

A Study on ETA Prediction using Machine Learning and Recovered Routes

Arjanit Arifi Panagiotis Bouros

JGU

Theodoros Chondrogiannis

Introduction

ETA Prediction

Estimated Time of Arrival

Albert-Schweitzer-ott Jakob-Welder-Weg $\mathbf{\Lambda}$ toward Johannes-von-M Q üller-Weg Then 🔶 **4**) → Johannes-von-Müller-Weg -km/h Jakob-Welder-Weg 10 min 🔊 *7 X 3.3 km • 18:19

Why is an accurate ETA prediction important?

Machine learning models required for accurate ETA prediction using historical data

Problem

Limited availability of large training datasets with full trajectory/trip data

• Train ML models with trips that only have start/destination points?

Use **Route Recovery** to recover the route the driver has most probably taken

• Based on the start/destination point and travel time

History Oblivious Route Recovery on Road Networks (Chondrogiannis et al., SIGSPATIAL'22)

Main Objective: Train ML models using recovered routes instead of full trajectories.

Implementation of two workflows, which consist of training ETA models with (1) original trajectories and (2) recovered routes

ML models with different learning algorithms (statistical, ensemble and deep learning methods)

Use of single route-recovery methods proposed by in previous work

Performance evaluation and comparison between ML models trained with original trajectories and recovered routes

➡ Statistical Models

• Historical data based real time prediction of vehicle arrival time (Maiti et al., ITSC'14)

ETA: 15:03

⇔

Other factors? (weather, holiday...)

Background

ML Models for ETA

➡ ETA models increasingly powered by machine learning

➡ Ensemble Models

ETA Prediction with Random Forest and Gradient Boost Regression (Gupta et al. BDCloud'18)

f (Weekday = Weekend, Time of day = 10 am, Temperature = -1 °C) = (21,2 + 15,5 + 32,5)/3 = 23,1 Min

Background

ML Models for ETA

ETA models increasingly powered by machine learning

- ➡ Deep Learning Models
 - DeepTTE (Wang et al., AAAI'18)
 - Combination of:
 - Geo-Convolutional Neural Network (2D-CNN, for spatial dependencies)
 - Recurrent Neural Network (RNN, for temporal dependencies)
 - Attribute Component (for other features such as DriverID, Weather...)

⇒ Data Preparation

Problem

- GPS Points are often noisy and many trajectories may be short and not very useful
- Some approaches require start and destination
 Node IDs for route recovery

Use **map matching** to assign GPS points to the road network (and store the path's node IDs)

Main Concept

➡ Input and Preprocessing

➡ Route Recovery

➡ Single Route Recovery

Fastest Paths (FP)

Shortest Paths (SP)

Compute **shortest/fastest** path between a *s* and *t*

Minimum Turns (Min_T)

Compute path with minimum number of turns

Minimum Hierarchical Peaks (Min_HP)

Compute path with **minimum** number of hierarchical peaks

➡ Transformation

Problem

Recovered routes have node IDs but lack other features such as travel time

Estimate/compute relevant features by extracting them from the road network

➡ Resampling

Problems

- Sequence of nodes and coordinates after Route Recovery too dense
- Some methods require sample coordinates at a fixed rate
- Resample Routes by applying a distance gap between each coordinate (e.g. 100m), resulting in a deletion of intermediate points

Main Concept

2nd Workflow

➡ Resampling

- Used-defined sampling rate
- Considering edge geometry
 - .. or straight line connection

Case Study

Discussion and Conclusions

Problem

Underestimation of travel time leads to a high error of ML models trained with recovered routes

Reexamine **transformation process** of recovered routes

- Solely using segment length and speed limit for calculating travel time of recovered routes
- In practice: suboptimal traffic conditions (congestion, traffic lights, etc.)
- Accuracy of single route recovery methods is not enough
- Problem: Fitting ML models to optimal traffic conditions!

Future Work

Training ETA models with Recovered Routes from Region Recovery / Group-Based Region Recovery

Use **sparse trajectories** as ML / RR input

Apply same approach to traffic prediction and other problems

::

Transformed Routes

2

3

Resampling

Resampled Routes

ML-ready

Thank you!