with sorting

10
2

10
3

10
4

10
5

stab 0.01 0.05 0.1 0.5 1

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

query extent [%]

ua
aa

uma
ama

umg
amg

Partition-based with sorting

BOOKS WEBKIT TAXIS GREEND

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1K 5K 10K 50K 100K

T
o
ta

l
ti

m
e

[m
se

c]

queries

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1K 5K 10K 50K 100K

T
o
ta

l
ti

m
e

[m
se

c]

queries

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1K 5K 10K 50K 100K

T
o
ta

l
ti

m
e

[m
se

c]

queries

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1K 5K 10K 50K 100K

T
o
ta

l
ti

m
e

[m
se

c]

queries

Figure 3: Comparison: real datasets

 0

 50

 100

 150

 200

 250

 300

32M 64M 128M 256M 512M

T
o
ta

l
ti

m
e

[m
se

c]

domain size

 0

 5000

 10000

 15000

 20000

 25000

 30000

10M 50M 100M500M 1B

T
o
ta

l
ti

m
e

[m
se

c]

dataset cardinality

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1.01 1.1 1.4 1.6 1.8

T
o
ta

l
ti

m
e

[m
se

c]

α (interval length)

 0

 500

 1000

 1500

 2000

 2500

 3000

10k 100k 1M 5M 10M

T
o
ta

l
ti

m
e

[m
se

c]

σ (interval position)

 0

 100

 200

 300

 400

 500

 600

 700

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

1 5 10 50 100

T
o
ta

l
ti

m
e

[m
se

c]

queries [x1000]

Figure 4: Comparison: synthetic datasets

performance of all strategies improves. Similarly, when increas-
ing f the intervals are more widespread, meaning that the queries
are expected to retrieve fewer results, and the query cost drops
accordingly.

Lastly, we study the applicability of the partition-based strat-
egy to an alternative interval index. Table 5 shows that 1D-grid
bene�ts from a partition-based batch processing but its perfor-
mance still remains typically an order of magnitude inferior (in
3 outs of 4 datasets) to the partition-based HINT; This result is
in line with the single-query case in [10, 11].

Table 4: Impact of computation sharing - lower numbers
better; default query extent 0.1% and 10K query batch

strategy BOOKS WEBKIT TAXIS GREEND
Query-based with sorting 85% 86% 51% 53%
Level-based with sorting 78% 81% 49% 54%
Partition-based with sorting 67% 71% 46% 48%

Table 5: Applicability of partition-based strategy, total time
[secs]; default query extent 0.1% and 10K query batch

strategy BOOKS WEBKIT TAXIS GREEND
1D-grid query-based 2.336 2.565 4.398 1.231

1D-grid partition-based with sorting 1.566 1.627 3.629 0.679
HINT partition-based with sorting 0.223 0.226 0.337 0.201

5 CONCLUSIONS
We studied the batch processing of selection queries on intervals.
For this purpose, we built upon the state-of-the-art main-memory
index on intervals, HINT. Under its current setup, HINT can only
employ a query-based evaluation strategy where every query in
the given batch is computed independently to the rest. Such a
strategy however, is cache-agnostic and prone to cache misses
while traversing the index. Instead, we proposed the level-based
and partition-based strategies, which both operate in per-level
fashion, i.e., they �rst evaluate all queries for a level of the index
before moving to the next. Partition-based strategy in particular,
proceeds to the next partition on a level after all queries relevant
to the current one are computed. Our experiments showed that
both strategies always outperform the query-based baseline, and
that the partition-based strategy is overall the most e�cient. In
the future, we plan to investigate the parallel processing of query
batches in multi-core CPUs and under a distributed setting.

ACKNOWLEDGMENTS
Partially funded by the Hellenic Foundation for Research and
Innovation (HFRI) under the “2nd Call for HFRI Research Projects
to support Faculty Members & Researchers” (Project No. 2757).

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.01 0.05 0.1 0.5 1

T
o
ta

l
ti

m
e

[m
se

c]

query extent [%]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1K 5K 10K 50K 100K

T
o
ta

l
ti

m
e

[m
se

c]

queries

BOOKS

 0

 1000

 2000

 3000

 4000

 5000

 6000

0.01 0.05 0.1 0.5 1
T

o
ta

l
ti

m
e

[m
se

c]

query extent [%]

TAXIS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1K 5K 10K 50K 100K

T
o
ta

l
ti

m
e

[m
se

c]

queries

1) Sorting queries reduces
horizontal jumps
– Query-based Vs Query-based with

sorting

2) Level-based strategies
outperform query-based
– More pronounced in BOOKS,

WEBKIT
– Longer intervals

3) Partition-based the champion

To sum up…

Conclusions
• Studied batch processing for selection queries on intervals
• Proposed two processing strategies on top of state-of-the-art HINT

– Operate on a per-level basis
– Improve locality by eliminating jumps on HINT

Future work
• Investigate how to share and save computations
• Parellel batch processing

2127th International Conference on Extending Database Technology (EDBT 2024)March 28, 2024

Thank you!

2227th International Conference on Extending Database Technology (EDBT 2024)

Questions
?

To download the source code and the datasets used, visit
https://github.com/pbour/batch_hint

March 28, 2024

https://github.com/pbour/batch_hint

