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Need for batch processing

Setting
• Query-heavy workflows
• Thousands or millions of incoming queries per second
• Modern OLTP systems and cloud services 

– Big IT companies, Amazon, Google etc
– Amazon S3 receives 1M requests per second

Solution
• Process the queries in batches

– Share and save resources
– Reduce the overall time
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Never done 
for querying 

intervals



Background
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Indexing intervals

HINT: a hierarchical index for intervals
• Hierarchy of 1D grids
• Long intervals on high levels
• Intervals in at most 2 partitions per level

Query processing
• Duplicate avoidance
• Bottom-up query processing
• Optimizations

– Subdivisions POin, POaft, PRin, PRaft
– Space decomposition
– Reduce cache misses 
– Deal with skewness & sparsity

• Allen algebra relationships
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[G. Christodoulou, P. Bouros, N. Mamoulis, HINT: A Hierarchical Index for Intervals in Main Memory, ACM SIGMOD Conference 2022]
[G. Christodoulou, P. Bouros, N. Mamoulis, HINT: a hierarchical interval index for Allen relationships, VLDB Journal 33(1), 2024]
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Batch processing challenges

Locality
• Avoid jumps in memory to access relevant 

partitions
• Horizontal jumps

– Queries cover different parts of the index
– Example, q1, q3 versus q2

• Vertical jumps
– Bottom-up traversal
– Climb hierarchy for q1, then for q2, and lastly for q3

Save resources
• Share computations among queries
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Strategies
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Query-based

Idea
• Evaluate queries in serial fashion
• Every query independently probs HINT, bottom-up 

Pros
✓ Simple and straightforward

Cons
✕Cache agnostic
✕Horizontal and vertical jumps

Improvement
• Examine queries by their start
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Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@ ]  TRUE;
3 2><?;0BC [@ ]  TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5  ?A4 5 8G (✓,@.BC ) ; ù first overlapping partition

8 ;  ?A4 5 8G (✓,@.4=3 ) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@ ]  FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@ ]  FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.



Query-based

Idea
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Pros
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Cons
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Improvement
• Consume queries by their start
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Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@ ]  TRUE;
3 2><?;0BC [@ ]  TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5  ?A4 5 8G (✓,@.BC ) ; ù first overlapping partition

8 ;  ?A4 5 8G (✓,@.4=3 ) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@ ]  FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@ ]  FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.
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Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@ ]  TRUE;
3 2><?;0BC [@ ]  TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5  ?A4 5 8G (✓,@.BC ) ; ù first overlapping partition

8 ;  ?A4 5 8G (✓,@.4=3 ) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@ ]  FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@ ]  FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.
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Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@ ]  TRUE;
3 2><?;0BC [@ ]  TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5  ?A4 5 8G (✓,@.BC ) ; ù first overlapping partition

8 ;  ?A4 5 8G (✓,@.4=3 ) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@ ]  FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@ ]  FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.
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Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@ ]  TRUE;
3 2><?;0BC [@ ]  TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5  ?A4 5 8G (✓,@.BC ) ; ù first overlapping partition

8 ;  ?A4 5 8G (✓,@.4=3 ) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@ ]  FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@ ]  FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.
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Figure 2: Running example

Table 1: Access patterns for the queries in Figure 2

Strategy Accessed partitions

Query-based
%4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0 !
%4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0

Query-based %4,2 ! %4,3 ! %4,4 ! %4,5 ! %3,1 ! %3,2 ! %2,0 ! %2,1 ! %1,0 ! %0,0 !

with sorting %4,4 ! %4,5 ! %4,6 ! %3,2 ! %3,3 ! %2,1 ! %1,0 ! %0,0 !
%4,10 ! %4,11 ! %4,12 ! %4,13 ! %3,5 ! %3,6 ! %2,2 ! %2,3 ! %1,1 ! %0,0

Level-based

%4,2 ! %4,3 ! %4,4 ! %4,5 ! %4,4 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

Partition-based

%4,2 ! %4,3 ! %4,4 ! %4,4 ! %4,5 ! %4,5 ! %4,6 ! %4,10 ! %4,11 ! %4,12 ! %4,13 !
%3,1 ! %3,2 ! %3,2 ! %3,3 ! %3,5 ! %3,6 !

with sorting %2,0 ! %2,1 ! %2,1 ! %2,2 ! %2,3 !
%1,0 ! %1,0 ! %1,1 !
%0,0 ! %0,0 ! %0,0

with two modi�cations. First, we maintain a 2><?5 8ABC [@] and
a 2><?;0BC [@] �ag for each query @ in batch Q, which are ini-
tialized in Lines 2–3 and updated in Lines 24–27 at each level,
according to the last bits of the �rst relevant partition 5 and the
last ; . Second, we introduce in Line 5, a new for-loop to iterate
over all queries in the batch, at current level ✓ . Each query @ is
then processed as in Lines 6–21 of Algorithm 1.

Similarly to the query-based strategy, level-based can also
bene�t from sorting the queries by their start, avoiding the hori-
zontal jumps when accessing the relevant partitions at each level.
Going back to our running example, the third row in Table 1
depicts the access pattern for the the level-based strategy, with
sorting activated. To better illustrate the e�ect of the strategy,
we write the sequence of accessed partitions in �ve lines, one for
each level of the index. Notice how on each line (index level), the
evaluation switches from the relevant partitions of @1, to the ones
of @3 and �nally, to @2, before moving to the next level. Under this
premise, we avoid the vertical jumps incurred by independently
applying the bottom-up approach in the query-based strategy.

3.3 Partition-based
Despite evaluating queries on a per-level basis and examining
the queries by their start, jumps can still occur in the level-based
strategy. Consider again the access pattern of level-based in Ta-
ble 1; speci�cally, the �rst line which corresponds to the bottom
level of the index. The strategy will access partitions %4,4 and
%4,5 �rst for @1 and then again for @2, in the exact same order. To
deal with this type of horizontal jumps, we next introduce the
partition-based strategy. Similar to the level-based, the partition-
based strategy adopts the per-level evaluation and can bene�t
from sorting the queries, but it processes independently every
partition. Intuitively, in order to proceed to the next partition in
a level, all queries relevant to the current partition must be �rst
evaluated. Algorithm 4 illustrates the pseudocode of the strategy.
As the key di�erence to Algorithm 3, the partition-based strat-
egy introduces a new for-loop to iterate over all partitions on
current level ✓ , in Line 5. Notice how Algorithm 3 iterates over
each query in batch Q for current level ✓ , while Algorithm 4 iter-
ates over all relevant queries in the batch Q (Line 6) for current
partition 8 , i.e., all queries whose range overlaps with 8 , on the
current level. These relevant queries are then executed similar to
Lines 7–21 in Algorihtm 1.

The fourth row in Table 1 shows the access pattern for the
partition-based strategy. If we compare this pattern to the level-
based, we observe that when processing the bottom level of the
index, the partition-based strategy will �rst �nish with partition

ALGORITHM 4: Partition-based strategy
Input :HINT index H, batch of queries Q
Output : set of all overlapping intervals, for each @ 2 Q

1 foreach query @ 2 Q do ù Initialization

2 2><?5 8ABC [@ ]  TRUE;
3 2><?;0BC [@ ]  TRUE;

4 foreach level ✓ =< to 0 do ù bottom-up fashion

5 foreach partition 8 in level ✓ do
6 foreach relevant query @ 2 Q to partition 8 do
7 5  ?A4 5 8G (✓,@.BC ) ; ù first overlapping partition

8 ;  ?A4 5 8G (✓,@.4=3 ) ; ù last overlapping partition

...
Lines 7-21 in Algorithm 1
...

24 foreach @ 2 Q do
25 if 5 mod 2 = 0 then ù last bit of 5 is 0

26 2><?5 8ABC [@ ]  FALSE;

27 if ; mod 2 = 1 then ù last bit of ; is 1

28 2><?;0BC [@ ]  FALSE;

%4,4 for both queries @1 and @3, then access %4,5, for the same
queries and �nally, move on to partition %4,10. Note that despite
applying a partition-based evaluation at each level, the contents
of %4,7, %4,8, %4,9 and %3,4 will be never scanned as no query
overlaps with them.

Last, we elaborate on Line 6 of Algorithm 4 and the fast com-
putation of the relevant queries in Q for current partition 8 . A
straightforward approach for this purpose would compare every
query in Q to partition 8 , incurring extra computational costs. In-
stead, we rely on the cheap bitwise operations, used to determine
the �rst and the last relevant partitions of a query. Speci�cally,
we de�ne for every partition 8 , a range of relevant queries; for
this purpose, we require the queries to be examined in increasing
order of their start endpoint. The range of 8’s relevant queries
starts from the �rst query @ for which ?A4 5 8G (✓,@.BC) = 8 , to the
last query with ?A4 5 8G (✓,@.4=3) = 8 .

4 EXPERIMENTAL ANALYSIS
Finally, we present our experimental analysis. We implemented
all strategies in C++, compiled using gcc (v4.8.5) with �ags -O3,
-mavx and -march=native activated. 4 Our experiments ran on
an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 384GBs of
RAM, running CentOS Linux.

4Source code available in https://github.com/pbour/batch_hint.
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Setup
Hardware

• Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz with 384 GBs of RAM running CentOS Linux

Software

• All strategies implemented in C++, compiled with -O3, -mavx and -march=native flags

• HINT variant with subdivisions, sorting, skewness & sparsity and cache misses optimizations

Datasets

• BOOKS: periods of time book lent in Aarhus city libraries in 2013
• WEBKIT: periods of time file unchanged in git repository from 2001 to 2016

• TAXIS: period of taxi trips in New York City in 2013

• GREEND: power usage from households in Austria and Italy from 2010 to 2014

• Synthetic: interval duration follows exponential distribution, uniformly distributed starts

Experiments

• Total execution time of query batch

• Vary batch size (# queries) and query extent
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Real datasets
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Figure 3: Comparison: real datasets
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Figure 4: Comparison: synthetic datasets

performance of all strategies improves. Similarly, when increas-
ing f the intervals are more widespread, meaning that the queries
are expected to retrieve fewer results, and the query cost drops
accordingly.

Lastly, we study the applicability of the partition-based strat-
egy to an alternative interval index. Table 5 shows that 1D-grid
bene�ts from a partition-based batch processing but its perfor-
mance still remains typically an order of magnitude inferior (in
3 outs of 4 datasets) to the partition-based HINT; This result is
in line with the single-query case in [10, 11].

Table 4: Impact of computation sharing - lower numbers
better; default query extent 0.1% and 10K query batch

strategy BOOKS WEBKIT TAXIS GREEND
Query-based with sorting 85% 86% 51% 53%
Level-based with sorting 78% 81% 49% 54%
Partition-based with sorting 67% 71% 46% 48%

Table 5: Applicability of partition-based strategy, total time
[secs]; default query extent 0.1% and 10K query batch

strategy BOOKS WEBKIT TAXIS GREEND
1D-grid query-based 2.336 2.565 4.398 1.231

1D-grid partition-based with sorting 1.566 1.627 3.629 0.679
HINT partition-based with sorting 0.223 0.226 0.337 0.201

5 CONCLUSIONS
We studied the batch processing of selection queries on intervals.
For this purpose, we built upon the state-of-the-art main-memory
index on intervals, HINT. Under its current setup, HINT can only
employ a query-based evaluation strategy where every query in
the given batch is computed independently to the rest. Such a
strategy however, is cache-agnostic and prone to cache misses
while traversing the index. Instead, we proposed the level-based
and partition-based strategies, which both operate in per-level
fashion, i.e., they �rst evaluate all queries for a level of the index
before moving to the next. Partition-based strategy in particular,
proceeds to the next partition on a level after all queries relevant
to the current one are computed. Our experiments showed that
both strategies always outperform the query-based baseline, and
that the partition-based strategy is overall the most e�cient. In
the future, we plan to investigate the parallel processing of query
batches in multi-core CPUs and under a distributed setting.
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To sum up…

Conclusions
• Studied batch processing for selection queries on intervals
• Proposed two processing strategies on top of state-of-the-art HINT

– Operate on a per-level basis
– Improve locality by eliminating jumps on HINT

Future work
• Investigate how to share and save computations
• Parellel batch processing
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Thank you!
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Questions
?

To download  the source code and the datasets used, visit
https://github.com/pbour/batch_hint
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