Mining User Navigation Patterns for Personalizing Topic Directories

Theodore Dalamagas, Panagiotis Bouros, Theodore Galanis, Magdalini Eirinaki and Timos Sellis

Panagiotis Bouros
Knowledge and Database Systems Lab
School of Electrical and Computer Engineering
National Technical University of Athens, Greece
Outline

1 Introduction

2 Modelling topic directories

3 Mining tasks

4 Personalization tasks

5 Evaluation

6 Conclusion
Introduction

- Topic directories, popular means of organizing web resources
 - Hierarchical organization of thematic categories
- As search “tools”
 - Narrowing search from broad topics to specific ones, e.g. Arts to Classical Studies
- Support keyword search
Introduction

- Topic directories, popular means of organizing web resources
 - **Hierarchical organization** of thematic categories
- As search “tools”
 - **Narrowing search** from broad topics to specific ones, e.g. Arts to Classical Studies
 - **Support** keyword search
- Need for **personalization**
 - **Huge amount** of web resources
 - **Growing diversity** of web data sources
 - **Heterogeneity** of user communities
Introduction

- Topic directories, popular means of organizing web resources
 - Hierarchical organization of thematic categories
- As search “tools”
 - Narrowing search from broad topics to specific ones, e.g. Arts to Classical Studies
 - Support keyword search
- Need for personalization
 - Huge amount of web resources
 - Growing diversity of web data sources
 - Heterogeneity of user communities
- Personalizing topic directories
 - Provide a “view” of topic directory tailored to user needs
 - Bypass topics not tailored to user needs
Introduction

- Topic directories, popular means of organizing web resources
 - Hierarchical organization of thematic categories
- As search “tools”
 - Narrowing search from broad topics to specific ones, e.g. Arts to Classical_Studies
 - Support keyword search
- Need for personalization
 - Huge amount of web resources
 - Growing diversity of web data sources
 - Heterogeneity of user communities
- Personalizing topic directories
 - Provide a “view” of topic directory tailored to user needs
 - Bypass topics not tailored to user needs
- Provide direct link from Arts to Latin for users interested in Latin
Contribution in brief

- Methods to personalize topic directories
 - Provide topic directory views
 - Views are based on users navigation history - behaviour
Contribution in brief

- Methods to personalize topic directories
 - Provide topic directory views
 - Views are based on users navigation history - behaviour
- Personalization
 - Involves adding new links called shortcuts in the directory
 - Offline (static shortcuts) - presented to groups of users with similar navigation behaviour
 - Online (dynamic shortcuts) - presented to each individual user
 - Shortcuts help users to easily reach topics tailored to their needs, while bypass others
 - Arts→Latin
 - Personalization is based on a set of mining tasks
 - e.g., identifying interest groups, users with certain type of behaviour, etc. (see later slides)
Contribution in brief

- Methods to **personalize** topic directories
 - Provide topic directory **views**
 - Views are based on users navigation history - **behaviour**
- **Personalization**
 - Involves adding new **links** called shortcuts in the directory
 - **Offline** (static shortcuts) - presented to **groups of users** with similar navigation behaviour
 - **Online** (dynamic shortcuts) - presented to **each individual user**
 - Shortcuts help users to **easily reach** topics tailored to their **needs**, while **bypass** others
 - Arts→Latin
- Personalization is based on a set of **mining tasks**
 - e.g., identifying interest groups, users with certain type of behaviour, etc. (see later slides)
- Experimental evaluation of both mining and personalization tasks
Outline

1. Introduction
2. Modelling topic directories
3. Mining tasks
4. Personalization tasks
5. Evaluation
6. Conclusion
Modelling topic directories

Topic directory

- **Hierarchical** organization of thematic categories
- Categories contain **resources**, i.e. links to other pages
- **Subcategories** narrow content of broad categories
- **Related** categories contain similar resources
- Directory graph
Modelling topic directories

Topic directory

- **Hierarchical** organization of thematic categories
- Categories contain **resources**, i.e. links to other pages
- **Subcategories** narrow content of broad categories
- **Related** categories contain similar resources
- Directory graph

Example
Modelling topic directories

Topic directory

- **Hierarchical** organization of thematic categories
- Categories contain **resources**, i.e. links to other pages
- **Subcategories** narrow content of broad categories
- **Related** categories contain similar resources
- Directory graph

Navigation pattern

- **Sequence** of categories during session
- Navigation **behaviour** of users for reaching more than one topic
- **Multiple occurrences** of same categories, i.e. back and forth

Example

\{Top, Arts, Classical_Studies, Topics, Classical_Studies, Epigraphy, Latin\}
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Modelling topic directories</th>
<th>Mining tasks</th>
<th>Personalization tasks</th>
<th>Evaluation</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Modelling topic directories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mining tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Personalization tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of mining tasks

- **Identifying interest groups**
 - Users with similar navigation behaviour - interests
 - Clustering user navigation patterns
 - Navigation patterns similarity
Overview of mining tasks

- **Identifying interest groups**
 - Users with similar navigation behaviour - interests
 - *Clustering* user navigation patterns
 - Navigation patterns *similarity*

- **Identifying indecisive users**
 - “Back and forth” to same categories
Overview of mining tasks

- **Identifying interest groups**
 - Users with similar navigation behaviour - interests
 - Clustering user navigation patterns
 - Navigation patterns similarity

- **Identifying indecisive users**
 - "Back and forth" to same categories

- **Mining (L-)popular categories & sequential navigation (L-)subpatterns**
 - Popular categories, i.e., frequently visited
 - (L-)popular categories, i.e., contain frequently selected resources
 - Sequential navigation (L-)subpatterns, i.e., frequent sequences of (L-)popular categories
Identifying interest groups

- Users sharing similar navigation behaviour and search interests
- Searching for similar information in a similar way
Identifying interest groups

- Users sharing similar navigation behaviour and search interests
 - Searching for similar information in a similar way
- Interest groups construction
 - Exploit K-means clustering algorithm
 - Navigation patterns similarity
 - Ratio of the number of common categories (all their occurrences) to the total number of distinct categories
 - Example: navigation patterns
 \[P_1 = \{ \text{Top, Arts, Classical studies, Epigraphy, Latin, Epigraphy, Latin} \} \] and
 \[P_2 = \{ \text{Top, Arts, Classical studies, Rome, Latin} \} \]
 4 common categories: Top (×2), Arts (×2), Classical Studies (×2), Latin (×3)
 \[S = \frac{9}{12} = 0.75 \]
Identifying interest groups

• Users sharing similar navigation behaviour and search interests
 • Searching for similar information in a similar way

• Interest groups construction
 • Exploit K-means clustering algorithm
 • Navigation patterns similarity
 • Ratio of the number of common categories (all their occurrences) to the total number of distinct categories
 • Example: navigation patterns
 $P_1 = \{\text{Top, Arts, Classical studies, Epigraphy, Latin, Epigraphy, Latin}\}$ and
 $P_2 = \{\text{Top, Arts, Classical studies, Rome, Latin}\}$
 4 common categories: Top ($\times 2$), Arts ($\times 2$), Classical Studies ($\times 2$), Latin ($\times 3$)
 $S = 9/12 = 0.75$

• Interest group = users whose navigation patterns in the same cluster
• Each navigation pattern belongs to one cluster
• User may belong to more than one interest groups
Identifying interest groups (cont’d)

Example

<table>
<thead>
<tr>
<th>navigation patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Top, Arts, Photography, Arts, Music, Dance}</td>
</tr>
<tr>
<td>{Top, Arts, Photography, Arts, Music, DJs}</td>
</tr>
<tr>
<td>{Top, Health, Medicine, Informatics, Journals and Publications}</td>
</tr>
<tr>
<td>{Top, Arts, Dance, Tango}</td>
</tr>
<tr>
<td>{Top, Computers, Information Technology, Conferences}</td>
</tr>
<tr>
<td>{Top, Computers, Computer Science, Publications, Bibliographies}</td>
</tr>
</tbody>
</table>

Construct 4 interest groups (clusters)

1. {Top, Arts, Photography, Arts, Music, Arts, Dance} and {Top, Arts, Dance, Tango}
2. {Top, Arts, Photography, Arts, Music, DJs}
3. {Top, Health, Medicine, Informatics, Journals and Publications}
4. {Top, Computers, Information Technology, Conferences} and {Top, Computers, Computer Science, Publications, Bibliographies}
Identifying indecisive users

Indecisive user

- Many "back and forth" visits to same categories
 - e.g. \{rock, 80s, rock, 80s, rock, 60s, rock, 60s\}
- This is due to:
 - Not knowing exactly what to search for in advance
 - Organization of categories different from user’s intuitive categorization
 - Poor organization of topic sub-directories, or inconsistent category labels
Identifying indecisive users

Indecisive user

- Many "back and forth" visits to same categories
 - e.g. \{rock, 80s, rock, 80s, rock, 60s, rock, 60s\}
- This is due to:
 - Not knowing exactly what to search for in advance
 - Organization of categories different from user’s intuitive categorization
 - Poor organization of topic sub-directories, or inconsistent category labels

B&F actions/chains

- Record B&F actions/chains to detect indecisive users
- For each navigation pattern check:
 - If exists sequence of categories \{N_1, N_2, ..., N_k\} appearing twice
 - If between two occurrences, exists backwards action \{N_{k-1}, ..., N_2\}
- B&F action = \{N_1, N_2, ..., N_k\}
- B&F chain = \{N_1, N_2, ..., N_k, N_{k-1}, ..., N_2, N_1, N_2, ..., N_k\}
Identifying indecisive users (cont’d)

- Navigation pattern:
 \{Top, Music, Easy_Listening, Music, Top, Music, Easy_Listening, Lounge\}
Identifying indecisive users (cont’d)

- Navigation pattern:
 \{Top, Music, Easy_Listening, Music, Top, Music, Easy_Listening, Lounge\}

- B&F chain: \{Top, Music, Easy_Listening, Music, Top, Music, Easy_Listening\}
Mining (L-)popular categories & sequential navigation (L-)subpatterns

Two types of popular categories

- Popular: topics of great interest (i.e., frequently visited)
- L-popular: contain popular (i.e., frequently selected) resources
- Note that L-popular categories are not necessarily popular and vice versa
Mining (L-)popular categories & sequential navigation (L-)subpatterns

Two types of popular categories

- Popular: topics of **great interest** (i.e., frequently visited)
- L-popular: contain **popular** (i.e., frequently selected) **resources**
- Note that L-popular categories are **not necessarily popular** and vice versa

Sequential navigation (L-)subpatterns

- Frequent **sequences** of (L-)popular categories (i.e., **frequent transitions** (not necessarily contiguous) among (L-)popular categories)
- Not interested in identifying **association rules**
 - Because of the **inherent order** introduced by **hierarchical** organization of categories
Mining (L-)popular categories & sequential navigation (L-)subpatterns

Two types of popular categories

- Popular: topics of great interest (i.e., frequently visited)
- L-popular: contain popular (i.e., frequently selected) resources
- Note that L-popular categories are not necessarily popular and vice versa

Sequential navigation (L-)subpatterns

- Frequent sequences of (L-)popular categories (i.e., frequent transitions (not necessarily contiguous) among (L-)popular categories)
- Not interested in identifying association rules
 - Because of the inherent order introduced by hierarchical organization of categories

Identifying sequential navigation (L-)subpatterns

- Trie-based implementation [Bodon05] of Apriori [AS94] for mining frequent itemsequences
- Support: probability of visiting categories in the order specified in (L-)subpattern
Outline

1. Introduction
2. Modelling topic directories
3. Mining tasks
4. Personalization tasks
5. Evaluation
6. Conclusion
Overview of personalization tasks

- Creation of shortcuts $A \rightarrow B$, i.e. direct link from A to B
 - Alternative ways of navigating directory
 - Help users to easily reach topics tailored to their needs, while bypass others
 - Directed edge from A to B in the directory graph
- Two ways of creating shortcuts
Overview of personalization tasks

- **Creation of shortcuts** $A \rightarrow B$, i.e. direct link from A to B
 - Alternative ways of navigating directory
 - Help users to *easily reach* topics tailored to their needs, while *bypass* others
 - Directed edge from A to B in the directory graph
- **Two ways of creating shortcuts**
 - Offline
 - Based on identifying frequent B&F chains and frequent sequential navigation (L-)subpatterns
 - Consider navigation patterns of each interest group
 - For each *interest group*, create *static* shortcuts
 - Present static shortcuts to *all members* of each group
Overview of personalization tasks

- Creation of shortcuts $A \rightarrow B$, i.e. direct link from A to B
 - Alternative ways of navigating directory
 - Help users to easily reach topics tailored to their needs, while bypass others
 - Directed edge from A to B in the directory graph
- Two ways of creating shortcuts
 - Offline
 - Based on identifying frequent B&F chains and frequent sequential navigation (L-)subpatterns
 - Consider navigation patterns of each interest group
 - For each interest group, create static shortcuts
 - Present static shortcuts to all members of each group
 - Online
 - Based on identifying frequent sequential navigation (L-)subpatterns
 - Consider not only navigation patterns of “user’s” interest groups
 - But also last categories visited in current user session
 - For each user, create dynamic shortcuts in real time
 - Present dynamic shortcuts to each individual user
Offline - Personalization based on frequent B&F chains

Shortcut creation

- Frequent B&F chains indicate **difficulties** for users in browsing
- This is due to:
 - **Not knowing exactly** what to search for in advance
 - Organization of categories **different** from user’s intuitive categorization
 - **Poor organization** of topic sub-directories, or inconsistent category labels
- **Bypass** categories that confuse users or not tailored to their needs
- For each frequent B&F chain
 - \(A = \) first category of B&F chain
 - \(B = \) next category (in navigation pattern) after last one in B&F chain
 - Create shortcut \(A \rightarrow B \)
Offline - Personalization based on frequent B&F chains

Shortcut creation

- Frequent B&F chains indicate difficulties for users in browsing
- This is due to:
 - Not knowing exactly what to search for in advance
 - Organization of categories different from user’s intuitive categorization
 - Poor organization of topic sub-directories, or inconsistent category labels
- Bypass categories that confuse users or not tailored to their needs
- For each frequent B&F chain
 - \(A \) = first category of B&F chain
 - \(B \) = next category (in navigation pattern) after last one in B&F chain
- Create shortcut \(A \rightarrow B \)

Example

- Navigation pattern:
 \{Top, Music, Easy_Listening, Music, Easy_Listening, Lounge\}
Offline - Personalization based on frequent B&F chains

Shortcut creation

- Frequent B&F chains indicate difficulties for users in browsing
- This is due to:
 - Not knowing exactly what to search for in advance
 - Organization of categories different from user’s intuitive categorization
 - Poor organization of topic sub-directories, or inconsistent category labels
- Bypass categories that confuse users or not tailored to their needs
- For each frequent B&F chain
 - A = first category of B&F chain
 - B = next category (in navigation pattern) after last one in B&F chain
 - Create shortcut \(A \to B \)

Example

- B&F chain:
 \{Music, Easy_Listening, Music, Easy_Listening\}
 Offline - Personalization based on frequent B&F chains

Shortcut creation

- Frequent B&F chains indicate **difficulties** for users in browsing
- This is due to:
 - Not knowing exactly what to search for in advance
 - Organization of categories different from user’s intuitive categorization
 - Poor organization of topic sub-directories, or inconsistent category labels
- Bypass categories that confuse users or not tailored to their needs
- For each frequent B&F chain
 - $A =$ first category of B&F chain
 - $B =$ next category (in navigation pattern) after last one in B&F chain
 - Create shortcut $A \rightarrow B$

Example

- Assume B&F chain: \{Music, Easy Listening, Music, Easy Listening\} is frequent
- Create shortcut **Music → Lounge**
Offline - Personalization based on frequent sequential navigation (L-)subpatterns

Shortcut creation

- **Frequent** sequential navigation (L-)subpatterns indicate **popular** transitions between (L-)popular categories
- Provide **direct access** to popular topics and resources
- For each interest group and a given support threshold
 - Identify **2-sequential** navigation (L-)subpatterns \{X, Y\}
 - Create shortcut X→Y
Offline - Personalization based on frequent sequential navigation (L-)subpatterns

Shortcut creation

- **Frequent** sequential navigation (L-)subpatterns indicate popular transitions between (L-)popular categories
- Provide **direct access** to popular topics and resources
- For each interest group and a given support threshold
 - Identify **2-sequential** navigation (L-)subpatterns \{X,Y\}
 - Create shortcut \(X \rightarrow Y\)

Example

- **Frequent subpatterns:** \{Arts, Epigraphy\} and \{Epigraphy, Latin\}
- **Candidate shortcuts** Arts→Epigraph, Epigraphy→Latin
Offline - Personalization based on frequent sequential navigation (L-)subpatterns

Shortcut creation

- **Frequent** sequential navigation (L-)subpatterns indicate **popular transitions** between (L-)popular categories
- Provide **direct access** to popular topics and resources
- For each interest group and a given support threshold
 - Identify **2-sequential** navigation (L-)subpatterns \(\{X,Y\} \)
 - Create shortcut \(X \rightarrow Y \)

Example

- Frequent subpatterns: \{Arts, Epigraphy\} and \{Epigraphy, Latin\}
- Create shortcut \(\text{Arts} \rightarrow \text{Epigraphy} \)
Online - Personalization based on frequent sequential navigation (L-)subpatterns

Active navigation window

- Retain two windows for each “user’s” interest group
- Contains last $|w|$ (L-)popular categories visited

Shortcut creation

- Based on [MDL+02], but extended with multiple windows, interest groups
- For each interest group identify and store offline frequent sequential navigation (L-)subpatterns of size $|w| + 1$
- Match window with stored sequential navigation (L-)subpatterns
- For each matched frequent sequential navigation (L-)subpattern
 - $A =$ last category of window
 - $B =$ last category of (L-)subpattern
 - Create shortcut $A \rightarrow B$, if its confidence is over given threshold
 - Confidence: conditional probability that user visits B provided that already visited all categories of window
Online - Personalization based on frequent sequential navigation (L-)subpatterns (cont’d)

Example

• Frequent sequential navigation subpatterns:
 \(p_1 = \{\text{Arts, Classical Studies}\} \), support \(\sigma(p_1) = 0.8 \)
 \(p_2 = \{\text{Classical Studies, Latin}\} \), support \(\sigma(p_2) = 0.7 \)
 \(p_3 = \{\text{Arts, Classical Studies, Latin}\} \), support \(\sigma(p_3) = 0.6 \)
 \(\sigma(p_3) = 0.6 \)

• Assume \(|w| = 2 \), \(w = \{\text{Arts, Classical Studies}\} \)

• Match \(w \) only to \(p_3 \) (\(|p_3| = |w| + 1 \), i.e., length acceptable)

• Shortcut \(\text{Classical Studies} \to \text{Latin} \)

• \(\alpha(\text{Classical Studies} \to \text{Latin}) = \frac{\sigma(p_3)}{\sigma(w)} = \frac{0.6}{0.8} = 0.75 \)
Outline

1. Introduction
2. Modelling topic directories
3. Mining tasks
4. Personalization tasks
5. Evaluation
6. Conclusion
Evaluation method

Mining tasks - Precision and recall of interest groups

- 12 users
- 4 topics: video games, William Shakespeare, basketball, food and cooking
- 10 interest groups (clusters) created
- Interest groups precision and recall
Evaluation method

Mining tasks - Precision and recall of interest groups

- 12 users
- 4 topics: video games, William Shakespeare, basketball, food and cooking
- 10 interest groups (clusters) created
- Interest groups precision and recall

Offline personalization - Hit ration of static shortcuts

- Creation of static shortcuts
- Second period of user browsing
- Shortcut \(A \rightarrow B \) hit ratio: number of times used to total times users moved from \(A \) to \(B \)
Evaluation method

Mining tasks - Precision and recall of interest groups

- 12 users
- 4 topics: video games, William Shakespeare, basketball, food and cooking
- 10 interest groups (clusters) created
- Interest groups precision and recall

Offline personalization - Hit ratio of static shortcuts

- Creation of static shortcuts
- Second period of user browsing
- Shortcut $A \rightarrow B$ hit ratio: number of times used to total times users moved from A to B

Online personalization - Precision of dynamic shortcuts

- Depth-first crawling at Poetry, World_Literature and Drama subtrees of Top/Arts/Literature
- Break navigation patterns
 - 70% generating dynamic shortcuts, 30% evaluation
- Shortcut $A \rightarrow B$ precision: number of categories B contained in 30% to total number of shortcuts
Online personalization - Precision of dynamic shortcuts (cont’d)

- Precision goes up as $|w|$ increases
 - Larger window provides a more representative part of user navigation behaviour

- Precision goes up as confidence threshold increases
 - Increased confidence for $A \rightarrow B$ means high probability that B in 30% part of navigation patterns

- Precision goes up as support threshold increases

Figure: Precision of the personalization task varying the confidence/support threshold for several values of $|w|$.
Conclusion - Future work

Conclusion

- Methodology for personalizing topic directories according to users navigation behaviour
 - Set of mining tasks: interest groups, indecisive user behaviour, frequent navigation (L-)subpatterns
 - Set of personalization tasks: shortcuts creation
- Experiments for evaluating mining and personalization tasks

Future work

- Enhance personalization tasks
 - User-driven profiles
 - Semantically rich topic directories, e.g. IS_A, PART_OF relationships
- Extend evaluation of online personalization - study real user navigation patterns
Thank you

http://casablanca.dblab.ece.ntua.gr/p-miner
Related work

- Discovering sequences of visits
 - Data mining techniques
 - Probabilistic models
 - Most of them, do not perform personalization
 - The rest, do not distinguish between different users and groups of users

- Personalization in Digital Libraries and Web portals
 - The structure of these Web sites is similar to topic directories
 - Based on explicit user input
 - Provide simplified search functionalities and alerts
 - Based on implicit user input
 - They identify the preferences of each individual user

- Collaborative filtering-based methods
 - Also identify users with common interests and behaviour
 - Model user profiles as vectors
 - On the contrary, we use clustering to create interest groups
 - Also exploit sequential pattern mining to generate recommendations
System architecture