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Abstract We study the problem of temporal database

indexing, i.e., indexing versions of a database table in

an evolving database. Although modern machines in-

clude large memory chips, data volumes quickly ex-

ceed resources, making it infeasible to keep the entire

history in memory. Therefore we require temporal in-

dices that optimize main memory usage while remain-

ing scalable as the history grows. We depart from

the classic indexing approach, where all data versions

are indexed in a single data structure, and propose

LIT, a hybrid index that decouples the management

of the current and past states of the indexed column.

LIT includes optimized indexing modules for current

(i.e., live) and past (i.e., dead) records, supporting ef-

ficient queries and updates. Furthermore, our extended

approach LIT+handles record versions in memory us-

ing LIT bounded by a memory budget, while man-

aging older versions (fossils) that exceed the budget

on disk. We show that LIT outperforms state-of-the-

art solutions by orders of magnitude while using space

linearly proportional to the number of indexed record

versions, making it suitable for main-memory temporal
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data management. In addition, we also show that LIT+

efficiently indexes long database histories on disk while

maintaining scalability and query performance.
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1 Introduction

Temporal data management has been studied exten-

sively for at least four decades [10, 11, 24, 30, 51]. Tem-

poral databases track the database evolution for the

support of time-travel queries: given a database query

and a past time moment (or time interval), process the

query on the database instance(s) that was (were) valid

then. Temporal and multi-version data management re-

gained interest recently [7, 9, 12, 15, 20, 25, 28, 38, 44,

58], due to the increase of cheap storage that makes it

often possible to track the versions of a database in the

main memory of a commodity machine.

As an example, consider a database table T , storing

information about company employees. The table has

three attributes: ID, Name, and Salary. As the database

evolves over time, records are inserted, deleted, or exist-

ing attribute values are updated. Figure 1 shows some

versions of T , where, at time t0, T is initialized to in-

clude two records; at time t1, a new record (with ID=3)

is inserted to T ; at time t2, the Salary value of record 2

is updated; and at time t3, record 1 is deleted and record

2 is updated. T evolves as update events arrive; the

stream (time-sequence) of update events is also shown

in the figure (bottom-left). Insertions (deletions) are

modeled by events of type start (end); each update (i.e.,

value change) is modeled by a deletion immediately fol-

lowed by an insertion. Finally, the figure (bottom-right)

shows the validity intervals of the records and their val-
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ID Name Salary

1 Smith 50K

2 Black 30K

ID Name Salary

1 Smith 50K

2 Black 30K

3 James 40K

ID Name Salary

1 Smith 50K

2 Black 35K

3 James 40K

ID Name Salary

2 Black 35K

3 James 45K

after t0 after t1 after t2 after t3

ΕventID Time r.ID r.Salary Event

0 t0 1 50K start

1 t0 2 30K start

2 t1 3 40K start

3 t2 2 30K end

4 t2 2 35K start

5 t3 1 50K end

6 t3 3 40K end

7 t3 3 45K start

Events sequence

Salary

25K

50K

t0 t1 t2 t3

1 (Smith)

2 (Black)

3 (James)
3 (James)

tnow

2 (Black)

tq1 tq2.s tq2.etq0

Geometric representation

Fig. 1 Example of a time-evolving table

ues in the Salary attribute, as flat line segments. The

current time is denoted by tnow.

We study the problem of indexing an evolving

database table T to support time-travel queries. We

first focus on indexing for pure time travel queries,

where the objective is to retrieve the record versions

that were valid at a given timepoint or timerange in the

past. In our running example (Figure 1), a pure time-

point query q0 is “find all records in T , which were valid

at time tq0” and the answer records are (1, Smith, 50K)

and (2, Black, 30K). Then, we study how our indexing

scheme can be extended to temporally index T with re-

spect to a specific attribute T.A, for range time travel

queries, that retrieve record versions r in T which were

valid at a given timepoint/timerange and their r.A sat-

isfies a range query predicate. Such a range-timepoint

query q1 is: “find all records in T , which were valid at

time tq1 and have Salary at most 32K.” Query q1 is ge-

ometrically represented by the vertical line segment at

time tq1 and retrieves the record versions whose times-

pan (horizontal line segment) is crossed by the vertical

line segment at tq1, i.e., record (2, Black, 30K). An-

other example is range-timerange query q2: “find all

records in T , which were valid anytime between tq2.s
and tq2.e and have Salary between 25K and 43K,” mod-

eled by the rectangle in Figure 1. Again, the query

results are the horizontal segments that intersect the

rectangle, namely (2, Black, 30K) valid in [t0, t2), (2,

Black, 35K) valid in [t2, tnow), and (3, James, 40K)

valid in [t1, t3). Note that it is important to find the

records and their validity intervals in order to be able

to distinguish between results corresponding to differ-

ent versions of the same record/entity (e.g., Black in the

results of q2). Time-travel queries are included in SQL

extensions [27, 34] and implemented in PostgreSQL1,

1 https://wiki.postgresql.org/wiki/Temporal-Extensions

Oracle Workspace Manager, IBM DB2 [50], Microsoft

SQL Server2, Teradata [1], and MariaDB3.

Previously proposed temporal indices can be clas-

sified to (1) methods for transaction-time and multi-

versioned databases (e.g., MVB-tree [4], Timeline index

[30]), (2) data structures for (time) intervals [6, 8, 17,

22, 33]. Our work belongs to the first category, where

the goal is to support the aforementioned queries, but

also real-time version updates, in a continuously evolv-

ing database. Indices in the second category offer fast

search times, but (1) they do not support effectively

live data versions, i.e., records which are valid now, but

we do not know up to when in the future and (2) are

mainly designed for static intervals in a static domain.

Contributions. We aim at the efficient support of up-

dates in a continuously evolving database, and target

a much better performance in queries compared to the

state-of-the-art access methods for time-evolving data.

Our proposal is LIT, a hybrid index, which indexes

live records (i.e., those valid at tnow), like (2, Black,

35K), by a different data structure compared to dead

records (i.e., those not currently valid), like (2, Black,

30K). Specifically, LIT includes a LiveIndex for the live

records; LiveIndex only needs to index the begin time

of the validity of each live record. For dead records we

use a DeadIndex, which includes their validity intervals

with both starting and ending timepoints. When a tem-

poral record is created, it is added to LiveIndex; when

the record dies (i.e., deleted from the temporal table

T , or updated), it is deleted from LiveIndex and added

to the DeadIndex. Given these operations, LiveIndex

supports fast temporal appends (i.e., add a new live

record at the “temporal” end of the index) and dele-

tions, whereas DeadIndex needs only to support inser-

tions (anywhere in the time domain up to tnow), but

no deletions (since past data versions are never deleted

from a temporal DB). Both LiveIndex and DeadIn-

dex gracefully adapt to the ever-evolving time domain.

We tuned, developed and tested the best implementa-

tions of LiveIndex and DeadIndex, and compared LIT

with in-memory versions of the state-of-the-art tempo-

ral and multi-version indices [4, 30] on mixed workloads

of queries and version updates, showing that LIT is or-

ders of magnitude faster.

LIT was originally presented and evaluated in the

preliminary version of this paper [19]. Although LIT

is appropriate for indexing the brief or recent version

history of a data table, eventually the available mem-

ory might be exhausted, as the indexing requirements

grow with the number of updates. We propose an ex-

2 https://learn.microsoft.com/en-us/sql/relational-
databases/tables/temporal-tables
3 http://mariadb.com/kb/en/system-versioned-tables/

https://wiki.postgresql.org/wiki/Temporal_Extensions
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
http://mariadb.com/kb/en/system-versioned-tables/


Scalable Lighting-fast Temporal Indexing 3

tension to LIT, denoted by LIT+, which periodically

offloads old versions to the disk. LIT+ differentiates

between two types of dead records; those that died be-

fore a designated timestamp tf , which are called fos-

sils, and those that died after tf . Fossils are stored

in a disk-resident component called FossilIndex, free-

ing main memory for LiveIndex and DeadIndex to re-

ceive new entries. Queries that access timestamps be-

fore tf probe all LiveIndex, DeadIndex, and FossilIndex

components, while those referring to recent timestamps

are handled in-memory by LiveIndex and DeadIndex.

Thus, queries over the recent past are processed effi-

ciently in memory, while queries for older versions are

still supported. We show how the three components are

updated as data evolves; LiveIndex and DeadIndex by

individual updates at current time tnow, while FossilIn-

dex, by periodic updates, when the available memory

is exhausted. We investigate different options for main-

taining LIT+. Our study shows that the most effective

strategy combines a partition-aware deletion, tailored

to our best implementation of DeadIndex, and aggre-

gating fossils before inserting them into FossilIndex.

Outline. Section 2 reviews related work. In Section 3,

we define time-travel queries and the data whereon they

apply. Section 4 proposes an extension to the state-of-

the-art interval index [17, 18] to manage live and dead

record versions in an ever-growing time domain. In Sec-

tion 5, we present our novel hybrid index LIT for pure

time-travel queries. Section 6 extends LIT to index an

attribute A of the records besides their temporal va-

lidity intervals, for range time-travel queries. Section 7

extends LIT to incorporate a disk-resident component

for records that died before a designated timestamp.

In Section 8, we discuss topics related to recovery and

consistency. Finally, Section 9 presents our experimen-

tal analysis, while Section 10 concludes the paper.

2 Related Work

In this section, we review related work on (1) index-

ing intervals and (2) indexing data versions in a time-

evolving database; we also briefly present other recent

work on temporal data management.

2.1 Indexing Intervals

Valid-time temporal databases store record versions

which are valid during a well-defined time interval [42].

This interval could refer to the past, the future, or

may start at some time in the past and finish in the

future (e.g., an activated credit card which expires in

the future). The order by which records in a valid-time

database are inserted, deleted, or updated is not neces-

sarily related to the validity time of the records.

Managing valid-time records for time-travel queries

can then be seen as a case of indexing intervals (i.e., one-

dimensional ranges), which is a well-studied problem

[6, 8, 17, 22, 33]. Classic data structures for intervals

include the segment tree [8] and the interval tree [22].

They are both binary search trees, built from a static

set of intervals and designed to answer point queries

(i.e., find the intervals that contain a given value) in

O(log n + K) time, where n is the number of data in-

tervals and K query result size. Their space complexity

is O(n log n) and O(n), respectively. The interval tree

also supports range queries, i.e., find intervals that over-

lap with a query interval (value range) in O(log n+K).

Disk-based extensions were presented in [2, 33].

Data structures for multi-dimensional boxes, such as

the R-tree [5, 26], can also be used for intervals, which

can be considered as 1D boxes. For example, a simple

and dynamic data structure for intervals is the 1D-grid,

which divides the space into a number of disjoint par-

titions. Each interval is assigned to all partitions that

overlap with it. A point (or range) query q is evalu-

ated by accessing the partition(s) intersecting q and

reporting the intervals there after conducting compar-

isons as necessary. Duplicate results can be avoided af-

ter dividing the data in each partition to classes based

on whether they begin inside or before the partition

[17, 39, 54]. Indices which consider both the values and

the durations of the intervals are the period index [6]

and the RD-Index [16]. These are self-adaptive struc-

tures which split the domain into coarse partitions, and

then further divide each partition hierarchically to or-

ganize the contained intervals based on their positions

and durations.

An alternative approach is to map intervals to

2D points [3, 29, 38, 49, 55, 56]. Specifically, each

data interval s = [s.start, s.end) is mapped to point

(s.start, s.end) in the D×D space, where D is the do-

main of the interval endpoints. Figure 2(a) shows inter-

vals as points in this 2D space. Since s.start < s.end for

each interval s, all points lie above the diagonal connect-

ing points (0, 0) and (D,D). Each point or range query

becomes a rectangular range query in the 2D space,

having x- and y-projections [0, q.end] and [q.start,D],

respectively, as shown by the shaded rectangle in Fig-

ure 2(a). To index the 2D points, we can directly use a

spatial data structure [29, 38, 55]. As a different option,

SEB-tree [52] employs a collection of B+-trees.

HINT [17] is the state-of-the-art in-memory index

for intervals. HINT defines a hierarchy of m + 1 lev-

els, such that level ℓ, 0 ≤ ℓ ≤ m uniformly divides the

domain into 2m partitions, as shown in Figure 2(b) for
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end

startq.start q.end

q.start

q.end

(a) 2D mapping [3, 29, 38, 49, 55, 56]

P0,0
P1,0 P1,1

P2,1 P2,2 P2,3P2,0
P3,2 P3,3 P3,4P3,0 P3,1 P3,6 P3,7P3,5

s
q

(b) HINT [17, 18]

Fig. 2 Interval indices

m = 3. Each data interval s is then normalized and dis-

cretized in the [0, 2m − 1] domain, and assigned to the

smallest set of partitions from all levels that cover s.

So, s is assigned to at most 2 partitions per level. The

intervals in each partition are divided into two classes:

those that start before the partition (replicas) and those

that start inside the partition (originals). For instance,

in Figure 2(b), interval s is added to the shaded parti-

tions; in P3,1, s is added to the sub-division PO
3,1, stor-

ing original intervals in P3,1, while in P2,1 and P3,4,

s is stored to the corresponding replica sub-divisions

(PR
2,1 and PR

3,4, respectively). Given a point or a range

query q, at every level ℓ of HINT only the sequence of

partitions that intersect q are accessed. For the query

q in Figure 2(b), the partitions with a solid/bold out-

line will be accessed. In addition, only for the first such

partition in ℓ both originals and replicas in it are consid-

ered, while for the remaining partitions only originals

are considered. Lastly, the number of partitions in the

entire index for which comparisons between data inter-

val endpoints and query endpoints are required is ex-

pected to be at most 4 [17]. Thus, most query results

are reported without performing comparisons, giving

HINT a performance advantage over other methods.

Deficiencies of interval indices. While HINT [17]

is the best performing index, it shares a weakness of

most other interval indexing methods: the domain of

the interval endpoints must be known apriori. If the

data domain grows (i.e., as in a temporal database), the

partitions may have to be updated to cover the new part

of the domain, and interval assignments to partitions

might change to preserve index properties. On the other

hand, the 2D point transformation approach [55] avoids

this issue as a 2D spatial index (e.g., R-tree) can adapt

to a growing domain. Still, the query regions cover a

relatively large part of the mostly sparsely populated

2D space, so this approach is not as efficient as HINT.

More importantly, all methods discussed in this section

are not appropriate for indexing live data versions in

temporal databases, whose end is unknown (i.e., equal

to the ever-changing tnow). Finally, data structures for

intervals are not designed for indexing another attribute

at the same time; i.e., they are not appropriate for the

range time-travel queries discussed in the Introduction.

2.2 Indexing Data Versions

Transaction-time databases [41] manage the evolution

history of a database. In Section 1, we gave an exam-

ple of such a database containing a table T with em-

ployees records. Indexing transaction-time DBs is more

challenging than valid-time DBs, since there are live

records which are valid now, but we do not know their

end-time. These records comprise the current database

state and may be changed or deleted in the future, but

we are not aware of the exact time for this. In contrast,

dead records belong to past states for which we do know

their end-time. Records (2, Black, 30K) and (2, Black,

35K) in Figure 1 are examples of dead and live records,

having validity [t0, t2) and [t2, tnow), respectively.

Previous work on temporally indexing an evolving

DB table extend current-state indices to support search

on all table versions. A representative access method

in this category is the Multiversion B-tree (MVB-tree)

[4], which succinctly captures the values of the indexed

attribute in all versions of records. For a comprehen-

sive survey of early indexing methods for time-evolving

databases see [49]. These indices do not only support

pure time travel queries, but also range time travel

queries based on a search-key attribute A (i.e., from all

records r which were valid at some timestamp or pe-

riod in the past retrieve those for which v1 ≤ A ≤ v2).

To support such queries, they index simultaneously the

temporal versions of the records and their values on

the search key attribute A. These methods focus on

minimizing disk I/O during search; their main-memory

versions are relatively slow in search and updates com-

pared to the interval indices reviewed in Section 2.1.

A more recent index for transaction-time DBs is the

Timeline index [30], which builds upon the Time index

[23] and supports very fast updates. In a nutshell, the

Timeline index is an Events Sequence Table (see Fig-

ure 1) paired with a set of Checkpoint Tables (CT). A

CT at timestamp ti materializes the entire set of active

record-ids at ti. To evaluate a point or range query, the

latest checkpoint before the query is accessed to acti-

vate the records in it, and the Events Sequence Table

(EST) is scanned from thereon until the end time of the
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query to identify the records that are active at or dur-

ing the query. The update cost of the Timeline index is

minimal as a database change simply appends an event

at the end of the EST; still, the rare CT construction

events have significant cost. Query evaluation using the

Timeline index is quite expensive due to the overhead

of scanning the events and updating the set of active

records until the entire query result is retrieved.

In this paper, we revisit the indexing of transaction-

time DB tables (i.e., version data), for pure time-travel

and range time-travel queries. Our approach is a major

departure from previous work which indexes dead and

live versions in the same data structure. Instead, we de-

fine separate data structures for live and dead versions;

in principle, versions that die are transferred from the

first data structure to the second. By decoupling in-

dexing for live and dead versions, we can optimize both

data structures. In Section 7, we show how our proposal

can be extended to handle dead versions on the disk.

2.3 Other related work

Recent work in temporal databases studies the efficient

evaluation of other queries, besides time-travel selec-

tions. Temporal aggregation [31, 40, 45, 53, 57] com-

putes aggregates of valid record versions (e.g., total

project funding) during a query time period (e.g., from

3-23-2021 to 5-15-2023); the output is one value for each

time interval in the query period where the aggregate

does not change. Temporal top-k queries [25, 55] are a

special case of temporal aggregation. A temporal join

[13, 14, 28, 44, 47] finds pairs of record versions (in two

different tables) whose validities temporally overlap and

they agree on the join key attribute. Historical what-if

queries compute the effect that a change in a historical

record value would have to the evolution of the database

[15]. Other recent related work includes the definition

of new temporal semantics [20], system optimizations

in the implementation of temporal and multi-version

databases [9, 38, 58], temporal database benchmarking

[7], and novel temporal integrity constraints [12].

Inspired by [32], learned multi-dimensional indices

[21, 43, 48] are proposed as an alternative to traditional

indexing structures. These methods leverage machine

learning to capture the data distribution, aiming to

build efficient and compact indices. According to [36],

some learned indices outperform traditional ones, es-

pecially for datasets with uniform distributions, and

achieve significant space reductions. However, their con-

struction cost is substantially higher than that of tra-

ditional structures, and provide limited support for dy-

namic operations.

3 Problem Definition

We consider a database table T , updated over time, by

inserting, deleting or updating records. In this work, we

focus on developing indexing for the following types of

time-travel queries [49].

Query 1 (Pure Timeslice/Timerange Query)

Given a query time point q.t or query time interval

[q.tstart, q.tend], retrieve the records in all versions of

T which were valid at q.t or some time during

[q.tstart, q.tend], respectively, together with their

validity intervals.

Query 2 (Range Timeslice/Timerange Query)

Given a query time point q.t or query time interval

[q.tstart, q.tend], an attribute A of T , and a range

[q.Astart, q.Aend], retrieve the records r in all

versions of T which (1) were valid at q.time or some

time during [q.start, q.end], respectively, and (2)

satisfy q.Astart ≤ r.A ≤ q.Aend together with their

validity intervals.

Without loss of generality, we assume query intervals

closed at both ends. In addition, for each change in T an

update event is generated, which may trigger updates

in the indices of T . These update events include: (1) the

insertion of a record to T , (2) the deletion of a record

from T , and (3) the change of one or more attribute

values of a record in T . An event of type (3) can be

modeled as an event of type (1) immediately followed

by an event of type (2). Last, we assume a single non-

temporal attribute A in T for Query 2; in Section 6.3,

we discuss how to handle multiple A attributes.

In a pure-time index that supports Query 1, each

of the above event types affects one or more index en-

tries. Specifically, the insertion of a record r at time

point t inserts a new index entry for r.id having as va-

lidity interval [r.start = t, r.end = tnow), where tnow
models the current time point, which is ever-changing.

The deletion of record r at time t updates the last index

entry for r.id from [r.start, tnow) to [r.start, t). The up-

date of a record r at time point t triggers a deletion of

r at point t, followed by an insertion of the new version

of r with r.start = t.

In an index that supports Query 2, the changes af-

fect the index as described above with the exception

that record updates on attributes other than the in-

dexed attribute r.A have no effect on the index. In other

words, we consider two or more consecutive versions of

r having the same value in r.A as the same version.

As discussed in Section 2.2, there is ample previous

work on temporal indexing for time-evolving database

tables. However, these indices exhibit poor search times
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compared to interval indexing (Section 2.1). In Sec-

tion 4, we extent the state-of-the-art interval index to

support Query 1 over time-evolving databases. LIT, the

main proposal of this paper is first described in Sec-

tion 5 for pure time queries (Query 1) and then ex-

tended in Section 6 for range time queries (Query 2).

4 Time-evolving HINT

A first attempt to define an efficient in-memory index

for time-evolving tables is to convert HINT [17, 18], the

state-of-the-art interval index, to a single data structure

that can handle both live and dead intervals (records).

We call this data structure time-evolving HINT (te-

HINT). A te-HINT for pure time-travel queries (Query

1) extends HINT in two directions. First, it includes

both live and dead records, whereas HINT indexes only

intervals for which the end endpoint is immutable. Sec-

ond, it supports an evolving domain for the interval

endpoints (i.e., an evolving time domain); the original

HINT requires a pre-defined domain. These changes re-

quire structural modifications and new update opera-

tions compared to HINT [17], which are described next.

4.1 Live and dead sub-partitions

The first difference between te-HINT and HINT is the

introduction of live partitions in the former. Recall from

Section 2.1 that in each partition Pℓ,i at level ℓ of HINT,

the intervals are divided into two classes: the set of

originals PO
ℓ,i which start inside the domain range of

Pℓ,i and the set of replicas PR
ℓ,i, which start before the

domain of Pℓ,i. In te-HINT, we further classify each in-

terval s ∈ PO
ℓ,i as live original or dead original, depend-

ing on whether its end time point is known; we denote

the sub-partitions that hold live and dead originals by

POL

ℓ,i and POD

ℓ,i , respectively. Similarly, we maintain sub-

partitions PRL

ℓ,i and PRD

ℓ,i for the replicas of Pℓ,i. Dead

intervals in POD

ℓ,i or PRD

ℓ,i are immutable, which means

that they persist in the partition and cannot move to

other partitions, whereas live intervals can be deleted

or moved to other partitions.

4.2 Handling updates

There are two types of update events over time: either

the creation of a new live interval (as a result of an

insertion/modification to the database), or the finaliza-

tion of an existing live interval (as a result of a dele-

tion/modification to the database).

P0,0
P1,1P1,0

P2,2 P2,3P2,0 P2,1
t0 tnow tH

s2

P0,0
P1,0 P1,1

s1

t0 tnow tH

s2

P0,0
P1,0 P1,1

s1

t0 tnow tH

s3 s3

s2s1
s3

s4

(a) insert s2, s3 (b) delete s2 (c) insert s4

Fig. 3 Example of te-HINT

Insertion events. On an insertion event, i.e., a new

live interval s begins corresponding to a version of a

record r, we insert s to te-HINT (in live sub-partitions)

using the insertion algorithm of HINT [17], assuming

that the end time point of s is the end of the current do-

main of te-HINT (i.e., a timepoint in the future), called

the horizon of te-HINT and denoted by tH . We also

insert an entry ⟨r.id, s.start⟩ in an auxiliary key-value

data structure Hr.id→start that facilitates finding a live

interval in te-HINT given the corresponding record id.

Figure 3(a) shows a 2-level te-HINTexample, holding

interval s1, which corresponds to a dead record, in par-

tition P0,0 (sub-partition POD
0,0 ). Two new live intervals

s2 and s3 are created at tnow and they are inserted to

partition P1,1 (sub-partition POL
1,1 ).

Deletion events. When a deletion event arrives for

record r carrying an s.end, i.e., an existing live inter-

val s is terminated and becomes dead, we need to re-

move s from the live sub-partitions of te-HINT and add

it to the appropriate dead partitions. For this, we use

Hr.id→start to retrieve s.start, using r.id, and we run

the insertion algorithm of HINT for s′ = [s.start, tH) to

identify the partitions wherein s′ appears and remove

s′ from the corresponding live sub-partitions. Subse-

quently, we use the insertion algorithm again to add
s = [s.start, s.end) to the relevant dead sub-partitions.

Note that some of the partitions identified by the dele-

tion algorithm may differ from those found by the inser-

tion algorithm, because s ̸= s′. As an example, assume

that at time tnow shown in Figure 3(b), a deletion event

for live interval s2 arrives, i.e., the record version cor-

responding to s2 is deleted from the indexed table T .

After finding s2.start using Hr.id→start, the partitions

(POL
1,1 ) where s2 is stored as live are identified using in-

terval [s.start, tH) and s2 is removed from them, and,

finally, s2 becomes [s2.start, tnow) and is re-inserted to

te-HINT as dead (i.e., to partition POD
1,1 ).

Domain Extension. te-HINT is initialized to have a

single level (0) which includes a single partition P0,0.

The timespan [0, tH) of the partition is small (e.g., one

hour) and depends on the application. In both insert

and delete events, it may happen that the current time

point tnow when the update takes place is beyond the

current horizon tH of te-HINT. Such an update triggers
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the extension of the (time) domain that te-HINT cov-

ers. The easiest way to accommodate this extension is

to double the domain (and the horizon tH), by adding

one more level to te-HINT. Specifically, we add a new

level 0 to the index and add 1 to the identifiers of ex-

isting levels (i.e., previous level 0 becomes level 1, level

1 becomes level 2, etc.). This does not affect the identi-

fiers and contents of existing partitions at each level ℓ,

but doubles the number of possible partitions at ℓ. Sub-

sequently, we add all live intervals from all partitions

as live replicas to partition P1,1, except from those in

old partition P0,0 which are moved to the new P0,0. By

this, we reduce the replication of live intervals and fa-

cilitate the necessary updates when new events arrive.

Essentially, live intervals are moved only when there is

a domain extension. Continuing the previous example,

assume that a new live interval s4 is created at tnow of

Figure 3(c). Since tnow is greater than or equal to tH ,

as per the previous state of te-HINT (Figure 3(b)), tH
is doubled, one more level is added to te-HINT, and

the current partitions are renamed (i.e., previous P0,0

becomes P1,0, etc.). Existing live interval s3 is added to

the new PRL
1,1 . The new interval s4 is inserted to POL

1,1 .

5 The LIT Hybrid Index

Capitalizing on the original HINT, te-HINT will de-

liver excellent performance on pure time-travel queries,

as shown in [17, 18]. But, te-HINT will suffer from

slow updates, mainly due to the insertion (and transfer)

of intervals to (and beween) multiple partitions when

record versions are initiated (terminated). In view of

this shortcoming, we design a hybrid index, termed LIT,

which decouples the indexing of live and dead versions.

For now, we describe LIT for pure time-travel queries

(Query 1 in Section 3). Its extension for range time-

travel queries (Query 2) will be discussed in Section 6.

5.1 Overview

Figure 4 shows an overview of LIT, which comprises

two components; a LiveIndex denoted by IL, storing
all current record versions (indexed by their start time-

point) and a DeadIndex, denoted by ID, for the dead

(i.e., past) record versions (indexed by their validity in-

tervals). Both components are dynamic, albeit handling

different updates. The stream of updates to the indexed

table T is consumed by the LiveIndex IL. Specifically,
when a new record version is created (i.e., an insertion

to T ), the start point s.start = tnow of its validity inter-

val is inserted to IL; this event type has no impact on

the DeadIndex ID. On the other hand, when a record

tnowq.tend tnowq.tendq.tstart

Live
Index

Dead
Index

…
(t1,1,end)
(t0,2,start)
(t0,1,start)

Update Events

…
[q2.tstart,q2.tend]
[q1.tstart,q1.tend]
[q0.tstart,q0.tend]

Queries

OpenInterval

CloseInterval

QueryLive
QueryDead

InsertDeadInterval

Fig. 4 Overview of LIT

version “dies” (i.e., a deletion from T ), the correspond-

ing entry is removed from IL and an entry is inserted

to ID for the dead record version. Record updates ter-

minate (i.e., “delete”) the current (live) version of the

record and insert a new version.

To evaluate a pure time-travel query q = [q.tstart,

q.tend] both IL, ID need to be probed. As the two

components index disjoint sets of record versions, these

probing tasks are completely independent. Specifically,

we probe the LiveIndex IL using only q.tend; every live

record that started before q.tend is guaranteed to be

part of the query result. In contrast, the DeadIndex

evaluates a typical interval range query to find all dead

record versions with a validity interval that overlaps q.

In what follows, we elaborate on the LIT components

IL and ID, and describe their key operations.

5.2 The LiveIndex Component

The LiveIndex IL offers three key operations. Specifi-

cally, IL is updated to index a new live record (Function

OpenInterval) or updated to un-index a record version

that just died (Function CloseInterval). IL also evalu-

ates pure time-travel queries (Function QueryLive). To
efficiently implement these functions, IL defines an in-

ternal identifier r.num for each live record version r in

it. The num identifier is a serial number that captures

the order in which the version start timepoints were

read from the input stream of updates; num is used to

(1) locate a live version to be deleted from IL when a

delete event arrives for it, and (2) define an implicit or-

der of the live versions based on their start points, used

to index them in IL. LiveIndex also maintains an aux-

iliary hash table Hr.id→num, which returns the internal

num id, for the live version of a given record id.

5.2.1 Data structures

We discuss three alternative structures for LiveIn-

dex, aimed at both fast updates and efficient time-

travel queries. We experimentally compare them in Sec-

tion 9.2.1.
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Array. The first alternative is to use an append-only

array to index live records in sequential fashion. Up-

dates can be efficiently handled in constant time, as

follows. Function OpenInterval simply appends an entry

at the end of the array for a new live record version,

while CloseInterval, drops a tombstone on the existing

entry for a newly closed record version. This entry can

be directly accessed using the num of the record, which

is obtained by probing the record id against Hr.id→num.

To answer queries, the QueryLive function scans the dy-

namic array from its first entry, comparing the start of

every live record to q.tend while ignoring the tomb-

stones. By construction, the dynamic array stores the

live records sorted by their num, which means that the

records are also implicitly sorted by their start, in in-

creasing order. Hence, QueryLive terminates the scan af-

ter accessing the first record that started after q.tend.

As already mentioned, updates cost O(1) time; how-

ever, a query costs O(n), assuming n updates so far,

since for each array position p up to q.tend, we must

check if p is a tombstone.

Search tree. A second alternative data structure for

the LiveIndex IL is a search tree (e.g., a B+-tree), us-

ing num as the search key. With such a search tree

in place, we no longer need to lazy-update IL when

a record version dies. Instead, CloseInterval probes the

tree using the num identifier of the record (obtained

from Hr.id→num), and then directly removes the corre-

sponding entry. To answer a [q.tstart, q.tend] query, we

scan and report entries from the first tree leaf until we

find the first entry that has its start after q.tend. Us-

ing this data structure both searches and updates cost

O(log n), where n is the number of updates so far.

Enhanced hashmap. In terms of updating (Functions

OpenInterval and CloseInterval), we generally expect the

sorted array to outperform the search tree, due to its

simplicity. Querying efficiency depends on the charac-

teristics of the input stream; update-heavy workloads

create a large amount of tombstones to the array, ren-

dering it slower than the search tree. In view of the

above, we consider a data structure, which exhibits

competitive update time to the array and has lower

query time. To this end, we suggest using an enhanced

hash table, similar to the Gapless hashmap proposed in

[46] or the java.util.LinkedHashMap in Java. Such struc-

tures can handle insertions and deletions using num in

constant time (typical for hash tables), but also offer

scan time linear to the number of contained entries,

which facilitates fast query processing. In particular,

the Gapless hashmap uses a contiguous memory area

to store the elements. Insertions append new elements

at the end of this area, while deletions are handled by

swapping the deleted element with the last one and

reducing the array size by one. Hence, updates cost

O(1) time as in the sorted array. Scanning is fast as

it steps through the contiguous storage area sequen-

tially. Different to both the array and the search tree,

the hashmap does not maintain the entries sorted by

their num, and therefore, a full scan is required to an-

swer time-travel queries. Hence, queries cost O(|IL|),
where |IL| denotes the number of live entries. This is

lower than the O(n) query cost of the sorted array, but

still quite significant. In the next section, we suggest

partitioning techniques that reduce IL’s search cost.

5.2.2 Temporal partitioning of LiveIndex

Given a query, a LiveIndex implemented by any of the

data structures in Section 5.2.1 would need to conduct

comparisons for a large number of live versions (inde-

pendently of the underlying structure), since there is no

way to directly output versions guaranteed to start be-

fore q.tend. In view of this, we propose a temporal par-

titioning of the LiveIndex to boost time-travel queries.

The key idea is to maintain IL as a chain of temporal

partitions or simply buffers, instead of a single one, such

that all num’s in a buffer are smaller than all num’s in

the next buffer. Hence, the start points of live record

versions in a buffer are smaller than or equal to the start

points of live versions in the next buffer. For each query,

only the buffers that may contain results are accessed

and, more importantly, comparisons are conducted only

in one buffer. This partitioning of the LiveIndex IL is

orthogonal to the data structure used for each buffer.

Duration-based partitioning. An intuitive parti-

tioning approach for IL is to consider a duration con-

straint DL. Under this, IL essentially resembles a uni-

form 1D-grid of equi-width partitions, one for each

buffer. A buffer Bi contains the live entries that started

inside the [i·DL, (i+ 1)·DL) range of time units. Given

a [q.tstart, q.tend] time-travel query, we first deter-

mine the bucket Bend that contains the q.tend times-

tamp; this can be done in constant time by a simple

⌊q.tend/DL⌋ division. The records inside the buffers be-
fore Bend can be directly reported as results; by con-

struction of the LiveIndex, these records started be-

fore q.tend. In contrast, comparisons against q.tend are

required for the live records inside the last Bend, i.e.,

QueryLive handles Bend as if the LiveIndex comprised

a single buffer. Regarding updates, inserting a new live

record version to IL (Function OpenInterval) is not sig-
nificantly affected by the above partitioning, as the new

entry will be added to the last buffer, i.e., the one con-

taining the most fresh records; extra action is required

when DL time units have already past and a new buffer
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B0 B1 B2 B3
<start
<num

<start
<num

<start
<num

0 154 712 945

0 99
timespan

100 199
timespan

200 299
timespan

300 399
timespan

On-top index (num→Bi)

OpenInterval(r.id=Bob)
tnow=360

Hr.id→num

…
Bob→980

…

CloseInterval(r.id=Bob)
tnow=390

next num=980

O1: insert 
(Bob,980)

O2: insert 
(980,360)

C1: find(Bob)

C2: findbuffer(980)

C3: find&delete(980)
C4: InsertDeadInterval

(Bob, 360, 380)

QueryLive(q.st, q,end=286)

Dead
Index

Q1: scan&report(Bi, i<286 div 100)
Q2: scan&compare(B286 div 100)

(a) duration-based

B0 B1 B2 B3
≤start
<num <num <num

0 34 245 712

0 99
num

100 199
num

200 299
num

300 399
num

On-top index (start→Bi)

OpenInterval(r.id=Bob)
tnow=860

Hr.id→num

…
Bob→340

…

CloseInterval(r.id=Bob)
tnow=982

next num=340

O1: insert 
(Bob,340)

O2: insert 
(340,860)

C1: find(Bob)

C2: find&delete(340)

C3: InsertDeadInterval
(Bob, 860, 982)

QueryLive(q.st, q,end=286)

Dead
Index

Q2: scan&report(B0,B1)
Q3: scan&compare(B2)

≤start ≤start

Q1: findbuffer(286)

(b) capacity-based

Fig. 5 LiveIndex: partitioning

needs to be created first. CloseInterval is more challeng-

ing, as we need to fast determine the buffer which con-

tains the start of the dying record version. For this

purpose, we define an auxiliary, lightweight structure

on top of the buffers. This structure stores a ⟨num, ptr⟩
entry for each buffer B of IL, where num is the low-

est internal identifier of a live record version inside B

and ptr is a pointer to directly access B in the chain.

Recall at this point, that LiveIndex is organized by

num and so is its on-top structure, by construction.

When a version of record r.id dies, CloseInterval finds
its num using Hr.id→num, then binary-searches the on-

top structure using r.num and, lastly, follows the buffer

pointer to locate the entry for num inside the corre-

sponding buffer B. After deleting the entry from IL,
CloseInterval, forwards the dead version for insertion to

ID. OpenIntervalmay update the on-top structure when

the last buffer is full and a new is created. Figure 5(a)

presents a duration-based partitioned LiveIndex, with

the necessary steps taken for each of the OpenInterval,
CloseInterval, and QueryLive operations.

Capacity-based partitioning. Duration-based parti-

tioning may define imbalanced buffers with respect to

the number of contained entries, rendering imbalanced

query costs. An alternative approach that results in bal-

anced partitions is to use a capacity constraint CL, al-

lowing each buffer to hold at most CL entries. 4 Un-

like duration-based partitioning, capacity-based parti-

tioning can directly access the needed buffers during

both types of updates. For OpenInterval, we simply ap-

4 For array structure, tombstones are not excluded when
counting the contained records.

pend the new live record version at the last buffer, while

for CloseInterval, a num/CL division determines which

buffer B contains the recently deceased version. Note

that if the last buffer is already full, OpenInterval cre-
ates a new buffer Bnew after the last one and appends

the new live version in Bnew.

In contrast, it is no longer possible to directly deter-

mine buffer Bend for a [q.tstart, q.tend] query. In view

of this, we define an on-top structure, which stores a

⟨st, ptr⟩ entry for each buffer B of the LiveIndex, where

st is the lowest start timepoint of a record version inside

B and ptr is a pointer to directly access B. Note that

the on-top search structure is by construction sorted by

version start and that it may contain multiple entries

for the same start. Hence, given query [q.tstart, q.tend],

QueryLive first binary-searches the on-top structure to

identify the first buffer that could contain q.tend and

sets this as Bend. With Bend, the function proceeds as

for the duration-based LiveIndex, by directly reporting

records inside every buffer before Bend and conducting

comparisons against q.tend for Bend. Lastly, besides up-

dating buffers, OpenInterval and CloseInterval also up-

date accordingly the on-top structure. Figure 5(b) il-

lustrates a detailed example of the capacity-based par-

titioning of LiveIndex and operations on it.

5.2.3 Optimizations

As the timeline evolves and live records die, buffers may

become under-utilized or empty. To deal with this, re-

organization can be employed for both types of parti-

tioning. For the duration-based LiveIndex, sparsity is

expected to occur in the first (early) buffers. So, we

merge adjacent sparse buffers and accordingly update

the on-top structure.5 To answer time-travel queries, an

auxiliary structure is now needed to capture the time-

range covered by this new buffer, as the q.tend/DL di-

vision can only work for un-merged buffers. Intuitively,

a second on-top structure maintaining the lowest start

inside a buffer will allow us to deal with several rounds

of buffer merging. For the capacity-based LiveIndex,

one solution would be to define a lower-bound for the

capacity of a buffer. When the capacity of a buffer drops

below e.g., 50% of CL, we mark the buffer and merge

it with either its predecessor or its follower (if one of

them is also marked), and then update accordingly the

on-top structure. Finally, similar to the duration-based

LiveIndex, a new on-top structure is required, as the

num/CL division no longer works. This new structure

will hold the lowest num inside a buffer, and will be

binary searched by CloseInterval.

5 The number of buffers to be merged can be seen as a
tunable system parameter.
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Fig. 6 Steps of dropping last level m of HINT (m = 2)

5.3 The DeadIndex Component

We now turn our focus on indexing dead record ver-

sions. Recall that these versions were evicted from the

LiveIndex IL by the CloseInterval function, after their

end was read from the input stream. The DeadIndex

ID offers two key operations. Specifically, (1) ID is

updated to index a new dead record version (Func-

tion InsertDeadInterval) and (2) it evaluates time-travel

queries (Function QueryDead). As the timeline evolves

and new dead versions enter ID, its domain grows. Un-

der this, a straightforward solution for indexing dead

record versions is the 2D point transformation approach

from [55] as discussed in Section 2.1, where a spatial in-

dex (e.g., R-tree), adapts to the growing domain.

An alternative solution is to modify the state-of-the-

art interval index HINT [17, 18] to adapt to a growing

domain. Section 4.2 already discusses this for te-HINT.

Implementing domain extension for a HINT DeadIndex

is simpler, because we do not have to deal with transfers

of live intervals between buckets as in te-HINT. Instead,

we only have to add one more level and double the

horizon tH , as soon as we cannot accommodate a newly

inserted interval s having at least one of its endpoints

after tH . As in te-HINT, after the expansion operation,

the existing partitions are renamed to reflect their new

level, but their contents remain intact.

Increasing the number of levels in a HINT that im-

plements ID to a very large number may negatively

affect its search performance and size, as there could

be far too many partitions for the number of indexed

intervals [17]. A näıve approach to reduce the number

of HINT levels by one is to construct a new HINT with

one less level and insert all intervals in it. We propose

a more efficient algorithm for deleting the lowest level

of HINT, which progressively moves intervals from the

deleted level to an appropriate partition above, while

maintaining the HINT property (i.e., each interval s

should be assigned at the smallest set of partitions from

all level that define s). Each interval at level m (to be

deleted) is stored in at most two level-m partitions. In-

tervals that begin and end in exactly one partition Pm,i

are directly moved to Pm−1,i÷2 and no further action

is needed. This is the case of s2 in Figure 6(b) which is

moved to P1,0 in Figure 6(c). Intervals that begin in a

Pm,i, for an odd i, are temporarily moved to Pm−1,i÷2;

the same holds for intervals that end in a Pm,i, for an

even i. For instance, s3 in Figure 6(b) is temporarily

moved to partition P1,1 because it ends in P2,2, while

s4 is temporarily moved to both P1,0 and P1,1 (see Fig-

ure 6(c)). Temporary partitions Pm−1,j at each level

ℓ < m for an even j are set-intersected with the next

partition at the same level holding replicas, at the po-

tential of moving intervals to the previous level ℓ− 1 as

finalized or temporary. Symmetrically, temporary parti-

tions Pℓ,j at level ℓ for an odd j are set-intersected with

the previous partition Pℓ,j−1. While there are tempo-

rary partitions at each level, intervals may propagate

upwards until their correct partition is found. For in-

stance, intervals s3 and s4, which, after the deletion of

level 2, were stored in (temporary) partitions P1,0 and

P1,1 at level 1 are eventually propagated at P0,0 of level

0, as shown in the final HINT at Figure 6(d). A pseu-

docode of the drop level algorithm is skipped due to

space constraints. Note that the same method can be

used to delete the last level of te-HINT.

5.4 Complexity

This section briefly analyzes the complexity of LIT.

Assuming that we have consumed n update events,

LiveIndex occupies space linear to the live records, or

O(n) space overall. The space complexity of HINT as

a DeadIndex is O(m · n) [17], where m is the num-

ber of levels. Regarding time complexity: (1) the cost

of consuming a new record event is O(1), if a chain of

enhanced hashmaps is used as a LiveIndex; (2) consum-

ing record deletions costs O(1) at LiveIndex and O(m)

at DeadIndex [17]. Hence, the cost per update is O(m).

This analysis does not consider the cost of restructuring

operations (merging live buffers, increasing the number

of HINT levels), which are rare and their amortized

costs are smaller than O(m). Regarding search, each

query costs for the buffer which includes q.tend, O(|IL|)
comparisons when duration-based partitioning is used

or O(CL), in case of capacity-based, plus the cost of

searching a constant number (4 by expectation [17]) of
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Fig. 7 Live and Dead space and queries
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Fig. 8 Live and Dead space A-partitioning

HINT partitions, which are also not expected to hold

more than O(CL) intervals.

6 Indexing Non-Temporal Record Attributes

We now discuss how to modify LIT and index record

versions on a specific attribute A for range time-travel

queries, where not only a timepoint/range is specified

but also a selection predicate on A. We denote a LIT

that indexes an attribute A (besides time) by a-LIT.

Before describing a-LIT we discuss the requirements

of a LiveIndex and a DeadIndex in the presence of the

attribute A. Figure 7 illustrates the information that

should be stored about live and dead record versions.

As shown in Figure 7(a), to be able to answer range

time-travel queries against LiveIndex, we need for each

live version its start point and its A-value. So, the live

version is a 2D point in the time-A space. A range

time-travel query can then be modeled as a rectangu-

lar range {[t0, q.tend], [q.Astart, q.Aend]} in the time-A

space. Regarding the DeadIndex, we need for each dead

version its start, end and its A-value. Figure 7(b) illus-

trates some dead versions in the time-A space and a

range time-travel query, which is modeled as a 2D rect-

angle, defined by the query bounds.

6.1 The LiveIndex Component

a-LIT’s LiveIndex must index current record versions

start timepoints and their A values simultaneously.

2D space index. A natural approach to do so would

be to use a native index for 2D points (e.g., kd-tree,

quad-tree, R-tree). Besides the 2D-space index, we also

need an auxiliary structure Hr.id→(start,A) that maps

record ids to the start points of their live versions

and their A values. Otherwise, it would not be pos-

sible to find and remove an indexed point from the

2D index, when the corresponding version dies (i.e.,

CloseInterval). Hence, the OpenInterval operation in-

serts the (start = tnow, A) entry of a new live version

to both the 2D index and Hr.id→(start,A). Operation

CloseInterval uses Hr.id→(start,A) to find the coordinates

of the ending version in the 2D index, searches and re-

moves it, and relays the dead record version to DeadIn-

dex. Finally, QueryLive issues a 2D query to the 2D

index to retrieve the qualifying live versions.

Use multiple pure time indices. Another indexing

approach is to divide the domain of A into partitions

(e.g., equi-width) and develop a LiveIndex as described

in Section 5.2 for each partition. The data structures

and temporal partitioning methods are defined sepa-

rately for each partition. The only difference is that the

mapping mechanism Hr.id→num of record ids to num

values should also capture the A-partition identifier

wherein a live version is located. By this, CloseInterval
can identify and delete a live version from the correct

A-partition of the LiveIndex. Figure 8(a) illustrates an

A-partitioning of the live data space into four divisions

(PA0 to PA3). For each of them, we can define a pure

temporal LiveIndex, as described in Section 5.2. Given

a range time-travel query, we use the selection predi-

cate on A to identify the partitions that overlap with

the query range in the A-domain (i.e., PA1, PA2, and

PA3 in Figure 8(a)). If a partition is entirely covered

by the A-range of the query (e.g., partition PA2), we

evaluate the temporal part of the query, as described in

Section 5.2. Otherwise (e.g., in PA1 and PA3), for each

result obtained by the LiveIndex of the partition, we

verify the A-predicate of the query. Verification is ap-

plied for at most two A-partitions containing the query

boundaries. Updates on this A-partitioning approach

are expected to be faster than updates on a 2D index,

due to the fast hashing mechanisms it incorporates.

6.2 The DeadIndex Component

Now we turn to DeadIndex options for a-LIT. As before,

we can follow either a pure geometric approach or apply

an A-partitioning to take advantage of the efficiency of

pure time indices.

3D index. A straightforward approach is to index the

line segments of the dead space (see Figure 7(b)) di-

rectly by a native 2D index for geometric objects (e.g.,

an R-tree). However, such a method is not expected

to perform well since some record versions in tempo-

ral databases are long-lived, corresponding to very long
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segments that require large node minimum bounding

rectangles, rendering the index inefficient. A more ef-

fective approach is to model each dead version as a 3D

point (s.start, s.end, r.A) in the (time, time, A) space,

and index these points using a 3D index (e.g., a 3D R-

tree). Figure 2(a) shows how this can be done for pure

time intervals; the idea is to add one more dimension

for A. Each query in this 3D space is then modeled as a

([0, q.tend], [q.tstart, tnow], [q.Astart, q.Aend]) 3D box.

Use multiple pure time indices. Similar to the case

of LiveIndex, we may also partition the domain of A to

define a number of partitions, as shown in Figure 8(b).

For each partition (e.g., PA0 to PA3), we use an op-

timized interval index, such as the modified HINT to

support domain extension, discussed in Section 5.3.

Given a range time-travel query, we first identify the

A-partitions that overlap with the query A-range (e.g.,

PA1, PA2, PA3) and then evaluate a pure time-travel

query in each such partition, verifying the A-predicate

against its results if necessary (e.g., in PA1 and PA3).

6.3 Handling Multiple Non-temporal Attributes

In case of multiple non-temporal attributes A1, . . . Am,

both a-LIT index components can be extended to sup-

port range time-travel queries with a range predicate to

each Ai. Specifically, we can still utilize a single multi-

dimensional index for the (m+1)-dimensional space de-

fined by time and the A attributes or the approach of

multiple pure time indices, using a multi-dimensional

grid over the joint attribute domain.

7 Temporal Indexing under Limited Memory

We now shift focus to scenarios where the available

memory for temporal indexing is bounded. To han-

dle such cases, we present LIT+, which extends the

LIT framework by incorporating a new disk-resident

component. For this purpose, we introduce an expira-

tion threshold, termed the fossilization timestamp tf ,

which defines the temporal boundary between memory-

resident and disk-resident records.

7.1 Overview of LIT+

Intuitively, at the core of the LIT+ framework lies the

distinction between two types of dead records; those

that died before the tf timestamp and those that died

after. The former, called fossils, are stored inside the

disk-resident component FossilIndex, whereas the lat-

ter, inside the DeadIndex, in main memory.

tnow tnowq.tendq.tstart

Live
Index

Dead
Index

…
(t1,1,end)
(t0,2,start)
(t0,1,start)

Update Events

…
[q2.tstart,q2.tend]
[q1.tstart,q1.tend]
[q0.tstart,q0.tend]

Queries

OpenInterval

CloseInterval

QueryLive

QueryDead

InsertDeadInterval

Fossil
Index

QueryFossil

InsertFossilIntervals

q.tstarttstart tfq.tend q.tend

Fig. 9 Overview of LIT+

Figure 9 provides an overview of LIT+, which ex-

tends the original LIT framework in Figure 4. The

stream of updates to the indexed table T is again

consumed by the LiveIndex IL, which implements the

OpenInterval and CloseInterval functions to handle the

insert and deletion events, respectively. When a record

dies, the corresponding entry is removed from IL (Func-

tion CloseInterval) and an entry is created in the ID
DeadIndex (Function InsertDeadInterval). Both compo-

nents reside in main memory. When the combined mem-

ory footprint of IL and ID exceeds a memory budget

M6, a system event termed fossilization is triggered.

Fossilization frees space in main memory to accommo-

date future updates in IL and ID. For this purpose,

LIT+ first updates the tf timestamp by moving it for-

ward in time. Afterwards, all dead records whose end

timepoint is before the updated tf are removed from ID
(Function DeleteFossils) and offloaded to the IF Fos-

silIndex on disk (Function InsertFossilIntervals).

To evaluate a pure time-travel query q = [q.tstart,

q.tend], we distinguish between two cases. If q.tstart >

tf , LIT
+ operates exactly as LIT, i.e., we probe only

IL and ID as detailed in Section 5. Otherwise, if

q.tstart ≤ tf then we need to probe all three compo-

nents. Similarly to ID, IF evaluates a typical interval

range query to determine all records whose validity in-

terval overlaps q. As discussed in Section 5.1 for LIT,

IL, ID and IF index disjoint sets of records and there-

fore, these probing tasks are completely independent to

each other and duplicate results are never produced.

In what follows, we elaborate on how the tf times-

tamp is updated, on the necessary changes for the

DeadIndex and the implementation of FossilIndex; in

contrast, LiveIndex remains unchanged.

7.2 Updating the Fossilization Timestamp tf

A straightforward approach to update tf is to move

it forward to the end of the time domain covered by

6 The M budget is a system parameter, pre-defined accord-
ing to the available memory.
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DeadIndex. Then, all dead records become fossils and

the maximum possible amount of memory is emptied.

However, such an extreme approach harms performance

since a large number of queries will be evaluated by the

FossilIndex, on disk. Therefore, the process of updat-

ing tf encapsulates a typical space-time trade-off. To

control this trade-off, we introduce an additional sys-

tem parameter r, so that r ·M specifies the maximum

amount of memory we can empty during fossilization;

recall that M is the memory budget set by the system.

With parameter r in place, we can set tf to the

time point incurring the highest decrease in the memory

footprint of the DeadIndex ID that does not exceed

the r ·M threshold. We can compute this decrease by

scanning ID and counting the total number of entries

(both originals and replicas) for the dead records whose

interval ends before the new tf , i.e., those that will

become fossils (Function CountFossilEntries). However,

to avoid exhaustively seeking this optimal new tf inside

DeadIndex’s entire domain, we choose a value best fit

for HINT, which as we show in Section 9.2.1, is the

most efficient structure for indexing dead intervals.

Specifically, we first restrict the value of the new

tf among only the end of the bottom HINT parti-

tions in ID. This way we both significantly reduce the

search space for tf and we simplify the scanning pro-

cess of ID performed by the CountFossilEntries func-

tion. Second, we examine the candidate tf values in a

binary search fashion. We start off with the center of

the time domain covered by ID as the new tf
7, and uti-

lize CountFossilEntries to calculate the amount of main

memory Mf to be emptied. If Mf < r · M holds, we

need to advance tf forward and recursively search the

second half of the domain; otherwise, we binary search

the first half. This process always terminates since there

is a fixed number of partitions at the bottom HINT

level. Lastly, in the extreme case where the specified

new tf value is equal to the old, we automatically set

tf to the end of the directly succeeding partition, emp-

tying this way the minimum possible amount of space

in main memory for the system to continue operating.

7.3 The DeadIndex Component

For LIT, DeadIndex operates in an insert-only mode;

i.e., dead records are added to the index, but never

removed. However, for LIT+, the DeleteFossils func-

tion is invoked every time tf is updated. Essentially,

DeleteFossils implements the second step in the fossiliza-

tion process where all fossil entries in DeadIndex are

identified and then the index is accordingly updated.

7 The center equals the end of the Pm,2m−1−1 partition.

P0,0
P1,1P1,0

P2,3P2,2P2,1P2,0
P3,7P3,6P3,5P3,4P3,3P3,2P3,1P3,0

tf
Fig. 10 Classifying HINT DeadIndex partitions to deter-
mine fossils

We first elaborate on how to spot the fossil records

stored inside a HINT DeadIndex. By definition, fossils

end before the tf fossilization timestamp, which means

they are stored as originals inside a partition before tf .

Figure 10 highlights in light and dark gray the parti-

tions which store the fossils’ original entries for a HINT

DeadIndex with 4 levels; we will explain the difference

between the two shades in the next paragraphs. In con-

trast, the records stored as originals inside a white par-

tition are not fossils as they definitely end after tf . Note

this is true even for the partitions whose timespan con-

tains tf , i.e., P2,2, P1,1 and P0,0 in Figure 10. By con-

struction, a dead record whose validity interval starts

for instance inside P2,2, must end after tf because oth-

erwise the record would have been stored as an original

in the level below, i.e., inside P3,4.

We next present two approaches for excluding all

fossil entries from a HINT DeadIndex ID8. Although

we could discuss the maintenance process even for an

unoptimized HINT, we assume that the subdivisions

optimization from [17] is activated to accelerate the

process.9 In brief, according to this optimization, the

originals in every P (see Section 2.1) are further divided

into subdivisions POin and POaft , so that POin (POaft)

holds the record intervals that end inside (resp. after)

the partition. Similarly, the replicas inside P are divided

into PRin and PRaft . Intuitively, the straightforward

approach for maintaining ID first scans the index to

determine all fossils and then drops ID to rebuild it us-

ing only the remaining dead (non-fossil) records. Under

this, it suffices to scan the POin , PRin subdivisions for

every partition in ID. By definition, entries originat-

ing from partitions before tf (light and dark gray, in

Figure 10) belong to fossils; these records are collected

and sent to FossilIndex (see Section 7.4). In contrast,

entries from the remaining partitions (white, in Fig-

ure 10) belong to non-fossils which are inserted to the

new DeadIndex. Notice how this maintenance process

completely ignores POaft , PRaft ; their contained entries

correspond to records that end inside a succeeding P ′

partition, stored in its P ′Rin subdivision. Furthermore,

8 We compare the two approaches in Section 9.3.1
9 In practice, the subdivisions optimization is always acti-

vated as it also enhances query processing [17].
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Fig. 11 Batch insertions in LIT+’s R-tree FossilIndex

there is no need for de-duplication because every dead

record is stored as a Oin or a Rin, exactly once.

If the tf fossilization timestamp is always set at the

end of a bottom level partition (as proposed in Sec-

tion 7.2), the above approach requires no comparisons

to determine fossils. However, we still need to rebuild

the updated ID index from scratch. In view of this

shortcoming, we next present an alternative approach

which updates the subdivisions of the HINT partitions

in-situ by removing the fossil entries. Note that we can-

not rely on the update process described for HINT in

[17] which handles deletions by tombstones. In our set-

ting, we must physically remove the entries to empty

space in main memory. Instead, we distinguish between

three types of partitions in the current ID (colored light

gray, dark gray, and white in Figure 10), and handle

each type in a different fashion. Let P be a HINT par-

tition, we consider the following cases:

– P is light gray, P.end < tf . We directly empty the

POin , PRin subdivisions as they store only records

that end before tf , i.e., fossils, by definition. In con-

trast, for POaft , PRaft , fossils are determined by

comparing their end against tf .

– P is dark gray, P.end = tf . Similar to the light

gray case, we directly empty POin , PRin , while

POaft , PRaft remain intact; by definition, their en-

tries belong to records that end after tf .

– P is white, P.end > tf . All subdivisions remain in-

tact since they exclusively contain entries for records

that end after tf .

To reduce the number of comparisons needed to process

POaft , PRaft in the light gray partitions, we rely on the

implicit sorting of the subdivisions. By construction, ev-

ery subdivision is sorted by record end, in increasing or-

der. Hence, to clean POaft , PRaft , we perform a binary

search for the first entry with end > tf and then remove

all entries preceding this pivot inside the subdivision.

Lastly, all records inside the POin , PRin subdivisions of

the light and dark gray partitions are collected and sent

to FossilIndex, similar to the straightforward approach.

7.4 The FossilIndex Component

We next discuss LIT+’s disk-resident component. Fos-

silIndex IF operates in an insert-only mode, incorpo-

rating the recently removed fossils from the DeadIndex

ID after the timestamp tf is updated. Despite index-

ing dead records similar to ID, we cannot utilize HINT

for IF as it was designed for main memory. Instead,

we employ the 2D mapping discussed in Section 2.1

under which every record is mapped to a (start, end)

point. We index these points on disk using an R-tree

[26], which is the dominant structure for spatial data.

We next elaborate on the process of updating IF .
When fossilization is triggered for the first time, we can

efficiently index the incoming fossils in a bulk-loading

fashion (e.g., with the STR algorithm [35]). For every

follow-up event, a straightforward approach would be

to directly use the R∗-tree insertion algorithm from [5]

individually for each recently defined fossil. Despite its

simplicity this approach will incur frequent tree adjust-

ments and a large number of I/Os. In view of this,

we devise a novel approach which inserts intervals in

batches making it suitable for large updates.

Figure 11 exemplifies the key steps in our batch in-

sertion. First, the incoming fossil records are sorted by

their start to improve spatial locality. Then, the sorted

fossils are divided into batches, each sized to fit within

an R-tree leaf node. For each batch, a new leaf node is

created, which is then directly inserted into an internal

node, right above the leaf level of the R-tree FossilIn-

dex. Splits are triggered when necessary to maintain the

tree balance. The I/O cost of fossilization is bounded

by the number of leaf nodes inserted to the R-tree, since

the non-leaves are expected to be too few and may fit in

memory (especially, when we use a large node size, e.g.

8KBs). By the last assumption, the I/O cost for search-

ing the FossilIndex is bounded by the number of R-tree

leaves which are accessed by the query; this number is

expected to be small, estimated as the number of query

results divided by the node capacity.

7.5 a-LIT Compatibility

Finally, we discuss the necessary modifications in LIT+

to index record versions on a specific non-temporal at-

tribute A and evaluate range time-travel queries; we

denote this extended framework by a-LIT+. In princi-

ple, the key challenge we face is that the existence of

attribute A increases the memory footprint of a-LIT+

compared to LIT+. Under the memory budget M , this

will result in more frequent fossilization events.

Similar to LIT+, a-LIT+ draws a distinction be-

tween memory-resident and disk-resident records. For

live records and in-memory dead records (i.e., non-

fossils), we adopt the multiple indices design for a-LIT

in Section 6. In brief, we partition the domain of A and
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build a pair of LiveIndex and DeadIndex in each parti-

tion; our experiments in Section 9.2.4 show the advan-

tage of this design. In contrast, for fossil records, we rely

on a single FossilIndex IF and one fossilization times-

tamp tf . To incorporate attribute A, we now utilize a

3D R-tree which indexes the (start, end,A) space.

The key difference for the fossilization process of

a-LIT+ lies in updating tf . For this purpose, we pri-

oritize the DeadIndex with the highest memory usage.

This approach ensures efficient resource utilization and

prevents tf from advancing excessively. This is benefi-

cial for two reasons; (1) it maintains a balanced distri-

bution of intervals across the dead indices, and (2) it

minimizes disk accesses by preventing tf from becoming

too recent, which would degrade query performance.

8 Persistence, Recovery, Concurrency Control

LIT is a main-memory index focused on real-time an-

alytics and handling large volumes of rapidly changing

temporal data. However, the volatility of main memory

necessitates durability and recovery mechanisms follow-

ing system failures. Figure 12 illustrates how LIT is

integrated into a temporal database system, to sup-

port fault tolerance and recovery. Therefore, each up-

date event is written to a log file. In addition, a backup

of LIT is taken periodically and written to the hard

disk for persistence. The backup is merely a dump of

the main memory data structures for LiveIndex and

DeadIndex. Assuming that the last checkpoint where

the last backup has been taken is tB , to recover LIT

at a time tnow > tB (e.g., due to a system failure at

that time), we first load the backups of LiveIndex and

DeadIndex in main memory, then replay events starting

from tB in the log file, and finally ingest all events after

tB to evolve LiveIndex and DeadIndex to their current

state at tnow. Since all states up to tB are captured by

the LIT backup, we “cleanup” the log file by removing

all entries up to tB , for efficiency.

For LIT+, note that the FossilIndex is already on

disk and thus, no further action is required in case of

a system failure, assuming that disk recovery is han-

dled by another mechanism, such as RAID. However,

to ensure atomicity and deal with a failure during fos-

silization, the process is implemented as a single system

transaction guaranteeing that either all dead records to

be fossilized are removed from DeadIndex and added to

FossilIndex or none. Under this principle, a dead record

can be found exclusively either in the DeadIndex or the

FossilIndex, but never in both.

As in SAP HANA [30], concurrency control is oper-

ated by the transaction manager of the DBMS, which

tnow tnow
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…
(t0,2,30K, start)
(t0,1, 50K, start)

Data Update EventsTime-travel Queries
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…
[q1.tst, q1.tend, q1.Aend] 

[q0.t, q0.Ast, q0.Aend]

Data Updates Log
…
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(t0,1, 50K, start)

Search 
Search 

Update LIT

Write

LIT Backup

Backup
up to tB

Recover
till tB

Recover after tB

Fig. 12 Persistence and recovery of LIT

manages the current database state, and is indepen-

dent to our proposed index. LIT ingests committed

updates by the transaction manager, as shown in the

Events sequence table of Figure 1. As the time-travel

queries refer to the past, they do not conflict with inser-

tions, which always happen at tnow. So, a newly inserted

record cannot be a query result. Time-travel queries do

not conflict with deletions/modifications, since only the

start timepoint of a currently deleted record determines

whether it is the result of a concurrent query. Regard-

less if the item is in the LiveIndex (before the deletion)

or in the LiveIndex (after the deletion) it will be re-

ported as a query result if its start is before the end

timepoint of the query. However, when a query is eval-

uated after the deletion of a record from LiveIndex and

before the insertion of that record to DeadIndex, we

may get incorrect query results. To ensure correctness,

the migration from LiveIndex to DeadIndex is done seri-

ally (i.e., not interleaved with concurrent queries). The

total cost of a migration is extremely low (around 150

nanoseconds, as shown in our experiments), so the serial
migration requirement does not affect the performance.

Although possible, parallel fossilization would in-

troduce significant complexity in managing concurrent

access to the DeadIndex and FossilIndex. To guaran-

tee data integrity, LIT+ serializes fossilization, granting

exclusive control over the DeadIndex and FossilIndex.

This design ensures correctness and eliminates race con-

ditions during migration. Furthemore, since fossiliza-

tion is infrequent, this prioritization has a negligible

impact on system performance.

9 Experimental Analysis

This section reports our experiments, which com-

pare (a-)LIT (Section 9.2) and (a-)LIT+ (Section 9.3),

against competition. All methods were written in C++
and compiled with gcc using -O3, -mavx, -march=native.
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Table 1 Characteristics of tested datasets

TAXIS-F TAXIS-P BIKES FLIGHTS WILDFIRES BOOKS

Cardinality 169290307 169290307 101472950 61328124 778410 2050707
Domain extent 1 year 1 year 8 years 10 years 24 years 1 year
Size (MBs) 5498 5498 3247 1963 26 66

temporal information

Min duration 1 min 1 min 1 min 5 min 1 min 1 hour
Max duration 5 hours 5 hours 7.5 months 12 hours 4 months 1 year
Avg. duration 12 mins 12 mins 16 mins 2.5 hours 28 hours 67 days
Avg. duration [%] 0.0024 0.0024 0.0004 0.0028 0.0135 18.6

search-key A information

Description trip fare [USD] passenger count rider’s birth year departure delay [secs] fire extent [acres] num of fooks lent
Type real integer integer real real integer
Value range [2.5, 235.5] [1, 6] [1940, 2005] [0, 233400] [0.0001, 606945] [1, 38]
Distribution normal zipfian normal zipfian zipfian zipfian

Table 2 Query extents; default values in bold

Stream temporal search-Key

TAXIS-F 1, 6, 12, 18, 24 [hours] 3, 5, 10, 30, 50 [dollars]
TAXIS-P 1, 6, 12, 18, 24 [hours] 1, 2, 3, 4, 5 [passengers]
BIKES 1, 6, 12, 18, 24 [hours] 10, 20, 30, 40, 50 [years]
FLIGHTS 1, 2, 3, 4, 5 [days] 5, 10, 30, 60, 120 [mins]
WILDFIRES 1, 7, 14, 21, 30 [days] 10, 50, 100, 500, 1000 [acres]
BOOKS 1, 7, 14, 21, 30 [days] 5, 10, 15, 20, 25 [books]

9.1 Setup

Datasets. We experimented with six real temporal

datasets with an additional search-key A; Table 1 sum-

marizes their characteristics. TAXIS-F(-P) contain the

pick-up and drop-off timepoints of taxi trips (same

intervals in both datasets) in NYC from 2009.10 In

TAXIS-F, A is the paid fare, and in TAXIS-P, A is the

number of passengers. BIKES contains the pick-up and

drop-off timepoints of bike rides in NYC from 2014 to

2021; the search-key A is the birth year of the rider.11

FLIGHTS contains the take-off and landing timepoints

of flights recorded by the US Transportation Depart-

ment from 2013 to 2022, and the occurred departure

delay.12 WILDFIRES specifies when fire events from

1992 to 2015 in US, were discovered and when declared

contained/controlled.13 As search-key A, we use an es-

timate of the area burnt. BOOKS contains the periods

of time when books were lent out by Aarhus libraries in

2013, and the number of books during each period.14

BOOKS, WILDFIRES include objects with long va-

lidity intervals, while in TAXIS, BIKES intervals are

extremely short; FLIGHTS lies in the middle of the

spectrum. As search-key, we consider both real and in-

teger values; A’s domain varies from extremely small

10 https://www1.nyc.gov/site/tlc/index.page
11 https://citibikenyc.com/system-data
12 https://www.bts.gov
13 https://www.kaggle.com/datasets/rtatman/188-million-
us-wildfires
14 https://www.odaa.dk

(TAXIS-P) to extremely large (WILDFIRES). The val-

ues of A follow either a normal or a Zipfian distribution.

Input streams. We created an event stream (work-

load) for every dataset, by splitting each interval to

an insert and a deletion event, and interleaving 10K

queries. Queries are positioned uniformly inside the ac-

tive timeline, i.e., the period between the start of the

very first interval until current tnow. The nature of the

created streams varies from extremely update-heavy

for TAXIS, BIKES and FLIGHTS with a 34000/1,

20000/1 and 13000/1 ratio of updates over queries, re-

spectively, to moderate for BOOKS and WILDFIRES,

with a 410/1 and 156/1 ratio, respectively. We con-

sidered two types of query extents; for pure time-travel

queries, the extent of the [q.tstart, q.tend] interval while

for range time-travel queries, additionally the extent of

the [q.Astart, q.Aend] range. Table 2 lists the values for

the query extents; the defaults are in bold. In each test,

we measure the update time (for some indices, broken

down to insert and delete time) and the query time.

9.2 In-Memory Query Processing

We start off with the in-memory evaluation of queries.

Sections 9.2.1 and 9.2.2 study LIT and pure time-travel

queries (Query 1). For this, we ignore the search-key A;

hence, we use a single TAXIS stream. Sections 9.2.3

and 9.2.4 study a-LIT and range time-travel queries

(Query 2) which include selections on the search-key

A. For this purpose, we considered an equi-width par-

titioning of the A domain in 6-7 partitions.15

All tests we conducted as single-threaded processes

on an AMD Ryzen 9 3950X, clocked at 3.5GHz with

64GBs of DRAM and 1MB L1 Cache, 8MB L2 Cache,

64MB L3 Cache, running Ubuntu Linux.16

15 Our tests (not included due to lack of space) showed that
this number of partitions is sufficient to provide good total
times in all tested streams.
16 Code: https://github.com/GiorgosChristodoulou/LIT

https://www1.nyc.gov/site/tlc/index.page
https://citibikenyc.com/system-data
https://www.bts.gov
https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires
https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires
https://www.odaa.dk
https://github.com/GiorgosChristodoulou/LIT
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Table 3 LiveIndex for LIT; total update/query times [secs]
TAXIS

query Append-only Search tree Enhanced
extent array hashmap
[hours] update query update query update query

1 9.92 409 47.9 0.001 12.42 0.011
6 9.92 410 47.9 0.001 12.42 0.011
12 9.92 409 47.9 0.001 12.42 0.011
18 9.92 411 47.9 0.001 12.42 0.011
24 9.92 412 47.9 0.001 12.42 0.011

BOOKS

query Append-only Search tree Enhanced
extent array hashmap
[days] update query update query update query

1 0.125 14.4 1.30 38.0 0.207 6.41
7 0.125 14.8 1.30 37.9 0.207 6.45
14 0.125 14.9 1.30 39.7 0.207 6.46
21 0.125 15.2 1.30 41.9 0.207 6.47
30 0.125 15.6 1.30 42.8 0.207 6.43

9.2.1 Tuning LIT

We first investigate the best setting for the LiveIndex

and the DeadIndex of LIT.

LiveIndex: data structure. We implemented the al-

ternative structures from Section 5.2.1; STL C++ vec-
tor class was used for the append-only array, STL C++

ordered map class (Red-Black tree) for the search tree,

and the Gapless hashmap from [46] for the enhanced

hashmap.17 Table 3 summarizes the results of our tests;

for the interest of space, we report only TAXIS and

BOOKS, which contain long and short intervals, re-

spectively. The tests back up our analysis from Sec-

tion 5.2.1. The append-only array exhibits the best

(lowest) update times due to its simplicity. The en-

hanced hashmap however is always competitive, even

for the update-heavy stream of TAXIS. The search tree

on the other hand is vastly outperformed in updates.

Regarding queries, the enhanced hashmap is the most

robust structure; the efficiency of the other two is af-

fected by the nature of the input stream and/or the

length of the intervals. Update-heavy streams (TAXIS)

will incur a large number of tombstones and signifi-

cantly slow down the append-only array, while long-

lived intervals (BOOKS) increase the size of LiveIndex

and slow down the search tree. All data structures are

robust to the query extent, which is expected, since

q.tstart is ignored in query processing. Overall, the en-

hanced hashmap offers the best trade-off between up-

dates and queries, exhibiting always the lowest total

time. For the rest of our experiments, we use the en-

hanced hashmap to store the LiveIndex.

LiveIndex: partitioning. We implemented both par-

titioning approaches from Section 5.2.2. To determine

the best value for the duration constraint DL and the

17 Source code was provided by the authors.
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Fig. 13 LiveIndex for LIT partitioning; default query extent

Table 4 LiveIndex for LIT partitioning; update and query
times [secs], default query extents

input
duration-based capacity-based

stream insert delete query insert delete query

TAXIS 4.65 7.46 0.004 5.25 7.42 0.011
BIKES 5.67 2.36 0.005 3.31 4.14 0.004
FLIGHTS 3.06 2.02 0.004 1.74 2.65 0.011
WILDFIRES 0.027 0.033 0.003 0.023 0.027 0.003
BOOKS 0.083 0.270 0.352 0.083 0.204 0.319

Table 5 DeadIndex for LIT; total update&query times [secs]
TAXIS

query extent 2D R-tree HINT
[hours] insert query insert query

1 69.7 3.21 47.9 0.001
6 69.7 15.5 47.9 0.001
12 69.7 29.8 47.9 0.001
18 69.7 44.3 47.9 0.001
24 69.7 59.2 47.9 0.001

BOOKS

query extent 2D R-tree HINT
[days] insert query insert query

1 0.63 45.9 0.15 0.27
7 0.63 47.8 0.15 1.05
14 0.63 51.2 0.15 1.86
21 0.63 55.2 0.15 1.74
30 0.63 59.1 0.15 2.96

capacity constraint CL, we conducted the experiments

in Figure 13 where the total time (update plus query

time) is reported, while varying DL and CL. Note that

as the value of both constraints increases, the number of

LiveIndex buffers always drops. With the best observed

values for each input stream in place, we compare the

two approaches in Table 4 for the default query extents,

which also includes a runtime breakdown for each ap-

proach. Note that the capacity-based partitioning al-

ways outperforms the duration-based by 10%, on aver-

age. For the rest of our analysis, the LiveIndex of LIT

will use the capacity-based partitioning; also, based on

this experiment, we set CL = 10000 for all streams.

DeadIndex. We compare HINT in the role of DeadIn-

dex as discussed in Section 5.3, against the 2D trans-

formation approach proposed in [55], powered by

an in-memory 2D R-tree from the highly optimized

Boost.Geometry library. 18 Table 5 reports the insert

18 Benchmark in [37] showed that Boost.Geometry
(https://www.boost.org) R-tree implementations outperform
the libspatialindex library (https://libspatialindex.org/).

https://www.boost.org
https://libspatialindex.org/
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Fig. 14 Pure time-travel queries: LIT against competition

Table 6 Pure time-travel: total update time [secs]

input Timeline te-HINT
LIT

stream LiveIndex DeadIndex total

TAXIS 12.3 1886 14.5 8.43 22.89
BIKES 10.4 357 7.93 5.13 13.06
FLIGHTS 4.08 526 4.68 3.01 7.69
WILDFIRES 0.05 0.38 0.07 0.04 0.11
BOOKS 0.19 349 0.49 0.14 0.63

Table 7 Pure time-travel: query time breakdown [secs]; de-
fault query extents

Component
input stream

TAXIS BIKES FLIGHTS WILDFIRES BOOKS

LIT: LiveIndex 0.157 0.005 0.011 0.001 0.371
LIT: DeadIndex 2.96 0.203 0.504 0.019 1.85

time and the query time for each DeadIndex approach,

while varying the query extent. Due to lack of space, we

show again only the numbers for TAXIS and BOOKS.

HINT outperforms the 2D R-tree on computing

pure time-travel queries by at least one order of mag-

nitude (usually two orders), while for ingesting dead

records, the 2D R-tree is competitive only in case of

BOOKS, which contains significantly fewer updates

than TAXIS. In contrast, for the update-heavy TAXIS,

the 2D R-tree is an order of magnitude slower than

HINT for indexing new dead records. In view of the

above, LIT will use HINT as its DeadIndex component

for the rest of our analysis.

9.2.2 Pure time-travel Queries

We now compare the LIT hybrid index against te-HINT

(Section 4) and the state-of-the-art Timeline index [30]

for transactional DBs (re-implemented to fully operate

in main memory). Figure 14 (first row) reports the to-

tal time (updates and queries) for each index to ingest

the input streams, while varying the query extent. Our

tests clearly show that LIT is the most efficient index

for all input streams, followed in almost all cases by

the Timeline index, while te-HINT ranks last, with the

exception of WILDFIRES. To better understand these

results, the second row of the figure reports the accumu-

lated time over the 10K queries of the stream and Ta-

ble 6 reports the accumulated update time. The query

costs of LIT and te-HINT are always lower compared to

those of Timeline; te-HINT is competitive to LIT but in

all cases slower. For updates, Table 6 shows the advan-

tage of Timeline; recall from Section 2 that Timeline is

designed for the support of fast updates in transaction-

time DBs. Nevertheless, LIT is competitive to Time-

line. Also, observe that the total updating cost is al-

most equally divided in between the LiveIndex and the

DeadIndex. In contrast, te-HINT is orders of magnitude

slower than LIT and Timeline in updates, mainly due

to the high cost of moving intervals between partitions

at different levels, as the timeline evolves and deletion

events arrive. Overall, LIT offers the best tradeoff be-

tween updates and queries, resulting in the lowest total

time, even for update-heavy streams such as TAXIS and

BIKES. Lastly, we provide a breakdown to the query

time of LIT in Table 7.

9.2.3 Tuning a-LIT

Similar to Section 9.2.1, we first investigate the best

setup for a-LIT.

LiveIndex. We implemented the two alternative so-

lutions for the LiveIndex discussed in Section 6.1; an

in-memory Boost.Geometry 2D R-tree which directly in-

dexes the (start, A) 2D space and a series of pure time

indices (using enhanced hashmap and capacity-based

partitioning), one for each partition of the A domain.

For completeness, we also include the approach of a sin-

gle pure time index (again with enhanced hashmap and

capacity-based partitioning); this captures the case of

an extremely skewed distribution of A-values, where the
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vast majority of the objects fall inside one A-partition.

Table 8 reports the total update (insert and delete) and

query time for each solution while varying the search-

key query extent. Due to lack of space, we only re-

port on the TAXIS-F and BOOKS streams. The perfor-

mance of the 2D R-tree LiveIndex is severely affected

by the cost of updates, especially by deletions, render-

ing this solution impractical.19 Even a single pure time

index is still a better option for the LiveIndex than

a 2D R-tree which indexes both time and A dimen-

sions. Finally, regarding the comparison between the

single and the multiple time indices solutions, we ob-

serve an expected tradeoff. The single time index so-

lution is faster for updates, especially in update-heavy

streams like TAXIS-F, while using multiple indices has

an order of magnitude lower time on queries. As the

decrease in the total time from using a multiple time

indices LiveIndex for query-intensive streams (BOOKS)

is larger than the increase of the total time on update-

heavy streams (TAXIS-F), in the rest of our analy-

sis, a-LIT will use the multiple time indices solution,

i.e., maintaining a LiveIndex for each partition of the

search-key A domain.

DeadIndex. We implemented the two options dis-

cussed in Section 6.2; a 3D R-tree which directly in-

dexes both the validity interval of a dead version and

its search-key A, and a series of pure time indices pow-

ered by HINT, one for each partition of the A-domain.

For completeness, we also include the case when a sin-

gle HINT is used as the DeadIndex, which again cap-

tures the case of an extremely skewed data distribution,

where the vast majority of the objects are indexed by

a single HINT. Table 9 reports the total update (in-

sert) and query time for each approach, while varying

the search-key query extent; again, due to lack of space,

we only report on the TAXIS-F and BOOKS streams.

The table clearly shows the advantage of the multiple

pure time indices option in the role of the DeadIndex

for a-LIT. The 3D R-tree DeadIndex is always slower

both for updating (insertions of dead record versions)

and querying, while using a single pure time index is

only competitive for updating. In the rest of our anal-

ysis, a-LIT will maintain a HINT powered DeadIndex

for each partition of the search-key A domain.

9.2.4 Range time-travel Queries

We compare a-LIT against two competitors. The first

is a time-first baseline, which directly employs the pure

LIT and does not index the search-key attribute A.

Pure LIT employs the same setup considered for pure

19 This is expected, as R-trees typically suffer from high
maintenance costs.

Table 8 LiveIndex for a-LIT; total update and query times
[secs], default temporal query extent

TAXIS

search-key single pure multiple pure
query extent 2D R-tree time index time indices

[dollars] update query update query update query

1 1163 0.002 16.2 0.02 19.7 0.002
6 1163 0.002 16.2 0.02 19.7 0.002
12 1163 0.002 16.2 0.02 19.7 0.002
18 1163 0.002 16.2 0.02 19.7 0.002
24 1163 0.002 16.2 0.02 19.7 0.002

BOOKS

search-key single pure multiple pure
query extent 2D R-tree time index time indices

[books] update query update query update query

1 1622 1.6 0.4 0.4 0.5 0.04
7 1622 1.9 0.4 0.4 0.5 0.04
14 1622 2.2 0.4 0.4 0.5 0.04
21 1622 3.2 0.4 0.4 0.5 0.04
30 1622 4.5 0.4 0.4 0.5 0.04

Table 9 DeadIndex for a-LIT; total update and query times
[secs], default temporal query extent

TAXIS

search-key multiple
query extent 3D R-tree HINT HINTs

[dollars] insert query insert query insert query

1 81.9 40.6 9.49 4.11 9.48 0.49
6 81.9 40.5 9.49 4.12 9.48 0.51
12 81.9 40.6 9.49 4.11 9.48 0.40
18 81.9 40.6 9.49 4.12 9.48 0.41
24 81.9 40.5 9.49 4.11 9.48 0.41

BOOKS

search-key multiple
query extent 3D R-tree HINT HINTs

[books] insert query insert query insert query

1 0.74 4.80 0.15 0.85 0.15 0.26
7 0.74 5.35 0.15 1.75 0.15 0.25
14 0.74 7.86 0.15 2.53 0.15 0.28
21 0.74 9.14 0.15 2.63 0.15 0.27
30 0.74 11.6 0.15 4.14 0.15 0.27

Table 10 Range time-travel: total update time [secs]

input stream MVB-tree [4] LIT (pure) a-LIT

TAXIS-F(-P) 341 27.9 29.3
BIKES 57.8 15.7 16.5
FLIGHTS 61.6 8.76 9.89
WILDFIRES 0.28 0.12 0.14
BOOKS 1.86 0.85 0.87

time-travel queries comparison in Section 9.2.2, i.e., an

enhanced hashmap with capacity-based partitioning as

the LiveIndex and HINT as the DeadIndex. To answer a

range time-travel query q, this (pure) LIT first executes

a pure time-travel query with [q.tstart, q.tend] and

then, checks the attribute A of every intermediate result

against the [q.Astart, q.Aend] range. The second com-

petitor is the state-of-the-art index for multi-versioned

DBs, MVB-tree [4] (re-implemented to fully operate in

main memory). The first and the third rows in Fig-

ure 15 report the total time of the indices, while vary-

ing the A-range of the query and the temporal query

extent, respectively. Observe that both LIT-based in-

dices outperform the MVB-tree, in all tests. The rea-
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Fig. 15 Range time-travel queries: a-LIT against competition

son is the high cost of update handling by the MVB-

tree; the performance gap is larger for the TAXIS and

BIKES (update-heavy streams). As Table 10 shows,

LIT (pure) and a-LIT capitalize on the LiveIndex to

cope with updates. In fact, the MVB-tree is compet-

itive only in BOOKS, which has the smallest number

of updates and so, queries significantly contribute to

the total time. a-LIT always outperforms LIT (pure)

as expected for range time-travel queries (second and

fourth row in Figure 15), since LIT (pure) cannot prune

the search space using the search-key attribute. Overall,

a-LIT exhibits a good tradeoff between updating and

querying, being able to efficiently handle both update-

heavy and moderate streams. Based on our tests, we

expect an even bigger advantage over LIT (pure) for

query-heavy streams.

9.2.5 Index Size

We conclude our analysis for in-memory query process-

ing with a study on the index size. First, we compare

LIT and a-LIT against the competition; Tables 11 and

12 report the maximum size for each index for pure

time-travel and range time-travel queries, respectively.

For all indices, this maximum value is observed after

the entire input stream was ingested. In Table 11, ob-

serve that for all streams LIT occupies less space than

Table 11 Pure time-travel: index size [MBs]

input stream Timeline [30] te-HINT LIT

TAXIS 3086 2042 2042
BIKES 1851 1226 1226
FLIGHTS 1129 747 747
WILDFIRES 15 10 10
BOOKS 69 45 45

Table 12 Range time-travel: index size [MBs]

input stream MVB-tree [4] LIT (pure) a-LIT

TAXIS-F(-P) 8522 3404 3744
BIKES 5433 2043 2247
FLIGHTS 4739 1246 1370
WILDFIRES 35 16 18
BOOKS 282 75 83

the Timeline index. On the other hand, te-HINT has

an identical maximum footprint to LIT because both

approaches eventually build identical HINT indices. As

Table 12 shows, a-LIT always occupies less space than

the MVB-tree. Compared to a-LIT, (pure) LIT has a

slightly smaller footprint due to building a single HINT,

but at the expense of an inferior performance, in almost

all cases as shown in Figure 15. Finally, we study the

growth of the LIT’s size of time; Figure 16 plots its size

as a function of the percentage of the updates in each

stream. Observe that LIT’s space increases linearly with

the number of updates, which makes it appropriate for

in-memory management of time-evolving data.
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Fig. 16 Size growth over time

9.3 Query Processing under Limited Memory

The second part of our experimental analysis evalu-

ates queries under limited memory for LIT+ and a-

LIT+.20 We ran our tests on the same datasets and

input streams used for the first part of the analysis

(see Section 9.1). We setup the in-memory LiveIndex

and DeadIndex components according to Section 9.2.1

amd 9.2.3; i.e., LIT+ uses an enhanced hashmap with

capacity-based partitioning for LiveIndex and a HINT

for DeadIndex, while a-LIT+ uses multiple enhanced

hashmaps with capacity-based partitions on time and

partitioning on search-key A for LiveIndex, and multi-

ple HINTs based on the A-partitioning for DeadIndex.

The page size for the on-disk R-trees (both as a Fos-

silIndex and as a competitor) was fixed to 8KB.

All tests ran (again as single-threaded processes) on

an Intel Core i7-14700K clocked at 3.4GHz with 64GBs

of RAM,.1.7MB L1 cache, 28MB L2 cache, and 33MB

L3 cache, and a 4TB NVMe SSD using PCIe 4.0.

9.3.1 Tuning LIT+ and a-LIT+

Similar to Section 9.2, we first examine the best setting

for the DeadIndex (in regards to fossilization) and the

FossilIndex of LIT+. Our findings directly apply to a-

LIT+; plots omitted due to lack of space.

DeadIndex. We consider the two approaches described

in Section 7.3 for implementing the DeleteFossils func-

tion. We denote by Reconstruct the straightforward ap-

proach which drops and rebuilds from scratch the HINT

DeadIndex, and by Update in-situ, the approach which

updates the HINT partitions on site by removing all fos-

sil entries. To evaluate the approaches, we fed LIT+ the

input streams and monitored the triggered fossilization

events for different values of the memory budget M , as

a percentage of the dataset size (see Table 1). Figure 17

reports the total time required to maintain the DeadIn-

dex by removing the fossils. For each M value, we also

include the number of fossilization events as annotation

over the bars (i.e., how many times the DeleteIntervals
function was invoked).21 Furthermore, Figure 19 shows

20 Code in https://github.com/psimatis/lit_fossils
21 Without loss of generality, we set the reduction factor r
to 10% in this test; we study its effect later in Figure 20.

the average number of fossils removed from DeadIndex

per M . As expected, the deletion times for both ap-

proaches drop as M increases due to fewer fossilization

events taking place, while the average number of fos-

sils increases as larger DeadIndex chunks are removed

per fossilization. Most importantly, we observe that the

Update in-situ approach always outperforms the Recon-

struct one for all datasets; typically there is 6× to 12×
improvement. For the rest of our analysis, we always

use Update in-situ for maintaining DeadIndex.

FossilIndex. We consider the two approaches detailed

in Section 7.4 for updating FossilIndex, i.e., for imple-

menting the InsertFossilIntervals function. To evaluate

the approaches, we tested in isolation the last part of

the fossilization process. Specifically, we directly sub-

mitted chunks of the input streams to the R-tree Fos-

silIndex as fossils. Figure 18 reports the insertion cost

to FossilIndex, while varying the number of inserted

records as a percentage of the dataset cardinality (see

again Table 1). Each experiment is initialized with an

empty FossilIndex, followed by inserting a chunk of the

dataset; the first chunk is bulk-loaded using the STR al-

gorithm. We observe that the batch insertion approach

outperforms R∗-tree insertion in all cases. This is ex-

pected, as batching minimizes I/O by grouping records

into leaf nodes before writing, whereas R∗-tree insertion

adds records individually, leading to higher cost. The

only exception occurs at the 5% insertion of the WILD-

FIRES dataset, where the number of insertions is small

(i.e., 38,921) compared to other streams (e.g., 102,535

for BOOKS). In this case, the sorting overhead of the

batching method is more expensive than the restructur-

ing cost of the R∗-tree algorithm. Under these findings,

we always use batch insertion for updating FossilIndex.

We next study the overall cost of updating LIT+

and a-LIT+ when consuming an input stream. This cost

includes the cost of maintaining the LiveIndex, DeadIn-

dex, and FossilIndex components and the cost of updat-

ing tf . Note that a-LIT+ utilizes the same methods for

maintaining its DeadIndex and FossilIndex during the

fossilization process, as discussed in the previous para-

graph. Figure 20 reports our findings for different values

of the memory budgetM and the reduction factor r (see

Section 7.2). Higher values of M significantly decrease

the update time because they reduce the frequency of

disk migrations and hence the fossilization time. While

r has a smaller effect on total update time than M ,

r = 10% is the fastest in all settings. Hence, we set

r = 10% for the remaining experiments. Since a-LIT+

has slightly higher memory requirements compared to

LIT+ due to attribute A, using the sameM value would

trigger more frequent fossilization for a-LIT+. So, for

https://github.com/psimatis/lit_fossils
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(M = 20%) and a-LIT+ (M = 25%), r = 10%

the remaining tests, an empirical +5% adjustment en-

sures a fair comparison under similar memory pressure.

Figure 21 (left) breaks down LIT+’s update time for

budget M = 20%. We observe that dataset cardinality

impacts update time; larger steams (e.g., TAXIS) re-

quire substantially more time than smaller ones (e.g.,

WILDFIRES). Overall, LiveIndex dominates, since it

processes all insertions and deletions, and DeadIndex

is costlier than FossilIndex. A notable exception is

BOOKS, where long intervals inflate LiveIndex’s mem-

ory footprint, thus, leading to frequent fossilizations

and a small, cheap to maintain DeadIndex.

Figure 21 (right) shows the same breakdown for a-

LIT+. As with LIT+, LiveIndex is the slowest compo-

nent to maintain. Interestingly, all datasets exhibit the

DeadIndex dip seen in BOOKS of Figure 21 (left). This

is due to: (1) attribute A increasing memory pressure

and triggering frequent fossilizations, and (2) the over-

head of the 3D R-tree used for FossilIndex compared to

DeadIndex’s lighter HINT.

9.3.2 Querying LIT+ and a-LIT+

We study the query performance of the LIT+ and a-

LIT+ frameworks. Figure 22 provides a breakdown of

the total query time for LIT+, across all three in-

dex components while varying the memory budget M .

FossilIndex bars are annotated with the percentage of

queries that access fossils on disk. As M increases,

the fraction of disk-bound queries decreases, leading

to lower FossilIndex query times, and an increase in

DeadIndex query times. In contrast, LiveIndex remains

unaffected by the varying memory budget. This behav-

ior is consistent across all datasets, confirming that re-

ducing I/O overhead improves performance.

We next compare LIT+ against a disk-resident

Timeline and a hybrid baseline that shares LIT+’s in-

memory LiveIndex with an on-disk 2D R-tree indexes

both dead and fossil records. Both these competitors

use the available memory as an LRU cache. Figure 24

reports the total and query times; the R-tree based so-

lution was terminated on TAXIS as it was extremely

slower than the other methods. LIT+ outperforms

Timeline on both metrics, as in the in-memory query

processing study (Figure 14). Even though LiveIndex +

2D R-tree avoids transfers from DeadIndex to FossilIn-

dex, it exhibits higher update time than LIT+, because

it inserts dead intervals to the on-disk R-tree one-by-

one, which is computationally intensive and also incurs

many I/Os. Further, it experiences higher query times

for queries on recent data than LIT+’s HINT, as each

query potentially accesses the disk.
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We also study how LIT+ scales with the size of the

input stream. Figure 25 reports total and query times

on TAXIS streams spanning 1 to 3 years. Both met-

rics scale smoothly with stream size indicating stable

behavior as the index grows. a-LIT+ exhibits the same

scaling behavior; plots omitted due to space constraints.

Figure 23 provides the query time breakdown for a-

LIT+, while varying memory budget M . As observed

in Figure 22, LiveIndex is the fastest component, fol-

lowed by DeadIndex, and finally FossilIndex. An excep-

tion occurs in BOOKS where LiveIndex is slower than

DeadIndex, due to the dataset’s long-lived intervals.
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Fig. 26 Range time-travel queries: a-LIT+ against competi-
tion; default query extents, M = 25%, r = 10%

Lastly, we compare a-LIT+ against a disk-resident

MVB-tree and a hybrid solution, with a single in-

memory LiveIndex (similar to a-LIT) and an on-disk

3D R-tree for dead and fossil records. Figure 26 reports

total and query times; numbers on TAXIS-P for the R-

tree based solution again omitted. a-LIT+ is the best

on all datasets in total time; MVB-tree is the runner

up. The LiveIndex + 3D R-tree processes queries faster

than MVB-tree on every dataset except WILDFIRES.

10 Conclusions and Future Work

We proposed LIT, a hybrid index for time-evolving

databases, which decouples the handling of current

(live) record versions from past (dead) record versions.

We studied different implementation options for the live

and dead components to minimize update and query

costs. We considered both pure time-travel queries that

retrieve active record versions at some time point or pe-

riod in the past, and range time-travel queries, which

additionally apply a selection predicate on a search-key
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attribute. This work revisits our previously proposed

LIT [19] by introducing LIT+. LIT+ extends LIT to

manage memory-bounded scenarios, where the indexed

version history exceeds the system’s memory capacity.

LIT+ stores old dead versions on disk, while keeping

the recently dead versions in memory. We study mech-

anisms for batch transfers of versions between LIT+’s

components. Our tests unveil the best approaches for

handling live and dead record versions in LIT and shows

that LIT is orders of magnitude faster than temporal

indices that index live and dead versions in the same

structure. LIT uses linear space to the number of record

versions, which renders it suitable for in-memory index-

ing of temporal data. We also demonstrate the efficiency

and scalability of LIT+ in indexing long version histo-

ries. Future work includes studying the applicability of

LIT on other temporal query types (e.g., aggregation,

joins), multi-threaded processing, and LIT’s integration

into an open-source database system.
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