The VLDB Journal manuscript No.
(will be inserted by the editor)

Scalable Lighting-fast Temporal Indexing

Panagiotis Simatis -
Mamoulis

George Christodoulou -

Abstract We study the problem of temporal database
indexing, i.e., indexing versions of a database table in
an evolving database. Although modern machines in-
clude large memory chips, data volumes quickly ex-
ceed resources, making it infeasible to keep the entire
history in memory. Therefore we require temporal in-
dices that optimize main memory usage while remain-
ing scalable as the history grows. We depart from
the classic indexing approach, where all data versions
are indexed in a single data structure, and propose
LIT, a hybrid index that decouples the management
of the current and past states of the indexed column.
LIT includes optimized indexing modules for current
(i.e., live) and past (i.e., dead) records, supporting ef-
ficient queries and updates. Furthermore, our extended
approach LIT handles record versions in memory us-
ing LIT bounded by a memory budget, while man-
aging older versions (fossils) that exceed the budget
on disk. We show that LIT outperforms state-of-the-
art solutions by orders of magnitude while using space
linearly proportional to the number of indexed record
versions, making it suitable for main-memory temporal

Panagiotis Simatis

Department of Computer Science and Engineering, Univer-
sity of Ioannina, Greece

E-mail: p.simatisQuoi.gr

George Christodoulou

Faculty of Electrical Engineering, Mathematics and Com-
puter Science, Delft University of Technology, Netherlands
E-mail: g.c.christodoulou@tudelft.nl

Panagiotis Bouros

Institute of Computer Science, Johannes Gutenberg Univer-
sity Mainz, Germany

E-mail: bouros@Quni-mainz.de

Nikos Mamoulis

Department of Computer Science and Engineering, Univer-
sity of Ioannina, Greece

E-mail: nikos@cse.uoi.gr

Panagiotis Bouros - Nikos

data management. In addition, we also show that LIT™
efficiently indexes long database histories on disk while
maintaining scalability and query performance.

Keywords Temporal data - Query processing -
Indexing

1 Introduction

Temporal data management has been studied exten-
sively for at least four decades [10, 1T}, 24, 30} [51]. Tem-
poral databases track the database evolution for the
support of time-travel queries: given a database query
and a past time moment (or time interval), process the
query on the database instance(s) that was (were) valid
then. Temporal and multi-version data management re-
gained interest recently [7, [9] [12], [T5] 20, 25| 28] [38] 44,
58], due to the increase of cheap storage that makes it
often possible to track the versions of a database in the
main memory of a commodity machine.

As an example, consider a database table T', storing
information about company employees. The table has
three attributes: ID, Name, and Salary. As the database
evolves over time, records are inserted, deleted, or exist-
ing attribute values are updated. Figure [1| shows some
versions of T', where, at time tg, T is initialized to in-
clude two records; at time t1, a new record (with ID=3)
is inserted to T'; at time to, the Salary value of record 2
is updated; and at time t3, record 1 is deleted and record
2 is updated. T evolves as update events arrive; the
stream (time-sequence) of update events is also shown
in the figure (bottom-left). Insertions (deletions) are
modeled by events of type start (end); each update (i.e.,
value change) is modeled by a deletion immediately fol-
lowed by an insertion. Finally, the figure (bottom-right)
shows the wvalidity intervals of the records and their val-

P. Simatis et al.

2
ID | Name | Salary ID | Name | Salary ID | Name | Salary ID | Name | Salary
1 Smith | 50K 1 Smith | 50K 1 Smith | 50K 2 Black | 35K
2 Black | 30K 2 Black | 30K 2 Black | 35K 3 James | 45K
3 James | 40K 3 James | 40K

after to after t; after t, after t3
EventlD | Time | rID | r.Salary | Event Salary
0 t 1 50K start

1 (Smith)
1 t 2 30K start 50K 3 (James)
2 t 3 |40k start 3 Ja =
2 (8la

3 t, 2 |30k end 2(Black) !
4 t 2 |35k start 25K
5 t 1 50K end
6 t 3 40K end
7 t 3 | ask start to W0ty tar fas f, tyltaety,

Events sequence Geometric representation

Fig. 1 Example of a time-evolving table

ues in the Salary attribute, as flat line segments. The
current time is denoted by ;0.

We study the problem of indexing an evolving
database table T' to support time-travel queries. We
first focus on indexing for pure time travel queries,
where the objective is to retrieve the record versions
that were valid at a given timepoint or timerange in the
past. In our running example (Figure |1)), a pure time-
point query qq is “find all records in 7', which were valid
at time t40” and the answer records are (1, Smith, 50K)
and (2, Black, 30K). Then, we study how our indexing
scheme can be extended to temporally index T" with re-
spect to a specific attribute T.A, for range time travel
queries, that retrieve record versions r in T" which were
valid at a given timepoint/timerange and their . A sat-
isfies a range query predicate. Such a range-timepoint
query ¢; is: “find all records in T', which were valid at
time ¢4; and have Salary at most 32K.” Query q; is ge-
ometrically represented by the vertical line segment at
time t41 and retrieves the record versions whose times-
pan (horizontal line segment) is crossed by the vertical
line segment at t41, i.e., record (2, Black, 30K). An-
other example is range-timerange query go: “find all
records in 7', which were valid anytime between t42 s
and 42 . and have Salary between 25K and 43K,” mod-
eled by the rectangle in Figure Again, the query
results are the horizontal segments that intersect the
rectangle, namely (2, Black, 30K) valid in [tg, t2), (2,
Black, 35K) valid in [to,tnew), and (3, James, 40K)
valid in [t1,t3). Note that it is important to find the
records and their validity intervals in order to be able
to distinguish between results corresponding to differ-
ent versions of the same record /entity (e.g., Black in the
results of g2). Time-travel queries are included in SQL
extensions [27, B4] and implemented in PostgreSQIEl,

! https://wiki.postgresql.org/wiki/ Temporal-Extensions

Oracle Workspace Manager, IBM DB2 [50], Microsoft
SQL ServeP] Teradata [1], and MariaDBP}

Previously proposed temporal indices can be clas-
sified to (1) methods for transaction-time and multi-
versioned databases (e.g., MVB-tree [4], Timeline index
[30]), (2) data structures for (time) intervals [6] [8] 17,
22, 33]. Our work belongs to the first category, where
the goal is to support the aforementioned queries, but
also real-time version updates, in a continuously evolv-
ing database. Indices in the second category offer fast
search times, but (1) they do not support effectively
live data versions, i.e., records which are valid now, but
we do not know up to when in the future and (2) are
mainly designed for static intervals in a static domain.

Contributions. We aim at the efficient support of up-
dates in a continuously evolving database, and target
a much better performance in queries compared to the
state-of-the-art access methods for time-evolving data.

Our proposal is LIT, a hybrid index, which indexes
live records (i.e., those valid at .0), like (2, Black,
35K), by a different data structure compared to dead
records (i.e., those not currently valid), like (2, Black,
30K). Specifically, LIT includes a Livelndex for the live
records; LiveIndex only needs to index the begin time
of the validity of each live record. For dead records we
use a DeadIndex, which includes their validity intervals
with both starting and ending timepoints. When a tem-
poral record is created, it is added to Livelndex; when
the record dies (i.e., deleted from the temporal table
T, or updated), it is deleted from LiveIndex and added
to the DeadIndex. Given these operations, Livelndex
supports fast temporal appends (i.e., add a new live
record at the “temporal” end of the index) and dele-
tions, whereas DeadIndex needs only to support inser-
tions (anywhere in the time domain up to ey), but
no deletions (since past data versions are never deleted
from a temporal DB). Both Livelndex and DeadIn-
dex gracefully adapt to the ever-evolving time domain.
We tuned, developed and tested the best implementa-
tions of LiveIndex and DeadIndex, and compared LIT
with in-memory versions of the state-of-the-art tempo-
ral and multi-version indices [4] [30] on mixed workloads
of queries and version updates, showing that LIT is or-
ders of magnitude faster.

LIT was originally presented and evaluated in the
preliminary version of this paper [19]. Although LIT
is appropriate for indexing the brief or recent version
history of a data table, eventually the available mem-
ory might be exhausted, as the indexing requirements
grow with the number of updates. We propose an ex-

2 |https://learn.microsoft.com/en-us/sql/relational-
databases/tables/temporal-tables
3 http://mariadb.com/kb/en/system-versioned-tables/

https://wiki.postgresql.org/wiki/Temporal_Extensions
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
http://mariadb.com/kb/en/system-versioned-tables/

Scalable Lighting-fast Temporal Indexing

tension to LIT, denoted by LITT, which periodically
offloads old versions to the disk. LITT differentiates
between two types of dead records; those that died be-
fore a designated timestamp ¢y, which are called fos-
sils, and those that died after t;. Fossils are stored
in a disk-resident component called Fossillndex, free-
ing main memory for LiveIndex and DeadIndex to re-
ceive new entries. Queries that access timestamps be-
fore ¢t probe all Livelndex, DeadIndex, and Fossillndex
components, while those referring to recent timestamps
are handled in-memory by Livelndex and DeadIndex.
Thus, queries over the recent past are processed effi-
ciently in memory, while queries for older versions are
still supported. We show how the three components are
updated as data evolves; LiveIndex and DeadIndex by
individual updates at current time t,,,,,, while Fossilln-
dex, by periodic updates, when the available memory
is exhausted. We investigate different options for main-
taining LITT. Our study shows that the most effective
strategy combines a partition-aware deletion, tailored
to our best implementation of Deadlndex, and aggre-
gating fossils before inserting them into Fossillndex.

Outline. Section [2] reviews related work. In Section [3]
we define time-travel queries and the data whereon they
apply. Section (] proposes an extension to the state-of-
the-art interval index [I7, [I8] to manage live and dead
record versions in an ever-growing time domain. In Sec-
tion 5] we present our novel hybrid index LIT for pure
time-travel queries. Section [6] extends LIT to index an
attribute A of the records besides their temporal va-
lidity intervals, for range time-travel queries. Section [7]
extends LIT to incorporate a disk-resident component
for records that died before a designated timestamp.
In Section [8] we discuss topics related to recovery and
consistency. Finally, Section [J] presents our experimen-
tal analysis, while Section [10| concludes the paper.

2 Related Work

In this section, we review related work on (1) index-
ing intervals and (2) indexing data versions in a time-
evolving database; we also briefly present other recent
work on temporal data management.

2.1 Indexing Intervals

Valid-time temporal databases store record versions
which are valid during a well-defined time interval [42].
This interval could refer to the past, the future, or
may start at some time in the past and finish in the
future (e.g., an activated credit card which expires in
the future). The order by which records in a valid-time

database are inserted, deleted, or updated is not neces-
sarily related to the validity time of the records.

Managing valid-time records for time-travel queries
can then be seen as a case of indexing intervals (i.e., one-
dimensional ranges), which is a well-studied problem
[6, 8, 17, 22 33]. Classic data structures for intervals
include the segment tree [§] and the interval tree [22].
They are both binary search trees, built from a static
set of intervals and designed to answer point queries
(i.e., find the intervals that contain a given value) in
O(logn + K) time, where n is the number of data in-
tervals and K query result size. Their space complexity
is O(nlogn) and O(n), respectively. The interval tree
also supports range queries, i.e., find intervals that over-
lap with a query interval (value range) in O(logn+ K).
Disk-based extensions were presented in [2] 33].

Data structures for multi-dimensional boxes, such as
the R-tree [B] 26], can also be used for intervals, which
can be considered as 1D boxes. For example, a simple
and dynamic data structure for intervals is the 1D-grid,
which divides the space into a number of disjoint par-
titions. Each interval is assigned to all partitions that
overlap with it. A point (or range) query ¢ is evalu-
ated by accessing the partition(s) intersecting ¢ and
reporting the intervals there after conducting compar-
isons as necessary. Duplicate results can be avoided af-
ter dividing the data in each partition to classes based
on whether they begin inside or before the partition
[17,139,[54]. Indices which consider both the values and
the durations of the intervals are the period index [6]
and the RD-Index [I6]. These are self-adaptive struc-
tures which split the domain into coarse partitions, and
then further divide each partition hierarchically to or-
ganize the contained intervals based on their positions
and durations.

An alternative approach is to map intervals to
2D points [3, 29, B8, 49, B5, [56]. Specifically, each
data interval s = [s.start,s.end) is mapped to point
(s.start, s.end) in the D x D space, where D is the do-
main of the interval endpoints. Figure a) shows inter-
vals as points in this 2D space. Since s.start < s.end for
each interval s, all points lie above the diagonal connect-
ing points (0,0) and (D, D). Each point or range query
becomes a rectangular range query in the 2D space,
having x- and y-projections [0, g.end] and [g.start, D],
respectively, as shown by the shaded rectangle in Fig-
ure a). To index the 2D points, we can directly use a
spatial data structure [29] 38| 55]. As a different option,
SEB-tree [52] employs a collection of BT -trees.

HINT [I7] is the state-of-the-art in-memory index
for intervals. HINT defines a hierarchy of m + 1 lev-
els, such that level £, 0 < ¢ < m uniformly divides the
domain into 2™ partitions, as shown in Figure b) for

P. Simatis et al.

A
end

g.end

q.start

start

(a) 2D mapping [3| [29] 38 [49] [55], [56]

g.start g.end

Poo

P10 P14
Paro Pas Py Py3
Pso | P3s P3s i P33 Psa | Pis

q
(b) HINT [17, [18]

Fig. 2 Interval indices

m = 3. Each data interval s is then normalized and dis-
cretized in the [0,2™ — 1] domain, and assigned to the
smallest set of partitions from all levels that cover s.
So, s is assigned to at most 2 partitions per level. The
intervals in each partition are divided into two classes:
those that start before the partition (replicas) and those
that start inside the partition (originals). For instance,
in Figure 2{(b), interval s is added to the shaded parti-
tions; in P31, s is added to the sub-division Pgl, stor-
ing original intervals in P31, while in P>; and Ps 4,
s is stored to the corresponding replica sub-divisions
(Pf’1 and Pgﬁ, respectively). Given a point or a range
query q, at every level £ of HINT only the sequence of
partitions that intersect ¢ are accessed. For the query
q in Figure b), the partitions with a solid/bold out-
line will be accessed. In addition, only for the first such
partition in £ both originals and replicas in it are consid-
ered, while for the remaining partitions only originals
are considered. Lastly, the number of partitions in the
entire index for which comparisons between data inter-
val endpoints and query endpoints are required is ex-
pected to be at most 4 [I7]. Thus, most query results
are reported without performing comparisons, giving
HINT a performance advantage over other methods.

Deficiencies of interval indices. While HINT [17]
is the best performing index, it shares a weakness of
most other interval indexing methods: the domain of
the interval endpoints must be known apriori. If the
data domain grows (i.e., as in a temporal database), the
partitions may have to be updated to cover the new part
of the domain, and interval assignments to partitions
might change to preserve index properties. On the other
hand, the 2D point transformation approach [55] avoids
this issue as a 2D spatial index (e.g., R-tree) can adapt
to a growing domain. Still, the query regions cover a

relatively large part of the mostly sparsely populated
2D space, so this approach is not as efficient as HINT.
More importantly, all methods discussed in this section
are not appropriate for indexing live data versions in
temporal databases, whose end is unknown (i.e., equal
to the ever-changing t,,.,,). Finally, data structures for
intervals are not designed for indexing another attribute
at the same time; i.e., they are not appropriate for the
range time-travel queries discussed in the Introduction.

2.2 Indexing Data Versions

Transaction-time databases [41] manage the evolution
history of a database. In Section [l we gave an exam-
ple of such a database containing a table T' with em-
ployees records. Indexing transaction-time DBs is more
challenging than valid-time DBs, since there are live
records which are valid now, but we do not know their
end-time. These records comprise the current database
state and may be changed or deleted in the future, but
we are not aware of the exact time for this. In contrast,
dead records belong to past states for which we do know
their end-time. Records (2, Black, 30K) and (2, Black,
35K) in Figure|l| are examples of dead and live records,
having validity [to,t2) and [t2, thow), respectively.

Previous work on temporally indexing an evolving
DB table extend current-state indices to support search
on all table versions. A representative access method
in this category is the Multiversion B-tree (MVB-tree)
[4], which succinctly captures the values of the indexed
attribute in all versions of records. For a comprehen-
sive survey of early indexing methods for time-evolving
databases see [49]. These indices do not only support
pure time travel queries, but also range time travel
queries based on a search-key attribute A (i.e., from all
records r which were valid at some timestamp or pe-
riod in the past retrieve those for which v; < A < vy).
To support such queries, they index simultaneously the
temporal versions of the records and their values on
the search key attribute A. These methods focus on
minimizing disk I/O during search; their main-memory
versions are relatively slow in search and updates com-
pared to the interval indices reviewed in Section [2.1

A more recent index for transaction-time DBs is the
Timeline index [30], which builds upon the Time index
[23] and supports very fast updates. In a nutshell, the
Timeline index is an Events Sequence Table (see Fig-
ure [1]) paired with a set of Checkpoint Tables (CT). A
CT at timestamp ¢; materializes the entire set of active
record-ids at ¢;. To evaluate a point or range query, the
latest checkpoint before the query is accessed to acti-
vate the records in it, and the Events Sequence Table
(EST) is scanned from thereon until the end time of the

Scalable Lighting-fast Temporal Indexing

query to identify the records that are active at or dur-
ing the query. The update cost of the Timeline index is
minimal as a database change simply appends an event
at the end of the EST; still, the rare CT construction
events have significant cost. Query evaluation using the
Timeline index is quite expensive due to the overhead
of scanning the events and updating the set of active
records until the entire query result is retrieved.

In this paper, we revisit the indexing of transaction-
time DB tables (i.e., version data), for pure time-travel
and range time-travel queries. Our approach is a major
departure from previous work which indexes dead and
live versions in the same data structure. Instead, we de-
fine separate data structures for live and dead versions;
in principle, versions that die are transferred from the
first data structure to the second. By decoupling in-
dexing for live and dead versions, we can optimize both
data structures. In Section[7] we show how our proposal
can be extended to handle dead versions on the disk.

2.3 Other related work

Recent work in temporal databases studies the efficient
evaluation of other queries, besides time-travel selec-
tions. Temporal aggregation [31, A0 45, B3| 57 com-
putes aggregates of valid record versions (e.g., total
project funding) during a query time period (e.g., from
3-23-2021 to 5-15-2023); the output is one value for each
time interval in the query period where the aggregate
does not change. Temporal top-k queries [25], B3] are a
special case of temporal aggregation. A temporal join
[13, 1], 28], 44, [47] finds pairs of record versions (in two
different tables) whose validities temporally overlap and
they agree on the join key attribute. Historical what-if
queries compute the effect that a change in a historical
record value would have to the evolution of the database
[15]. Other recent related work includes the definition
of new temporal semantics [20], system optimizations
in the implementation of temporal and multi-version
databases [9, 38, 58], temporal database benchmarking
[7], and novel temporal integrity constraints [12].

Inspired by [32], learned multi-dimensional indices
[211, 3], 48] are proposed as an alternative to traditional
indexing structures. These methods leverage machine
learning to capture the data distribution, aiming to
build efficient and compact indices. According to [36],
some learned indices outperform traditional ones, es-
pecially for datasets with uniform distributions, and
achieve significant space reductions. However, their con-
struction cost is substantially higher than that of tra-
ditional structures, and provide limited support for dy-
namic operations.

3 Problem Definition

We consider a database table T, updated over time, by
inserting, deleting or updating records. In this work, we
focus on developing indexing for the following types of
time-travel queries [49].

Query 1 (Pure Timeslice/Timerange Query)
Given a query time point q.t or query time interval
[g-tstart, q.tend], retrieve the records in all versions of
T which were wvalid at qt or some time during
[q.tstart,q.tend], respectively, together with their
validity intervals.

Query 2 (Range Timeslice/Timerange Query)
Given a query time point q.t or query time interval
[q-tstart, q.tend], an attribute A of T, and a range
[q.Astart,q.Aend], retrieve the records r in all
versions of T which (1) were valid at g.time or some
time during [g.start,q.end], respectively, and (2)
satisfy q.Astart < r.A < q.Aend together with their
validity intervals.

Without loss of generality, we assume query intervals
closed at both ends. In addition, for each change in T an
update event is generated, which may trigger updates
in the indices of T'. These update events include: (1) the
insertion of a record to T, (2) the deletion of a record
from T, and (3) the change of one or more attribute
values of a record in T. An event of type (3) can be
modeled as an event of type (1) immediately followed
by an event of type (2). Last, we assume a single non-
temporal attribute A in T for Query [} in Section [6.3]
we discuss how to handle multiple A attributes.

In a pure-time index that supports Query [1} each
of the above event types affects one or more index en-
tries. Specifically, the insertion of a record r at time
point ¢ inserts a new index entry for r.id having as va-
lidity interval [r.start = t,r.end = tpow), Where tnou
models the current time point, which is ever-changing.
The deletion of record r at time ¢ updates the last index
entry for r.id from [r.start,t,o) to [r.start,t). The up-
date of a record r at time point ¢ triggers a deletion of
r at point ¢, followed by an insertion of the new version
of r with r.start = t.

In an index that supports Query [2| the changes af-
fect the index as described above with the exception
that record updates on attributes other than the in-
dexed attribute r. A have no effect on the index. In other
words, we consider two or more consecutive versions of
r having the same value in r.A as the same version.

As discussed in Section there is ample previous
work on temporal indexing for time-evolving database
tables. However, these indices exhibit poor search times

P. Simatis et al.

compared to interval indexing (Section . In Sec-
tion [d] we extent the state-of-the-art interval index to
support Query [TJover time-evolving databases. LIT, the
main proposal of this paper is first described in Sec-
tion |5| for pure time queries (Query and then ex-
tended in Section |§| for range time queries (Query .

4 Time-evolving HINT

A first attempt to define an efficient in-memory index
for time-evolving tables is to convert HINT [17, 18], the
state-of-the-art interval index, to a single data structure
that can handle both live and dead intervals (records).
We call this data structure time-evolving HINT (te-
HINT). A te-HINT for pure time-travel queries (Query
1) extends HINT in two directions. First, it includes
both live and dead records, whereas HINT indexes only
intervals for which the end endpoint is immutable. Sec-
ond, it supports an evolving domain for the interval
endpoints (i.e., an evolving time domain); the original
HINT requires a pre-defined domain. These changes re-
quire structural modifications and new update opera-
tions compared to HINT [I7], which are described next.

4.1 Live and dead sub-partitions

The first difference between te-HINT and HINT is the
introduction of live partitions in the former. Recall from
Section[2.1]that in each partition Py ; at level £ of HINT,
the intervals are divided into two classes: the set of
originals PZ% which start inside the domain range of
P, ; and the set of replicas PéRi, which start before the
domain of Pp ;. In te-HINT, W7e further classify each in-
terval s € Pe(,)i as live original or dead original, depend-
ing on whether its end time point is known; we denote
the sub-partitions that hold live and dead originals by
ng and PgiD, respectively. Similarly, we maintain sub-
partitions ng and Pfl-D for the replicas of P, ;. Dead
intervals in PEZ.D or PZED are immutable, which means
that they persist in the partition and cannot move to
other partitions, whereas live intervals can be deleted
or moved to other partitions.

4.2 Handling updates

There are two types of update events over time: either
the creation of a new live interval (as a result of an
insertion/modification to the database), or the finaliza-
tion of an existing live interval (as a result of a dele-
tion/modification to the database).

B S S S4
S, S s1 5, S3 [
1S3 Sa1 Pys .
P§10: Poo i Py 1 Py
Pl P i Pyt Py Py i Pyy Pra i Pis
to thow th to Thow ty to thow ty

(a) insert sz, s3 (b) delete sz (c) insert s4

Fig. 3 Example of te-HINT

Insertion events. On an insertion event, i.e., a new
live interval s begins corresponding to a version of a
record r, we insert s to te-HINT (in live sub-partitions)
using the insertion algorithm of HINT [I7], assuming
that the end time point of s is the end of the current do-
main of te-HINT (i.e., a timepoint in the future), called
the horizon of te-HINT and denoted by ty. We also
insert an entry (r.id, s.start) in an auxiliary key-value
data structure M, ;q—start that facilitates finding a live
interval in te-HINT given the corresponding record id.
Figure a) shows a 2-level te-HINTexample, holding
interval s1, which corresponds to a dead record, in par-
tition Py o (sub-partition PO? &)- Two new live intervals
so and s3 are created at t,,, and they are inserted to
partition P; 1 (sub-partition Pf?f).

Deletion events. When a deletion event arrives for
record r carrying an s.end, i.e., an existing live inter-
val s is terminated and becomes dead, we need to re-
move s from the live sub-partitions of te-HINT and add
it to the appropriate dead partitions. For this, we use
Hrid—sstart tO retrieve s.start, using r.id, and we run
the insertion algorithm of HINT for s’ = [s.start,tp) to
identify the partitions wherein s’ appears and remove
s’ from the corresponding live sub-partitions. Subse-
quently, we use the insertion algorithm again to add
s = [s.start, s.end) to the relevant dead sub-partitions.
Note that some of the partitions identified by the dele-
tion algorithm may differ from those found by the inser-
tion algorithm, because s # s’. As an example, assume
that at time t,,0, shown in Figure b), a deletion event
for live interval s, arrives, i.e., the record version cor-
responding to so is deleted from the indexed table T.
After finding so.start using H,.;q—sstart, the partitions
(Pl? L) where s9 is stored as live are identified using in-
terval [s.start,ty) and sy is removed from them, and,
finally, so becomes [sa.start,t,e,) and is re-inserted to
te-HINT as dead (i.e., to partition Pff).

Domain Extension. te-HINT is initialized to have a
single level (0) which includes a single partition Py g.
The timespan [0,tg) of the partition is small (e.g., one
hour) and depends on the application. In both insert
and delete events, it may happen that the current time
point t,,, when the update takes place is beyond the
current horizon ¢y of te-HINT. Such an update triggers

Scalable Lighting-fast Temporal Indexing

the extension of the (time) domain that te-HINT cov-
ers. The easiest way to accommodate this extension is
to double the domain (and the horizon ¢z), by adding
one more level to te-HINT. Specifically, we add a new
level 0 to the index and add 1 to the identifiers of ex-
isting levels (i.e., previous level 0 becomes level 1, level
1 becomes level 2, etc.). This does not affect the identi-
fiers and contents of existing partitions at each level ¢,
but doubles the number of possible partitions at £. Sub-
sequently, we add all live intervals from all partitions
as live replicas to partition P 1, except from those in
old partition Py o which are moved to the new P o. By
this, we reduce the replication of live intervals and fa-
cilitate the necessary updates when new events arrive.
Essentially, live intervals are moved only when there is
a domain extension. Continuing the previous example,
assume that a new live interval s4 is created at t,,,, of
Figure c). Since 0y, is greater than or equal to ty,
as per the previous state of te-HINT (Figure 3(b)), tg
is doubled, one more level is added to te-HINT, and
the current partitions are renamed (i.e., previous Py
becomes P g, etc.). Existing live interval s3 is added to
the new Pll?f. The new interval sy4 is inserted to Pf L.

5 The LIT Hybrid Index

Capitalizing on the original HINT, te-HINT will de-
liver excellent performance on pure time-travel queries,
as shown in [I7, [I8]. But, te-HINT will suffer from
slow updates, mainly due to the insertion (and transfer)
of intervals to (and beween) multiple partitions when
record versions are initiated (terminated). In view of
this shortcoming, we design a hybrid index, termed LIT,
which decouples the indexing of live and dead versions.
For now, we describe LIT for pure time-travel queries
(Query [1] in Section [3). Its extension for range time-
travel queries (Query [2)) will be discussed in Section @

5.1 Overview

Figure [4] shows an overview of LIT, which comprises
two components; a Livelndex denoted by Zj, storing
all current record versions (indexed by their start time-
point) and a DeadIndex, denoted by Zp, for the dead
(i.e., past) record versions (indexed by their validity in-
tervals). Both components are dynamic, albeit handling
different updates. The stream of updates to the indexed
table T is consumed by the Livelndex Zj,. Specifically,
when a new record version is created (i.e., an insertion
to T'), the start point s.start = 0, of its validity inter-
val is inserted to Zr; this event type has no impact on
the DeadIndex Zp. On the other hand, when a record

Update Events Queries
(t1,1,end) [q2.tstart,q2.tend]
(to,2,start) [qa.tstart,q1.tend]
(to,1,start) [qo-tstart,qo.tend]
i
Openlnterval@ QueryLive QueryDead
Closelnterval
Live Dead
Index Index
InsertDi val E— T
] —r— T —
o o 1o—=o —
o 2 |:> i

gtend thow
Fig. 4 Overview of LIT

g.tstart qg.tend now

version “dies” (i.e., a deletion from T'), the correspond-
ing entry is removed from Z; and an entry is inserted
to Zp for the dead record version. Record updates ter-
minate (i.e., “delete”) the current (live) version of the
record and insert a new version.

To evaluate a pure time-travel query ¢ = [g.tstart,
g.tend] both Zr, Tp need to be probed. As the two
components index disjoint sets of record versions, these
probing tasks are completely independent. Specifically,
we probe the Livelndex Z;, using only q.tend; every live
record that started before g.tend is guaranteed to be
part of the query result. In contrast, the Deadlndex
evaluates a typical interval range query to find all dead
record versions with a validity interval that overlaps q.
In what follows, we elaborate on the LIT components
Z;, and Zp, and describe their key operations.

5.2 The Livelndex Component

The Livelndex Zj, offers three key operations. Specifi-
cally, 7y, is updated to index a new live record (Function
Openlnterval) or updated to un-index a record version
that just died (Function Closelnterval). Z;, also evalu-
ates pure time-travel queries (Function QueryLive). To
efficiently implement these functions, Z; defines an in-
ternal identifier r.num for each live record version r in
it. The num identifier is a serial number that captures
the order in which the version start timepoints were
read from the input stream of updates; num is used to
(1) locate a live version to be deleted from Z; when a
delete event arrives for it, and (2) define an implicit or-
der of the live versions based on their start points, used
to index them in Zj,. Livelndex also maintains an aux-
iliary hash table H, ;q_snum, Which returns the internal
num id, for the live version of a given record id.

5.2.1 Data structures

We discuss three alternative structures for Liveln-
dex, aimed at both fast updates and efficient time-
travel queries. We experimentally compare them in Sec-
tion [@.2.11

P. Simatis et al.

Array. The first alternative is to use an append-only
array to index live records in sequential fashion. Up-
dates can be efficiently handled in constant time, as
follows. Function Openlnterval simply appends an entry
at the end of the array for a new live record version,
while Closelnterval, drops a tombstone on the existing
entry for a newly closed record version. This entry can
be directly accessed using the num of the record, which
is obtained by probing the record id against H, ;q—snwm-
To answer queries, the QueryLive function scans the dy-
namic array from its first entry, comparing the start of
every live record to g.tend while ignoring the tomb-
stones. By construction, the dynamic array stores the
live records sorted by their num, which means that the
records are also implicitly sorted by their start, in in-
creasing order. Hence, QueryLive terminates the scan af-
ter accessing the first record that started after g.tend.
As already mentioned, updates cost O(1) time; how-
ever, a query costs O(n), assuming n updates so far,
since for each array position p up to g.tend, we must
check if p is a tombstone.

Search tree. A second alternative data structure for
the Livelndex Zy, is a search tree (e.g., a BT-tree), us-
ing num as the search key. With such a search tree
in place, we no longer need to lazy-update Z; when
a record version dies. Instead, Closelnterval probes the
tree using the num identifier of the record (obtained
from M, ;d—snum), and then directly removes the corre-
sponding entry. To answer a [g.tstart, q.tend] query, we
scan and report entries from the first tree leaf until we
find the first entry that has its start after g.tend. Us-
ing this data structure both searches and updates cost
O(logn), where n is the number of updates so far.

Enhanced hashmap. In terms of updating (Functions
Openlnterval and Closelnterval), we generally expect the
sorted array to outperform the search tree, due to its
simplicity. Querying efficiency depends on the charac-
teristics of the input stream; update-heavy workloads
create a large amount of tombstones to the array, ren-
dering it slower than the search tree. In view of the
above, we consider a data structure, which exhibits
competitive update time to the array and has lower
query time. To this end, we suggest using an enhanced
hash table, similar to the Gapless hashmap proposed in
[46] or the java.util.LinkedHashMap in Java. Such struc-
tures can handle insertions and deletions using num in
constant time (typical for hash tables), but also offer
scan time linear to the number of contained entries,
which facilitates fast query processing. In particular,
the Gapless hashmap uses a contiguous memory area
to store the elements. Insertions append new elements
at the end of this area, while deletions are handled by

swapping the deleted element with the last one and
reducing the array size by one. Hence, updates cost
O(1) time as in the sorted array. Scanning is fast as
it steps through the contiguous storage area sequen-
tially. Different to both the array and the search tree,
the hashmap does not maintain the entries sorted by
their num, and therefore, a full scan is required to an-
swer time-travel queries. Hence, queries cost O(|ZL]),
where |Z;| denotes the number of live entries. This is
lower than the O(n) query cost of the sorted array, but
still quite significant. In the next section, we suggest
partitioning techniques that reduce Zj’s search cost.

5.2.2 Temporal partitioning of Livelndex

Given a query, a LiveIndex implemented by any of the
data structures in Section [.2.1] would need to conduct
comparisons for a large number of live versions (inde-
pendently of the underlying structure), since there is no
way to directly output versions guaranteed to start be-
fore g.tend. In view of this, we propose a temporal par-
titioning of the Livelndex to boost time-travel queries.
The key idea is to maintain Z;, as a chain of temporal
partitions or simply buffers, instead of a single one, such
that all num’s in a buffer are smaller than all num’s in
the next buffer. Hence, the start points of live record
versions in a buffer are smaller than or equal to the start
points of live versions in the next buffer. For each query,
only the buffers that may contain results are accessed
and, more importantly, comparisons are conducted only
in one buffer. This partitioning of the Livelndex Zj, is
orthogonal to the data structure used for each buffer.

Duration-based partitioning. An intuitive parti-
tioning approach for Zj, is to consider a duration con-
straint Dr. Under this, 77, essentially resembles a uni-
form 1D-grid of equi-width partitions, one for each
buffer. A buffer B; contains the live entries that started
inside the [i- Dy, (i + 1)- Dy) range of time units. Given
a [g.tstart,q.tend] time-travel query, we first deter-
mine the bucket B.,q that contains the g.tend times-
tamp; this can be done in constant time by a simple
|g.tend/ Dy, | division. The records inside the buffers be-
fore Be,q can be directly reported as results; by con-
struction of the Livelndex, these records started be-
fore g.tend. In contrast, comparisons against q.tend are
required for the live records inside the last Be,q4, i.e.,
Querylive handles B4 as if the LiveIndex comprised
a single buffer. Regarding updates, inserting a new live
record version to Zy, (Function Openlnterval) is not sig-
nificantly affected by the above partitioning, as the new
entry will be added to the last buffer, i.e., the one con-
taining the most fresh records; extra action is required
when Dy, time units have already past and a new buffer

Scalable Lighting-fast Temporal Indexing

Hiid>num

) Closelnterval(r.id=Bob)
Bob->980 | C1:find(Bob)| ¢ _399

(980)

Openinterval(r.id=Bob)
thow=360
next num=980

O1: insert
(Bob,980)

02: insert
(980,360)

[QueryLive(g.st, q,end:zsﬂ

_~"Q1: scan&report(B,, i<286 div 100)
_—"Q2: scan&compare(Byss uy 100)

o C3: find&delete(980)
S R A Saart) Ty S | Ca: InsertDeadinterval
H (Bob, 360, 380)

timespan

(a) duration-based

Hiid>num

) Closelnterval(r.id=Bob)
Bob->340 | C1:find(Bob)| ¢ _gg;

| QueryLive(q.st, q,end=286)

C2: find&delete(340)
! C3: InsertDeadinterval I":"’
! (Bob, 860, 982) ndex

Openinterval(r.id=Bob) | 01:insert
tow=860 (Bob,340)
next num=340

02: insert
(340,860)

On-top index (start—>B,)

(b) capacity-based

Fig. 5 Livelndex: partitioning

needs to be created first. Closelnterval is more challeng-
ing, as we need to fast determine the buffer which con-
tains the start of the dying record version. For this
purpose, we define an auxiliary, lightweight structure
on top of the buffers. This structure stores a (num, ptr)
entry for each buffer B of Z;, where num is the low-
est internal identifier of a live record version inside B
and ptr is a pointer to directly access B in the chain.
Recall at this point, that Livelndex is organized by
num and so is its on-top structure, by construction.
When a version of record r.id dies, Closelnterval finds
its num using H, ;d—num, then binary-searches the on-
top structure using r.num and, lastly, follows the buffer
pointer to locate the entry for num inside the corre-
sponding buffer B. After deleting the entry from Zj,
Closelnterval, forwards the dead version for insertion to
Zp. Openlnterval may update the on-top structure when
the last buffer is full and a new is created. Figure a)
presents a duration-based partitioned Livelndex, with
the necessary steps taken for each of the Openlnterval,
Closelnterval, and QueryLive operations.

Capacity-based partitioning. Duration-based parti-
tioning may define imbalanced buffers with respect to
the number of contained entries, rendering imbalanced
query costs. An alternative approach that results in bal-
anced partitions is to use a capacity constraint Cp,, al-
lowing each buffer to hold at most C}, entries. E| Un-
like duration-based partitioning, capacity-based parti-
tioning can directly access the needed buffers during
both types of updates. For Openlnterval, we simply ap-

pend the new live record version at the last buffer, while
for Closelnterval, a num/C}, division determines which
buffer B contains the recently deceased version. Note
that if the last buffer is already full, Openlnterval cre-
ates a new buffer B,., after the last one and appends
the new live version in Bj,cq-

In contrast, it is no longer possible to directly deter-
mine buffer B.,q for a [g.tstart, q.tend] query. In view
of this, we define an on-top structure, which stores a
(st, ptr) entry for each buffer B of the Livelndex, where
st is the lowest start timepoint of a record version inside
B and ptr is a pointer to directly access B. Note that
the on-top search structure is by construction sorted by
version start and that it may contain multiple entries
for the same start. Hence, given query [g.tstart, q.tend],
QueryLive first binary-searches the on-top structure to
identify the first buffer that could contain g.tend and
sets this as Bepq. With B.,q4, the function proceeds as
for the duration-based Livelndex, by directly reporting
records inside every buffer before B.,4 and conducting
comparisons against g.tend for B, 4. Lastly, besides up-
dating buffers, Openlnterval and Closelnterval also up-
date accordingly the on-top structure. Figure b) il-
lustrates a detailed example of the capacity-based par-
titioning of Livelndex and operations on it.

5.2.3 Optimizations

As the timeline evolves and live records die, buffers may
become under-utilized or empty. To deal with this, re-
organization can be employed for both types of parti-
tioning. For the duration-based Livelndex, sparsity is
expected to occur in the first (early) buffers. So, we
merge adjacent sparse buffers and accordingly update
the on-top structureﬂ To answer time-travel queries, an
auxiliary structure is now needed to capture the time-
range covered by this new buffer, as the ¢g.tend/Dy, di-
vision can only work for un-merged buffers. Intuitively,
a second on-top structure maintaining the lowest start
inside a buffer will allow us to deal with several rounds
of buffer merging. For the capacity-based Livelndex,
one solution would be to define a lower-bound for the
capacity of a buffer. When the capacity of a buffer drops
below e.g., 50% of Cp, we mark the buffer and merge
it with either its predecessor or its follower (if one of
them is also marked), and then update accordingly the
on-top structure. Finally, similar to the duration-based
Livelndex, a new on-top structure is required, as the
num/C', division no longer works. This new structure
will hold the lowest num inside a buffer, and will be
binary searched by Closelnterval.

4 For array structure, tombstones are not excluded when
counting the contained records.

5 The number of buffers to be merged can be seen as a
tunable system parameter.

10

P. Simatis et al.

,,,,,,,,,,,,,,,,,,,,,,,

(b) before level drop

(a) before level growth

Fig. 6 Steps of dropping last level m of HINT (m = 2)

5.3 The DeadIndex Component

We now turn our focus on indexing dead record ver-
sions. Recall that these versions were evicted from the
Livelndex Z;, by the Closelnterval function, after their
end was read from the input stream. The Deadlndex
Ip offers two key operations. Specifically, (1) Zp is
updated to index a new dead record version (Func-
tion InsertDeadlInterval) and (2) it evaluates time-travel
queries (Function QueryDead). As the timeline evolves
and new dead versions enter Zp, its domain grows. Un-
der this, a straightforward solution for indexing dead
record versions is the 2D point transformation approach
from [55] as discussed in Section where a spatial in-
dex (e.g., R-tree), adapts to the growing domain.

An alternative solution is to modify the state-of-the-
art interval index HINT [I7, [18] to adapt to a growing
domain. Section already discusses this for te-HINT.
Implementing domain extension for a HINT DeadIndex
is simpler, because we do not have to deal with transfers
of live intervals between buckets as in te-HINT. Instead,
we only have to add one more level and double the
horizon tg, as soon as we cannot accommodate a newly
inserted interval s having at least one of its endpoints
after ty. As in te-HINT, after the expansion operation,
the existing partitions are renamed to reflect their new
level, but their contents remain intact.

Increasing the number of levels in a HINT that im-
plements Zp to a very large number may negatively
affect its search performance and size, as there could
be far too many partitions for the number of indexed
intervals [I7]. A naive approach to reduce the number
of HINT levels by one is to construct a new HINT with
one less level and insert all intervals in it. We propose
a more efficient algorithm for deleting the lowest level
of HINT, which progressively moves intervals from the
deleted level to an appropriate partition above, while
maintaining the HINT property (i.e., each interval s
should be assigned at the smallest set of partitions from
all level that define s). Each interval at level m (to be
deleted) is stored in at most two level-m partitions. In-
tervals that begin and end in exactly one partition P, ;
are directly moved to P,,_1,-2 and no further action
is needed. This is the case of sy in Figure @(b) which is

(c) level m drop (d) propagation and final HINT

moved to P; o in Figure @(c) Intervals that begin in a
P, i, for an odd i, are temporarily moved to Pp,_1 ;+2;
the same holds for intervals that end in a P, ;, for an
even ¢. For instance, s3 in Figure @(b) is temporarily
moved to partition P;; because it ends in Ps >, while
s4 is temporarily moved to both P; o and P; ; (see Fig-
ure @(c)) Temporary partitions P, _; ; at each level
¢ < m for an even j are set-intersected with the next
partition at the same level holding replicas, at the po-
tential of moving intervals to the previous level £ —1 as
finalized or temporary. Symmetrically, temporary parti-
tions P, ; at level £ for an odd j are set-intersected with
the previous partition P, ;_;. While there are tempo-
rary partitions at each level, intervals may propagate
upwards until their correct partition is found. For in-
stance, intervals s3 and s4, which, after the deletion of
level 2, were stored in (temporary) partitions P; o and
Py at level 1 are eventually propagated at Py o of level
0, as shown in the final HINT at Figure [6(d). A pseu-
docode of the drop level algorithm is skipped due to
space constraints. Note that the same method can be
used to delete the last level of te-HINT.

5.4 Complexity

This section briefly analyzes the complexity of LIT.
Assuming that we have consumed n update events,
Livelndex occupies space linear to the live records, or
O(n) space overall. The space complexity of HINT as
a DeadIndex is O(m - n) [I7], where m is the num-
ber of levels. Regarding time complexity: (1) the cost
of consuming a new record event is O(1), if a chain of
enhanced hashmaps is used as a LiveIndex; (2) consum-
ing record deletions costs O(1) at Livelndex and O(m)
at DeadIndex [I7]. Hence, the cost per update is O(m).
This analysis does not consider the cost of restructuring
operations (merging live buffers, increasing the number
of HINT levels), which are rare and their amortized
costs are smaller than O(m). Regarding search, each
query costs for the buffer which includes g.tend, O(|1L])
comparisons when duration-based partitioning is used
or O(CYL), in case of capacity-based, plus the cost of
searching a constant number (4 by expectation [17]) of

Scalable Lighting-fast Temporal Indexing

11

A A
g.Aendl-&-——---je——+% g.Aend{--Tpo=--
0—:—@ : —e_
e S +— ¢ e
| v — !
g.Astart{------ o e q.Astart_-_Jl.__-_-a
[IE— | —
N L
1o q.tend thow ty a.tstart q.tend thow
(a) Live space (b) Dead space
Fig. 7 Live and Dead space and queries
A A
PA, PA;
q.Aend g.Aend i -
o Sb——¢py I PA,
P E— I
qAstartf= = — ="= ¢ | pA, G.Astart __JI_ -4 __ ra
o | —
: PAo : i 5 Ao
t atend t,oy to qtstart qtend Tt

(b) Dead space
Fig. 8 Live and Dead space A-partitioning

(a) Live space

HINT partitions, which are also not expected to hold
more than O(CY) intervals.

6 Indexing Non-Temporal Record Attributes

We now discuss how to modify LIT and index record
versions on a specific attribute A for range time-travel
queries, where not only a timepoint/range is specified
but also a selection predicate on A. We denote a LIT
that indexes an attribute A (besides time) by a-LIT.

Before describing a-LIT we discuss the requirements
of a LiveIndex and a DeadIndex in the presence of the
attribute A. Figure [7] illustrates the information that
should be stored about live and dead record versions.
As shown in Figure au)7 to be able to answer range
time-travel queries against Livelndex, we need for each
live version its start point and its A-value. So, the live
version is a 2D point in the time-A space. A range
time-travel query can then be modeled as a rectangu-
lar range {[to, g.tend], [q.Astart, q.Aend]} in the time-A
space. Regarding the DeadIndex, we need for each dead
version its start, end and its A-value. Figure b) illus-
trates some dead versions in the time-A space and a
range time-travel query, which is modeled as a 2D rect-
angle, defined by the query bounds.

6.1 The LiveIndex Component

a-LIT’s Livelndex must index current record versions
start timepoints and their A values simultaneously.

2D space index. A natural approach to do so would
be to use a native index for 2D points (e.g., kd-tree,
quad-tree, R-tree). Besides the 2D-space index, we also
need an auxiliary structure H, ;g (start,4) that maps

record ids to the start points of their live versions
and their A values. Otherwise, it would not be pos-
sible to find and remove an indexed point from the
2D index, when the corresponding version dies (i.e.,
Closelnterval). Hence, the Openlnterval operation in-
serts the (start = tpow, A) entry of a new live version
to both the 2D index and H, ;q—(start,a)- Operation
Closelnterval uses M, j4—(start,) to find the coordinates
of the ending version in the 2D index, searches and re-
moves it, and relays the dead record version to DeadIn-
dex. Finally, QueryLive issues a 2D query to the 2D
index to retrieve the qualifying live versions.

Use multiple pure time indices. Another indexing
approach is to divide the domain of A into partitions
(e.g., equi-width) and develop a LiveIndex as described
in Section for each partition. The data structures
and temporal partitioning methods are defined sepa-
rately for each partition. The only difference is that the
mapping mechanism H, ;q—num Of record ids to num
values should also capture the A-partition identifier
wherein a live version is located. By this, Closelnterval
can identify and delete a live version from the correct
A-partition of the Livelndex. Figure a) illustrates an
A-partitioning of the live data space into four divisions
(PAp to PAs3). For each of them, we can define a pure
temporal Livelndex, as described in Section Given
a range time-travel query, we use the selection predi-
cate on A to identify the partitions that overlap with
the query range in the A-domain (i.e., PA;, PAs, and
PAj; in Figure [§[a)). If a partition is entirely covered
by the A-range of the query (e.g., partition PAs), we
evaluate the temporal part of the query, as described in
Section Otherwise (e.g., in PA; and PAj3), for each
result obtained by the Livelndex of the partition, we
verify the A-predicate of the query. Verification is ap-
plied for at most two A-partitions containing the query
boundaries. Updates on this A-partitioning approach
are expected to be faster than updates on a 2D index,
due to the fast hashing mechanisms it incorporates.

6.2 The DeadIndex Component

Now we turn to DeadIndex options for a-LIT. As before,
we can follow either a pure geometric approach or apply
an A-partitioning to take advantage of the efficiency of
pure time indices.

3D index. A straightforward approach is to index the
line segments of the dead space (see Figure [7[b)) di-
rectly by a native 2D index for geometric objects (e.g.,
an R-tree). However, such a method is not expected
to perform well since some record versions in tempo-
ral databases are long-lived, corresponding to very long

12

P. Simatis et al.

segments that require large node minimum bounding
rectangles, rendering the index inefficient. A more ef-
fective approach is to model each dead version as a 3D
point (s.start, s.end,r.A) in the (time, time, A) space,
and index these points using a 3D index (e.g., a 3D R-
tree). Figure a) shows how this can be done for pure
time intervals; the idea is to add one more dimension
for A. Each query in this 3D space is then modeled as a
([0, g.tend], [g.tstart, tpow], [¢-Astart, g.Aend]) 3D box.

Use multiple pure time indices. Similar to the case
of Livelndex, we may also partition the domain of A to
define a number of partitions, as shown in Figure (b)
For each partition (e.g., PAy to PAs), we use an op-
timized interval index, such as the modified HINT to
support domain extension, discussed in Section
Given a range time-travel query, we first identify the
A-partitions that overlap with the query A-range (e.g.,
PA;, PAy, PA3) and then evaluate a pure time-travel
query in each such partition, verifying the A-predicate
against its results if necessary (e.g., in PA; and PA3).

6.3 Handling Multiple Non-temporal Attributes

In case of multiple non-temporal attributes Ay, ... A,
both a-LIT index components can be extended to sup-
port range time-travel queries with a range predicate to
each A;. Specifically, we can still utilize a single multi-
dimensional index for the (m+1)-dimensional space de-
fined by time and the A attributes or the approach of
multiple pure time indices, using a multi-dimensional
grid over the joint attribute domain.

7 Temporal Indexing under Limited Memory

We now shift focus to scenarios where the available
memory for temporal indexing is bounded. To han-
dle such cases, we present LITT, which extends the
LIT framework by incorporating a new disk-resident
component. For this purpose, we introduce an expira-
tion threshold, termed the fossilization timestamp ty,
which defines the temporal boundary between memory-
resident and disk-resident records.

7.1 Overview of LIT+

Intuitively, at the core of the LITT framework lies the
distinction between two types of dead records; those
that died before the ¢ timestamp and those that died
after. The former, called fossils, are stored inside the
disk-resident component Fossillndex, whereas the lat-
ter, inside the DeadIndex, in main memory.

Update Events Queries

[q,-tstart,g,.tend]
(g, tstart,q,.tend]
[qo-tstart,qq.tend]

(ty,1,end)
(tg,2,start)
(to,1,start)

Openinterval Querylive

QueryFossil

Closelnterval QueryDead

Live Dead Fossil
Index Index Index
InsertD - - Inser il al:
1 —— | — —— —
* i — e | 1 — —
. ! L] »| In———
(Y 3 ' I |:> .
o p—

q.tend Toow gtstart qgtend tnow toart q.tstart q.tend b

Fig. 9 Overview of LIT+

Figure |§| provides an overview of LITT, which ex-
tends the original LIT framework in Figure The
stream of updates to the indexed table T is again
consumed by the Livelndex Zj, which implements the
Openlnterval and Closelnterval functions to handle the
insert and deletion events, respectively. When a record
dies, the corresponding entry is removed from Z;, (Func-
tion Closelnterval) and an entry is created in the Zp
DeadIndex (Function InsertDeadlnterval). Both compo-
nents reside in main memory. When the combined mem-
ory footprint of Z;, and Zp exceeds a memory budget
Mﬂ a system event termed fossilization is triggered.
Fossilization frees space in main memory to accommo-
date future updates in Z; and Zp. For this purpose,
LIT™ first updates the ¢¢ timestamp by moving it for-
ward in time. Afterwards, all dead records whose end
timepoint is before the updated ¢ are removed from Zp
(Function DeleteFossils) and offloaded to the Zp Fos-
sillndex on disk (Function InsertFossillntervals).

To evaluate a pure time-travel query ¢ = [g.tstart,
g.tend], we distinguish between two cases. If ¢.tstart >
ty, LITT operates exactly as LIT, i.e., we probe only
Zr, and Zp as detailed in Section Otherwise, if
g.tstart < ty then we need to probe all three compo-
nents. Similarly to Zp, Zr evaluates a typical interval
range query to determine all records whose validity in-
terval overlaps q. As discussed in Section for LIT,
T1, Ip and Zr index disjoint sets of records and there-
fore, these probing tasks are completely independent to
each other and duplicate results are never produced.

In what follows, we elaborate on how the ¢ times-
tamp is updated, on the necessary changes for the
DeadIndex and the implementation of Fossillndex; in
contrast, LiveIndex remains unchanged.

7.2 Updating the Fossilization Timestamp ¢

A straightforward approach to update t; is to move
it forward to the end of the time domain covered by

6 The M budget is a system parameter, pre-defined accord-
ing to the available memory.

Scalable Lighting-fast Temporal Indexing

13

DeadIndex. Then, all dead records become fossils and
the maximum possible amount of memory is emptied.
However, such an extreme approach harms performance
since a large number of queries will be evaluated by the
Fossillndex, on disk. Therefore, the process of updat-
ing t; encapsulates a typical space-time trade-off. To
control this trade-off, we introduce an additional sys-
tem parameter r, so that r - M specifies the maximum
amount of memory we can empty during fossilization;
recall that M is the memory budget set by the system.
With parameter r in place, we can set ty to the
time point incurring the highest decrease in the memory
footprint of the Deadlndex Zp that does not exceed
the r - M threshold. We can compute this decrease by
scanning Zp and counting the total number of entries
(both originals and replicas) for the dead records whose
interval ends before the new t;, i.e., those that will
become fossils (Function CountFossilEntries). However,
to avoid exhaustively seeking this optimal new ¢; inside
DeadIndex’s entire domain, we choose a value best fit
for HINT, which as we show in Section [9.2.1} is the
most efficient structure for indexing dead intervals.
Specifically, we first restrict the value of the new
t; among only the end of the bottom HINT parti-
tions in Zp. This way we both significantly reduce the
search space for ¢ty and we simplify the scanning pro-
cess of Zp performed by the CountFossilEntries func-
tion. Second, we examine the candidate t; values in a
binary search fashion. We start off with the center of
the time domain covered by Zp as the new ¢ AZ], and uti-
lize CountFossilEntries to calculate the amount of main
memory My to be emptied. If My < r - M holds, we
need to advance ¢ty forward and recursively search the
second half of the domain; otherwise, we binary search
the first half. This process always terminates since there
is a fixed number of partitions at the bottom HINT
level. Lastly, in the extreme case where the specified
new t; value is equal to the old, we automatically set
ty to the end of the directly succeeding partition, emp-
tying this way the minimum possible amount of space
in main memory for the system to continue operating.

7.3 The DeadIndex Component

For LIT, DeadIndex operates in an insert-only mode;
i.e., dead records are added to the index, but never
removed. However, for LITT, the DeleteFossils func-
tion is invoked every time t; is updated. Essentially,
DeleteFossils implements the second step in the fossiliza-
tion process where all fossil entries in DeadIndex are
identified and then the index is accordingly updated.

7 The center equals the end of the P,, om-1_1 partition.

Po,o

P10 P11

Po P 1 2 Py3
Pso]l Pyi | Pso | Pa3 Pss | Pss | P37

f
Fig. 10 Classifying HINT DeadIndex partitions to deter-
mine fossils

We first elaborate on how to spot the fossil records
stored inside a HINT DeadIndex. By definition, fossils
end before the 7 fossilization timestamp, which means
they are stored as originals inside a partition before t;.
Figure highlights in light and dark gray the parti-
tions which store the fossils’ original entries for a HINT
DeadIndex with 4 levels; we will explain the difference
between the two shades in the next paragraphs. In con-
trast, the records stored as originals inside a white par-
tition are not fossils as they definitely end after ¢ ;. Note
this is true even for the partitions whose timespan con-
tains ty, i.e., Pao, P11 and Py in Figure By con-
struction, a dead record whose validity interval starts
for instance inside P 9, must end after ¢; because oth-
erwise the record would have been stored as an original
in the level below, i.e., inside Ps 4.

We next present two approaches for excluding all
fossil entries from a HINT DeadIndex IDEL Although
we could discuss the maintenance process even for an
unoptimized HINT, we assume that the subdivisions
optimization from [I7] is activated to accelerate the
processﬂ In brief, according to this optimization, the
originals in every P (see Section are further divided
into subdivisions P9 and P%as¢ so that POin (POast)
holds the record intervals that end inside (resp. after)
the partition. Similarly, the replicas inside P are divided
into Pfin and PPTert. Intuitively, the straightforward
approach for maintaining Zp first scans the index to
determine all fossils and then drops Zp to rebuild it us-
ing only the remaining dead (non-fossil) records. Under
this, it suffices to scan the P9, Pfin subdivisions for
every partition in Zp. By definition, entries originat-
ing from partitions before ¢ty (light and dark gray, in
Figure belong to fossils; these records are collected
and sent to Fossillndex (see Section . In contrast,
entries from the remaining partitions (white, in Fig-
ure belong to non-fossils which are inserted to the
new DeadIndex. Notice how this maintenance process
completely ignores PPest, PRast; their contained entries
correspond to records that end inside a succeeding P’
partition, stored in its P’ subdivision. Furthermore,

8 We compare the two approaches in Section
9 In practice, the subdivisions optimization is always acti-
vated as it also enhances query processing [17].

14

P. Simatis et al.

end . end D
: [3
. o —
B D(/”Insert leaves

into I¢

P Penultimate
..~ sortbystartand directory level

group in leaves

y///’ A

start start B D

Fig. 11 Batch insertions in LITT’s R-tree Fossillndex

there is no need for de-duplication because every dead
record is stored as a O;, or a R;,, exactly once.

If the ty fossilization timestamp is always set at the
end of a bottom level partition (as proposed in Sec-
tion , the above approach requires no comparisons
to determine fossils. However, we still need to rebuild
the updated Zp index from scratch. In view of this
shortcoming, we next present an alternative approach
which updates the subdivisions of the HINT partitions
in-situ by removing the fossil entries. Note that we can-
not rely on the update process described for HINT in
[I7] which handles deletions by tombstones. In our set-
ting, we must physically remove the entries to empty
space in main memory. Instead, we distinguish between
three types of partitions in the current Zp (colored light
gray, dark gray, and white in Figure [10]), and handle
each type in a different fashion. Let P be a HINT par-
tition, we consider the following cases:

— P is light gray, P.end < ty. We directly empty the
PO PRin subdivisions as they store only records
that end before t¢, i.e., fossils, by definition. In con-
trast, for PPast, PRast fossils are determined by
comparing their end against ¢;.

— P is dark gray, P.end = ty. Similar to the light
gray case, we directly empty PO, PRin while
POest PRast remain intact; by definition, their en-
tries belong to records that end after ¢;.

— P is white, P.end > t;. All subdivisions remain in-
tact since they exclusively contain entries for records
that end after t;.

To reduce the number of comparisons needed to process
POast PRasi in the light gray partitions, we rely on the
implicit sorting of the subdivisions. By construction, ev-
ery subdivision is sorted by record end, in increasing or-
der. Hence, to clean P9/t PRast we perform a binary
search for the first entry with end > ¢y and then remove
all entries preceding this pivot inside the subdivision.
Lastly, all records inside the P9, PEin subdivisions of
the light and dark gray partitions are collected and sent
to Fossillndex, similar to the straightforward approach.

7.4 The Fossillndex Component

We next discuss LIT™’s disk-resident component. Fos-
sillndex Zr operates in an insert-only mode, incorpo-

rating the recently removed fossils from the DeadIndex
Ip after the timestamp t; is updated. Despite index-
ing dead records similar to Zp, we cannot utilize HINT
for Zr as it was designed for main memory. Instead,
we employ the 2D mapping discussed in Section [2.1
under which every record is mapped to a (start,end)
point. We index these points on disk using an R-tree
[26], which is the dominant structure for spatial data.

We next elaborate on the process of updating Zp.
When fossilization is triggered for the first time, we can
efficiently index the incoming fossils in a bulk-loading
fashion (e.g., with the STR algorithm [35]). For every
follow-up event, a straightforward approach would be
to directly use the R*-tree insertion algorithm from [5]
individually for each recently defined fossil. Despite its
simplicity this approach will incur frequent tree adjust-
ments and a large number of I/0s. In view of this,
we devise a novel approach which inserts intervals in
batches making it suitable for large updates.

Figure [L1] exemplifies the key steps in our batch in-
sertion. First, the incoming fossil records are sorted by
their start to improve spatial locality. Then, the sorted
fossils are divided into batches, each sized to fit within
an R-tree leaf node. For each batch, a new leaf node is
created, which is then directly inserted into an internal
node, right above the leaf level of the R-tree Fossilln-
dex. Splits are triggered when necessary to maintain the
tree balance. The I/O cost of fossilization is bounded
by the number of leaf nodes inserted to the R-tree, since
the non-leaves are expected to be too few and may fit in
memory (especially, when we use a large node size, e.g.
8KBs). By the last assumption, the I/O cost for search-
ing the Fossillndex is bounded by the number of R-tree
leaves which are accessed by the query; this number is
expected to be small, estimated as the number of query
results divided by the node capacity.

7.5 a-LIT Compatibility

Finally, we discuss the necessary modifications in LITT
to index record versions on a specific non-temporal at-
tribute A and evaluate range time-travel queries; we
denote this extended framework by a-LITT. In princi-
ple, the key challenge we face is that the existence of
attribute A increases the memory footprint of a-LIT™
compared to LITT. Under the memory budget M, this
will result in more frequent fossilization events.
Similar to LITT, a-LIT* draws a distinction be-
tween memory-resident and disk-resident records. For
live records and in-memory dead records (i.e., non-
fossils), we adopt the multiple indices design for a-LIT
in Section[6] In brief, we partition the domain of A and

Scalable Lighting-fast Temporal Indexing

15

build a pair of LiveIndex and DeadIndex in each parti-
tion; our experiments in Section [9.2.4] show the advan-
tage of this design. In contrast, for fossil records, we rely
on a single Fossillndex Zr and one fossilization times-
tamp ty. To incorporate attribute A, we now utilize a
3D R-tree which indexes the (start,end, A) space.
The key difference for the fossilization process of
a-LIT™ lies in updating ¢;. For this purpose, we pri-
oritize the DeadIndex with the highest memory usage.
This approach ensures efficient resource utilization and
prevents ty from advancing excessively. This is benefi-
cial for two reasons; (1) it maintains a balanced distri-
bution of intervals across the dead indices, and (2) it
minimizes disk accesses by preventing ¢t from becoming
too recent, which would degrade query performance.

8 Persistence, Recovery, Concurrency Control

LIT is a main-memory index focused on real-time an-
alytics and handling large volumes of rapidly changing
temporal data. However, the volatility of main memory
necessitates durability and recovery mechanisms follow-
ing system failures. Figure illustrates how LIT is
integrated into a temporal database system, to sup-
port fault tolerance and recovery. Therefore, each up-
date event is written to a log file. In addition, a backup
of LIT is taken periodically and written to the hard
disk for persistence. The backup is merely a dump of
the main memory data structures for Livelndex and
DeadlIndex. Assuming that the last checkpoint where
the last backup has been taken is tp, to recover LIT
at a time t,,, > tp (e.g., due to a system failure at
that time), we first load the backups of LiveIndex and
DeadIndex in main memory, then replay events starting
from tp in the log file, and finally ingest all events after
tp to evolve Livelndex and DeadIndex to their current
state at t,0,. Since all states up to tp are captured by
the LIT backup, we “cleanup” the log file by removing
all entries up to g, for efficiency.

For LIT™, note that the Fossillndex is already on
disk and thus, no further action is required in case of
a system failure, assuming that disk recovery is han-
dled by another mechanism, such as RAID. However,
to ensure atomicity and deal with a failure during fos-
silization, the process is implemented as a single system
transaction guaranteeing that either all dead records to
be fossilized are removed from DeadIndex and added to
Fossillndex or none. Under this principle, a dead record
can be found exclusively either in the DeadIndex or the
Fossillndex, but never in both.

As in SAP HANA [30], concurrency control is oper-
ated by the transaction manager of the DBMS, which

Time-travel Queries Data Update Events Data Updates Log

(t0,2,30K, start)
(to,1, 50K, start)

(t0,2,30K, start) Write
(to,1, 50K, start)

[q1.tst, q1.tend, g1.Aend]
[qo.t, qo-Ast, go.Aend]

A

Search

Search Update LIT
Recover after tg
LIT
Live Dead Backup
Index Index uptots
— — " T Backup
L 1 — <
.! ’_: :> T — Recover
N till tg
tI'\OW now

Fig. 12 Persistence and recovery of LIT

manages the current database state, and is indepen-
dent to our proposed index. LIT ingests committed
updates by the transaction manager, as shown in the
Events sequence table of Figure [I} As the time-travel
queries refer to the past, they do not conflict with inser-
tions, which always happen at t,,4,- S0, a newly inserted
record cannot be a query result. Time-travel queries do
not conflict with deletions/modifications, since only the
start timepoint of a currently deleted record determines
whether it is the result of a concurrent query. Regard-
less if the item is in the Livelndex (before the deletion)
or in the Livelndex (after the deletion) it will be re-
ported as a query result if its start is before the end
timepoint of the query. However, when a query is eval-
uated after the deletion of a record from Livelndex and
before the insertion of that record to DeadIndex, we
may get incorrect query results. To ensure correctness,
the migration from Livelndex to DeadIndex is done seri-
ally (i.e., not interleaved with concurrent queries). The
total cost of a migration is extremely low (around 150
nanoseconds, as shown in our experiments), so the serial
migration requirement does not affect the performance.

Although possible, parallel fossilization would in-
troduce significant complexity in managing concurrent
access to the DeadIndex and Fossillndex. To guaran-
tee data integrity, LIT™ serializes fossilization, granting
exclusive control over the DeadIndex and Fossillndex.
This design ensures correctness and eliminates race con-
ditions during migration. Furthemore, since fossiliza-
tion is infrequent, this prioritization has a negligible
impact on system performance.

9 Experimental Analysis

This section reports our experiments, which com-
pare (a-)LIT (Section and (a-)LIT* (Section ,
against competition. All methods were written in C4++
and compiled with gcc using -O3, -mavx, -march=native.

16

P. Simatis et al.

Table 1 Characteristics of tested datasets

TAXIS-F TAXIS-P BIKES FLIGHTS WILDFIRES BOOKS
Cardinality 169290307 169290307 101472950 61328124 778410 2050707
Domain extent 1 year 1 year 8 years 10 years 24 years 1 year
Size (MBs) 5498 5498 3247 1963 26 66

temporal information

Min duration 1 min 1 min 1 min 5 min 1 min 1 hour
Max duration 5 hours 5 hours 7.5 months 12 hours 4 months 1 year
Avg. duration 12 mins 12 mins 16 mins 2.5 hours 28 hours 67 days
Avg. duration [%] 0.0024 0.0024 0.0004 0.0028 0.0135 18.6

search-key A information

Description trip fare [USD] passenger count rider’s birth year departure delay [secs] fire extent [acres] num of fooks lent
Type real integer integer real real integer
Value range [2.5, 235.5] [1, 6] [1940, 2005] [0, 233400] [0.0001, 606945] [1, 38]
Distribution normal zipfian normal zipfian zipfian zipfian

Table 2 Query extents; default values in bold

Stream temporal search-Key
TAXIS-F 1, 6, 12, 18, 24 [hours] 3, 5, 10, 30, 50 [dollars]
TAXIS-P 1, 6, 12, 18, 24 [hours] 1, 2, 3, 4, 5 [passengers|
BIKES 1, 6, 12, 18, 24 [hours] 10, 20, 30, 40, 50 [years]
FLIGHTS 1,2, 3, 4, 5 [days] 5, 10, 30, 60, 120 [mins|
WILDFIRES 1, 7, 14, 21, 30 [days] 10, 50, 100, 500, 1000 [acres]
BOOKS 1,7, 14, 21, 30 [days] 5, 10, 15, 20, 25 [books]
9.1 Setup

Datasets. We experimented with six real temporal
datasets with an additional search-key A; Table [1] sum-
marizes their characteristics. TAXIS-F(-P) contain the
pick-up and drop-off timepoints of taxi trips (same
intervals in both datasets) in NYC from 2009@ In
TAXIS-F, A is the paid fare, and in TAXIS-P, A is the
number of passengers. BIKES contains the pick-up and
drop-off timepoints of bike rides in NYC from 2014 to
2021; the search-key A is the birth year of the riderH
FLIGHTS contains the take-off and landing timepoints
of flights recorded by the US Transportation Depart-
ment from 2013 to 2022, and the occurred departure
delay[?] WILDFIRES specifies when fire events from
1992 to 2015 in US, were discovered and when declared
contained/ Controlledm As search-key A, we use an es-
timate of the area burnt. BOOKS contains the periods
of time when books were lent out by Aarhus libraries in
2013, and the number of books during each periodE
BOOKS, WILDFIRES include objects with long va-
lidity intervals, while in TAXIS, BIKES intervals are
extremely short; FLIGHTS lies in the middle of the
spectrum. As search-key, we consider both real and in-
teger values; A’s domain varies from extremely small

https://wwwl.nyc.gov/site/tlc/index.page
https://citibikenyc.com/system-data
https://www.bts.gov
https://www.kaggle.com/datasets/rtatman/188-million-
us-wildfires

14 Thttps://www.odaa.dk

(TAXIS-P) to extremely large (WILDFIRES). The val-
ues of A follow either a normal or a Zipfian distribution.

Input streams. We created an event stream (work-
load) for every dataset, by splitting each interval to
an insert and a deletion event, and interleaving 10K
queries. Queries are positioned uniformly inside the ac-
tive timeline, i.e., the period between the start of the
very first interval until current ¢,,,,,. The nature of the
created streams varies from extremely update-heavy
for TAXIS, BIKES and FLIGHTS with a 34000/1,
20000/1 and 13000/1 ratio of updates over queries, re-
spectively, to moderate for BOOKS and WILDFIRES,
with a 410/1 and 156/1 ratio, respectively. We con-
sidered two types of query extents; for pure time-travel
queries, the extent of the [¢.tstart, g.tend] interval while
for range time-travel queries, additionally the extent of
the [q.Astart, q.Aend] range. Tablelists the values for
the query extents; the defaults are in bold. In each test,
we measure the update time (for some indices, broken
down to insert and delete time) and the query time.

9.2 In-Memory Query Processing

We start off with the in-memory evaluation of queries.
Sections[9.2.1 and [0:2:2] study LIT and pure time-travel
queries (Query . For this, we ignore the search-key A;
hence, we use a single TAXIS stream. Sections
and study a-LIT and range time-travel queries
(Query which include selections on the search-key
A. For this purpose, we considered an equi-width par-
titioning of the A domain in 6-7 partitions[™]

All tests we conducted as single-threaded processes
on an AMD Ryzen 9 3950X, clocked at 3.5GHz with
64GBs of DRAM and 1MB L1 Cache, 8MB L2 Cache,
64MB L3 Cache, running Ubuntu LinuXE

15 Our tests (not included due to lack of space) showed that
this number of partitions is sufficient to provide good total
times in all tested streams.

16 Code: https://github.com/GiorgosChristodoulou/LIT

https://www1.nyc.gov/site/tlc/index.page
https://citibikenyc.com/system-data
https://www.bts.gov
https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires
https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires
https://www.odaa.dk
https://github.com/GiorgosChristodoulou/LIT

Scalable Lighting-fast Temporal Indexing

17

Table 3 Livelndex for LIT; total update/query times [secs]
TAXIS

query Append-only Search tree Enhanced
extent array hashmap
[hours] update query update query update query
1 9.92 409 47.9 0.001 12.42 0.011
6 9.92 410 47.9 0.001 12.42 0.011
12 9.92 409 47.9 0.001 12.42 0.011
18 9.92 411 47.9 0.001 12.42 0.011
24 9.92 412 47.9 0.001 12.42 0.011
BOOKS
query Append-only Search tree Enhanced
extent array hashmap
[days] update query update query update query
1 0.125 14.4 1.30 38.0 0.207 6.41
7 0.125 14.8 1.30 37.9 0.207 6.45
14 0.125 14.9 1.30 39.7 0.207 6.46
21 0.125 15.2 1.30 41.9 0.207 6.47
30 0.125 15.6 1.30 42.8 0.207 6.43

9.2.1 Tuning LIT

We first investigate the best setting for the Livelndex
and the DeadIndex of LIT.

LiveIndex: data structure. We implemented the al-
ternative structures from Section [5.2.1} STL C++ vec-
tor class was used for the append-only array, STL C++
ordered_map class (Red-Black tree) for the search tree,
and the Gapless hashmap from [46] for the enhanced
hashmap["] Table [3]summarizes the results of our tests;
for the interest of space, we report only TAXIS and
BOOKS, which contain long and short intervals, re-
spectively. The tests back up our analysis from Sec-
tion [5.:2.1] The append-only array exhibits the best
(lowest) update times due to its simplicity. The en-
hanced hashmap however is always competitive, even
for the update-heavy stream of TAXIS. The search tree
on the other hand is vastly outperformed in updates.
Regarding queries, the enhanced hashmap is the most
robust structure; the efficiency of the other two is af-
fected by the nature of the input stream and/or the
length of the intervals. Update-heavy streams (TAXIS)
will incur a large number of tombstones and signifi-
cantly slow down the append-only array, while long-
lived intervals (BOOKS) increase the size of LiveIndex
and slow down the search tree. All data structures are
robust to the query extent, which is expected, since
g.tstart is ignored in query processing. Overall, the en-
hanced hashmap offers the best trade-off between up-
dates and queries, exhibiting always the lowest total
time. For the rest of our experiments, we use the en-
hanced hashmap to store the Livelndex.

LiveIndex: partitioning. We implemented both par-
titioning approaches from Section To determine
the best value for the duration constraint Dy and the

17 Source code was provided by the authors.

duration-based capacity-based

10% BOOKS —¢— 10
— . TAXIS —v—7% 1! |
§ o' m FLIGHTS § 10 4
k3 WILDFIRES z
ERRTI S - £ 10
= 3
Z S 10!
£ 10 &
) 2
10 10
1 10 100 1000 102 10° 10* 10° 10° 107 10°
Dy, [hours]| CL

Fig. 13 Livelndex for LIT partitioning; default query extent

Table 4 Livelndex for LIT partitioning; update and query
times [secs], default query extents

duration-based capacity-based

input

stream insert delete query insert delete query
TAXIS 4.65 7.46 0.004 5.25 7.42 0.011
BIKES 5.67 2.36 0.005 3.31 4.14 0.004
FLIGHTS 3.06 2.02 0.004 1.74 2.65 0.011
WILDFIRES 0.027 0.033 0.003 0.023 0.027 0.003
BOOKS 0.083 0.270 0.352 0.083 0.204 0.319

Table 5 DeadIndex for LIT; total update&query times [secs]

TAXIS
query extent 2D R-tree HINT
[hours] insert query insert query
1 69.7 3.21 47.9 0.001
6 69.7 15.5 47.9 0.001
12 69.7 29.8 47.9 0.001
18 69.7 44.3 47.9 0.001
24 69.7 59.2 47.9 0.001
BOOKS
query extent 2D R-tree HINT
[days] insert query insert query
1 0.63 45.9 0.15 0.27
7 0.63 47.8 0.15 1.05
14 0.63 51.2 0.15 1.86
21 0.63 55.2 0.15 1.74
30 0.63 59.1 0.15 2.96

capacity constraint Cp, we conducted the experiments
in Figure 13| where the total time (update plus query
time) is reported, while varying Dy, and C},. Note that
as the value of both constraints increases, the number of
Livelndex buffers always drops. With the best observed
values for each input stream in place, we compare the
two approaches in Table[d]for the default query extents,
which also includes a runtime breakdown for each ap-
proach. Note that the capacity-based partitioning al-
ways outperforms the duration-based by 10%, on aver-
age. For the rest of our analysis, the LiveIndex of LIT
will use the capacity-based partitioning; also, based on
this experiment, we set C, = 10000 for all streams.

DeadIndex. We compare HINT in the role of DeadIn-
dex as discussed in Section against the 2D trans-
formation approach proposed in [55], powered by
an in-memory 2D R-tree from the highly optimized
Boost.Geometry library. |§| Table 5| reports the insert

18 Benchmark in [37] showed that Boost.Geometry
(https://www.boost.org) R-tree implementations outperform
the libspatialindex library (https://libspatialindex.org/).

https://www.boost.org
https://libspatialindex.org/

18

P. Simatis et al.

Timeline [30) 1 te-HINT]

LIT (Livelndex: enhanced hashmap, capacity-based partitioning; DeadIndex: HINT) NN

TAXIS BIKES FLIGHTS WILDFIRES BOOKS

10* 10° 10° 10! 10°
3 N 3 = = = e | = 2 Al Y — = o = M
7 L o e | e 7 10 7 10 70 B g0 .
- 107 2 10! 2 10 O S A"l N
g g g £ 10 £ 0
Z 10 Z 10 Z 10 = st
£ £ £ ER))
£ 10° £ 10! £ 10! £ 10 £ 10

107! 107 102 10? 107!

1 6 12 18 24 1 6 12 18 24 1 4 5 1 7 14 21 30 1 7 14 21 30
query extent [hours] query extent [hours] query extent [days] query extent [days] query extent [days]

10° 10° 10° 10' 10°
g0 AN o e e g 100 G PR S 7 y h
PO o 10! o 10! o o
£ 10 = £ £ £ 10" £ L[L
= s =R =R Lok = L = |
7 g 10 g 10 7 z 10
2 10 2 2 2 107 g
] 1 3 10 l] 3 10 1] 1 5]

107! 107 107 107 107!

16 12 18 24 16 12 18 24 1 34 s 17 14 21 30 17 14 21 30

query extent [hours] query extent [hours]

Fig. 14 Pure time-travel queries: LIT against competition

Table 6 Pure time-travel: total update time [secs]

input Timeline te-HINT LIT

stream Livelndex DeadIndex total
TAXIS 12.3 1886 14.5 8.43 22.89
BIKES 10.4 357 7.93 5.13 13.06
FLIGHTS 4.08 526 4.68 3.01 7.69
WILDFIRES 0.05 0.38 0.07 0.04 0.11
BOOKS 0.19 349 0.49 0.14 0.63

Table 7 Pure time-travel: query time breakdown [secs]; de-
fault query extents

input stream
TAXIS BIKES FLIGHTS WILDFIRES BOOKS

LIT: Livelndex 0.157 0.005
LIT: DeadIndex 2.96 0.203

Component

0.011
0.504

0.001 0.371
0.019 1.85

time and the query time for each DeadIndex approach,
while varying the query extent. Due to lack of space, we
show again only the numbers for TAXIS and BOOKS.

HINT outperforms the 2D R-tree on computing
pure time-travel queries by at least one order of mag-
nitude (usually two orders), while for ingesting dead
records, the 2D R-tree is competitive only in case of
BOOKS, which contains significantly fewer updates
than TAXIS. In contrast, for the update-heavy TAXIS,
the 2D R-tree is an order of magnitude slower than
HINT for indexing new dead records. In view of the
above, LIT will use HINT as its DeadIndex component
for the rest of our analysis.

9.2.2 Pure time-travel Queries

We now compare the LIT hybrid index against te-HINT
(Section [)) and the state-of-the-art Timeline index [30]
for transactional DBs (re-implemented to fully operate
in main memory). Figure [14] (first row) reports the to-
tal time (updates and queries) for each index to ingest
the input streams, while varying the query extent. Our
tests clearly show that LIT is the most efficient index

query extent [days]

query extent [days] query extent [days]

for all input streams, followed in almost all cases by
the Timeline index, while te-HINT ranks last, with the
exception of WILDFIRES. To better understand these
results, the second row of the figure reports the accumu-
lated time over the 10K queries of the stream and Ta-
ble [6] reports the accumulated update time. The query
costs of LIT and te-HINT are always lower compared to
those of Timeline; te-HINT is competitive to LIT but in
all cases slower. For updates, Table [6] shows the advan-
tage of Timeline; recall from Section [2] that Timeline is
designed for the support of fast updates in transaction-
time DBs. Nevertheless, LIT is competitive to Time-
line. Also, observe that the total updating cost is al-
most equally divided in between the Livelndex and the
DeadIndex. In contrast, te-HINT is orders of magnitude
slower than LIT and Timeline in updates, mainly due
to the high cost of moving intervals between partitions
at different levels, as the timeline evolves and deletion
events arrive. Overall, LIT offers the best tradeoff be-
tween updates and queries, resulting in the lowest total
time, even for update-heavy streams such as TAXIS and
BIKES. Lastly, we provide a breakdown to the query
time of LIT in Table

9.2.3 Tuning a-LIT

Similar to Section we first investigate the best
setup for a-LIT.

LiveIndex. We implemented the two alternative so-
lutions for the Livelndex discussed in Section [6.1} an
in-memory Boost.Geometry 2D R-tree which directly in-
dexes the (start, A) 2D space and a series of pure time
indices (using enhanced hashmap and capacity-based
partitioning), one for each partition of the A domain.
For completeness, we also include the approach of a sin-
gle pure time index (again with enhanced hashmap and
capacity-based partitioning); this captures the case of
an extremely skewed distribution of A-values, where the

Scalable Lighting-fast Temporal Indexing

19

vast majority of the objects fall inside one A-partition.
Table[8|reports the total update (insert and delete) and
query time for each solution while varying the search-
key query extent. Due to lack of space, we only re-
port on the TAXIS-F and BOOKS streams. The perfor-
mance of the 2D R-tree Livelndex is severely affected
by the cost of updates, especially by deletions, render-
ing this solution impracticalE Even a single pure time
index is still a better option for the Livelndex than
a 2D R-tree which indexes both time and A dimen-
sions. Finally, regarding the comparison between the
single and the multiple time indices solutions, we ob-
serve an expected tradeoff. The single time index so-
lution is faster for updates, especially in update-heavy
streams like TAXIS-F, while using multiple indices has
an order of magnitude lower time on queries. As the
decrease in the total time from using a multiple time
indices Livelndex for query-intensive streams (BOOKS)
is larger than the increase of the total time on update-
heavy streams (TAXIS-F), in the rest of our analy-
sis, a-LIT will use the multiple time indices solution,
i.e., maintaining a Livelndex for each partition of the
search-key A domain.

DeadIndex. We implemented the two options dis-
cussed in Section [6.2} a 3D R-tree which directly in-
dexes both the validity interval of a dead version and
its search-key A, and a series of pure time indices pow-
ered by HINT, one for each partition of the A-domain.
For completeness, we also include the case when a sin-
gle HINT is used as the DeadIndex, which again cap-
tures the case of an extremely skewed data distribution,
where the vast majority of the objects are indexed by
a single HINT. Table |§| reports the total update (in-
sert) and query time for each approach, while varying
the search-key query extent; again, due to lack of space,
we only report on the TAXIS-F and BOOKS streams.
The table clearly shows the advantage of the multiple
pure time indices option in the role of the DeadIndex
for a-LIT. The 3D R-tree DeadIndex is always slower
both for updating (insertions of dead record versions)
and querying, while using a single pure time index is
only competitive for updating. In the rest of our anal-
ysis, a-LIT will maintain a HINT powered DeadIndex
for each partition of the search-key A domain.

9.2.4 Range time-travel Queries

We compare a-LIT against two competitors. The first
is a time-first baseline, which directly employs the pure
LIT and does not index the search-key attribute A.
Pure LIT employs the same setup considered for pure

19 This is expected, as R-trees typically suffer from high
maintenance costs.

Table 8 Livelndex for a-LIT; total update and query times
[secs], default temporal query extent

TAXIS

single pure

search-key multiple pure

query extent 2D R-tree time index time indices

[dollars] update query update query update query

1 1163 0.002 16.2 0.02 19.7 0.002

6 1163 0.002 16.2 0.02 19.7 0.002

12 1163 0.002 16.2 0.02 19.7 0.002

18 1163 0.002 16.2 0.02 19.7 0.002

24 1163 0.002 16.2 0.02 19.7 0.002
BOOKS

search-key single pure multiple pure

query extent 2D R-tree time index time indices

[books] update query update query update query
1 1622 1.6 0.4 0.4 0.5 0.04
7 1622 1.9 0.4 0.4 0.5 0.04
14 1622 2.2 0.4 0.4 0.5 0.04
21 1622 3.2 0.4 0.4 0.5 0.04
30 1622 4.5 0.4 0.4 0.5 0.04

Table 9 Deadlndex for a-LIT; total update and query times
[secs], default temporal query extent

TAXIS

search-key multiple

query extent

3D R-tree

HINT

HINTSs

[dollars] insert query insert query insert query
1 81.9 40.6 9.49 4.11 9.48 0.49
6 81.9 40.5 9.49 4.12 9.48 0.51
12 81.9 40.6 9.49 4.11 9.48 0.40
18 81.9 40.6 9.49 4.12 9.48 0.41
24 81.9 40.5 9.49 4.11 9.48 0.41
BOOKS
search-key multiple
query extent 3D R-tree HINT HINTSs
[books] insert query insert query insert query
1 0.74 4.80 0.15 0.85 0.15 0.26
7 0.74 5.35 0.15 1.75 0.15 0.25
14 0.74 7.86 0.15 2.53 0.15 0.28
21 0.74 9.14 0.15 2.63 0.15 0.27
30 0.74 11.6 0.15 4.14 0.15 0.27

Table 10 Range time-travel: total update time [secs]

input stream MVB-tree [4] LIT (pure) a-LIT
TAXIS-F(-P) 341 27.9 29.3
BIKES 57.8 15.7 16.5
FLIGHTS 61.6 8.76 9.89
WILDFIRES 0.28 0.12 0.14
BOOKS 1.86 0.85 0.87

time-travel queries comparison in Section [9.2.2] i.e., an
enhanced hashmap with capacity-based partitioning as
the Livelndex and HINT as the DeadIndex. To answer a
range time-travel query ¢, this (pure) LIT first executes
a pure time-travel query with [g.tstart,q.tend] and
then, checks the attribute A of every intermediate result
against the [q.Astart, q. Aend] range. The second com-
petitor is the state-of-the-art index for multi-versioned
DBs, MVB-tree [4] (re-implemented to fully operate in
main memory). The first and the third rows in Fig-
ure [15] report the total time of the indices, while vary-
ing the A-range of the query and the temporal query
extent, respectively. Observe that both LIT-based in-
dices outperform the MVB-tree, in all tests. The rea-

20

P. Simatis et al.

MVB-tree [4] == LIT (pure, LiveIndex: enhanced hashmap, capacity-based partitioning; DeadIndex: HINT)
a-LIT (LiveIndex: enhanced hasmap, capacity-based partitions on time, partitioning on A; DeadIndex: partitioning on A, HINT) ===

TAXIS-F TAXIS-P BIKES FLIGHTS WILDFIRES BOOKS
10* 10* 10° 10— 10° 10%
T 107 b - n z 10 7 10 7 z 10 n
7 10 710 o 7 10 7 10 7 7 O —
Py 20 2 10° 5 10° q - 10”
2 2 g g, 2o I
= Z Z 0 Z 0 = =0
& £ 100 £ 107 < 107 & £ 10?2
10! 10° 107 102 10°
35 10 30 50 1 2 3 4 s 10 20 30 40 50 510 30 60 120 1050 100 500 1000 5 10 15 2 25
search-key query extent [dollars] search-key query extent [passengers] search-key query extent [years] scarch-key query extent [hours] search-key query extent [acres] scarch-key query extent [books]
10° e 10t 10° 10° 107! 102
g = 13 7 7 A X A A z 7 10!
g g 0 q g0 L 80 i T]
5 < 10 > i 9 h e 5 100
£ 10 g £ f m £ £ 107 = - E
s s s s g 4 g
g 10° gy g0 g) g
- 11 10 AT ° ° - 1 11 I T
10! 107! 107 10°? 10°? 107
35 10 30 50 12 3 4 s 1020 30 40 50 510 30 60 120 1050 100 500 1000 510 15 20 25
search-key query extent [dollars] search-key query extent search-key query extent [years] search-key query extent [hours] search-key query extent [acres] search-key query extent [books]
10* 10* 10? ———— 10 10° 10?
7 10 b 7 10° fe B z 7 7 7
g g1 [I g nonon g0 e
=z 2 = 2 Z 10 Z 10 ul =z =
5 10 5 10 P P s S
. g 2 z Zwo G
3" R 300 3 10 3 .
£ 10 £ 10° e e e e 10
10" 107" 107" 107! 107 107
16 12 18 24 16 12 18 24 1 6 12 18 12 3 4 s 17 14 21 30 17 14 20 3
temporal query extent [hours] temporal query extent [hours] temporal query extent [hours] temporal query extent [days] temporal query extent [days] temporal query extent [days]
10} fr——=r—p 10* = 10° 10" 107! 10! R
Z 10% 7z 10% =z =z z =z 1
g 10 g 10 g g 10° g § 10°
= =0 Z 10 & 210 - r 2
o 10 2 10 o P P , P
£ g £ £ 10" b 1§ E 10"
Z 10 Z 10° z 2 I =3 =
s - g 10 g 102 S50 2 102
310 —’ —‘ 310 —‘ 3 3 1] “ &
102 102 10? 10” 10 107
16 12 18 24 16 12 18 24 16 12 18 24 12 3 4 5 17 14 21 30 17 14 21 30

temporal query extent [hours] temporal query extent [hours] temporal query extent [hours]

Fig. 15 Range time-travel queries: a-LIT against competition

son is the high cost of update handling by the MVB-
tree; the performance gap is larger for the TAXIS and
BIKES (update-heavy streams). As Table shows,
LIT (pure) and a-LIT capitalize on the Livelndex to
cope with updates. In fact, the MVB-tree is compet-
itive only in BOOKS, which has the smallest number
of updates and so, queries significantly contribute to
the total time. a-LIT always outperforms LIT (pure)
as expected for range time-travel queries (second and
fourth row in Figure, since LIT (pure) cannot prune
the search space using the search-key attribute. Overall,
a-LIT exhibits a good tradeoff between updating and
querying, being able to efficiently handle both update-
heavy and moderate streams. Based on our tests, we
expect an even bigger advantage over LIT (pure) for
query-heavy streams.

9.2.5 Index Size

We conclude our analysis for in-memory query process-
ing with a study on the index size. First, we compare
LIT and a-LIT against the competition; Tables [T1] and
[[2] report the maximum size for each index for pure
time-travel and range time-travel queries, respectively.
For all indices, this maximum value is observed after
the entire input stream was ingested. In Table ob-
serve that for all streams LIT occupies less space than

temporal query extent [days] temporal query extent [days] temporal query extent [days]

Table 11 Pure time-travel: index size [MBs]

input stream Timeline [30] te-HINT LIT
TAXIS 3086 2042 2042
BIKES 1851 1226 1226
FLIGHTS 1129 747 747
WILDFIRES 15 10 10
BOOKS 69 45 45
Table 12 Range time-travel: index size [MBs]
input stream MVB-tree [4] LIT (pure) a-LIT
TAXIS-F(-P) 8522 3404 3744
BIKES 5433 2043 2247
FLIGHTS 4739 1246 1370
WILDFIRES 35 16 18
BOOKS 282 75 83

the Timeline index. On the other hand, te-HINT has
an identical maximum footprint to LIT because both
approaches eventually build identical HINT indices. As
Table [12] shows, a-LIT always occupies less space than
the MVB-tree. Compared to a-LIT, (pure) LIT has a
slightly smaller footprint due to building a single HINT,
but at the expense of an inferior performance, in almost
all cases as shown in Figure [I5] Finally, we study the
growth of the LIT’s size of time; Figure [T plots its size
as a function of the percentage of the updates in each
stream. Observe that LIT’s space increases linearly with
the number of updates, which makes it appropriate for
in-memory management of time-evolving data.

Scalable Lighting-fast Temporal Indexing

21

N

BOOKS —o—
N g BIKES 7

10° F e TAXIS —v—
r/‘?/v FLIGHTS —»—

102 | WILDFIRES

ol M

=

\%

=)

Index size [MBs]
Index size [MBs]

IOI | —
10° 10°
10 3050 70 100 10 30 50 70 100
updates [%] [log] updates [%] [log]
LIT a-LIT

Fig. 16 Size growth over time

9.3 Query Processing under Limited Memory

The second part of our experimental analysis evalu-
ates queries under limited memory for LITT and a-
LITH] We ran our tests on the same datasets and
input streams used for the first part of the analysis
(see Section . We setup the in-memory Livelndex
and DeadIndex components according to Section [9.2.1
amd i.e., LIT" uses an enhanced hashmap with
capacity-based partitioning for LiveIlndex and a HINT
for DeadIndex, while a-LITt uses multiple enhanced
hashmaps with capacity-based partitions on time and
partitioning on search-key A for Livelndex, and multi-
ple HINTs based on the A-partitioning for DeadIndex.
The page size for the on-disk R-trees (both as a Fos-
sillndex and as a competitor) was fixed to 8 KB.

All tests ran (again as single-threaded processes) on
an Intel Core i7-14700K clocked at 3.4 GHz with 64 GBs
of RAM,.1.7MB L1 cache, 28 MB L2 cache, and 33 MB
L3 cache, and a 4 TB NVMe SSD using PCle 4.0.

9.8.1 Tuning LITY and a-LITT

Similar to Section[9.2] we first examine the best setting
for the DeadIndex (in regards to fossilization) and the
Fossillndex of LITT. Our findings directly apply to a-
LIT™; plots omitted due to lack of space.

DeadIndex. We consider the two approaches described
in Section for implementing the DeleteFossils func-
tion. We denote by Reconstruct the straightforward ap-
proach which drops and rebuilds from scratch the HINT
DeadIndex, and by Update in-situ, the approach which
updates the HINT partitions on site by removing all fos-
sil entries. To evaluate the approaches, we fed LITt the
input streams and monitored the triggered fossilization
events for different values of the memory budget M, as
a percentage of the dataset size (see Table . Figure
reports the total time required to maintain the DeadIn-
dex by removing the fossils. For each M value, we also
include the number of fossilization events as annotation
over the bars (i.e., how many times the Deletelntervals
function was invoked) E Furthermore, Figure [L9| shows

20 Code in https://github.com/psimatis/lit_fossils

21 Without loss of generality, we set the reduction factor r
to 10% in this test; we study its effect later in Figure

the average number of fossils removed from DeadIndex
per M. As expected, the deletion times for both ap-
proaches drop as M increases due to fewer fossilization
events taking place, while the average number of fos-
sils increases as larger DeadIndex chunks are removed
per fossilization. Most importantly, we observe that the
Update in-situ approach always outperforms the Recon-
struct one for all datasets; typically there is 6x to 12x
improvement. For the rest of our analysis, we always
use Update in-situ for maintaining DeadIndex.

FossilIndex. We consider the two approaches detailed
in Section [7-4] for updating Fossillndex, i.e., for imple-
menting the InsertFossillntervals function. To evaluate
the approaches, we tested in isolation the last part of
the fossilization process. Specifically, we directly sub-
mitted chunks of the input streams to the R-tree Fos-
sillndex as fossils. Figure [18| reports the insertion cost
to Fossillndex, while varying the number of inserted
records as a percentage of the dataset cardinality (see
again Table . Each experiment is initialized with an
empty Fossillndex, followed by inserting a chunk of the
dataset; the first chunk is bulk-loaded using the STR al-
gorithm. We observe that the batch insertion approach
outperforms R*-tree insertion in all cases. This is ex-
pected, as batching minimizes I/O by grouping records
into leaf nodes before writing, whereas R*-tree insertion
adds records individually, leading to higher cost. The
only exception occurs at the 5% insertion of the WILD-
FIRES dataset, where the number of insertions is small
(i.e., 38,921) compared to other streams (e.g., 102,535
for BOOKS). In this case, the sorting overhead of the
batching method is more expensive than the restructur-
ing cost of the R*-tree algorithm. Under these findings,
we always use batch insertion for updating Fossillndex.

We next study the overall cost of updating LITT
and a-LITT when consuming an input stream. This cost
includes the cost of maintaining the Livelndex, DeadIn-
dex, and Fossillndex components and the cost of updat-
ing tf. Note that a-LIT* utilizes the same methods for
maintaining its DeadIndex and Fossillndex during the
fossilization process, as discussed in the previous para-
graph. Figure20|reports our findings for different values
of the memory budget M and the reduction factor r (see
Section . Higher values of M significantly decrease
the update time because they reduce the frequency of
disk migrations and hence the fossilization time. While
r has a smaller effect on total update time than M,
r = 10% is the fastest in all settings. Hence, we set
r = 10% for the remaining experiments. Since a-LIT™
has slightly higher memory requirements compared to
LIT* due to attribute A, using the same M value would
trigger more frequent fossilization for a-LIT*. So, for

https://github.com/psimatis/lit_fossils

22

P. Simatis et al.

[Reconstruct

[Update in-situ

- TAXIS BIKES FLIGHTS WILDFIRES BOOKS
O
$ 10 & 4| w0y g w2, | 10 101
o 0 0 1 0 0 0
£ 10 10 10 10 0% 5 o,
c 107! 107! 1071 10744 11, | 107!
s, S o S o *TAXIS+BIKES=FLIGHTS = WILDFIRES+BOOKS
10 10 10 10 10 L 107 -
e 10% 15% 20% 10% 15% 20% 10% 15% 20% 10% 15% 20% 10% 15% 20% @ /
M M M M M o /—x
‘5 106
Fig. 17 LITT DeadIndex: deletion time varying memory budget M (% of dataset); numbers g
.1 . . Q
mark fossilization events, reduction factor r = 10% €
g 108 .——/
g
<

BIKES FLIGHTS

[R*-tree insertion algorithm [Batch insertion
WILDFIRES

Insertion Time [secs]
-
(=]
o

5% 10% 15%

Inserted Volume (%)

5% 10% 15%
Inserted Volume (%)

5% 10% 15%

Inserted Volume (%)

5%

10% 15%
Inserted Volume (%)

10% 15% 20%
M

Fig. 19 LIT™: fossilized records

5%

Inserted Volume (%)

10% 15%

Fig. 18 LITT DeadIndex: insertion time varying memory budget M (% of dataset)

BIKES

FLIGHTS
11.75 11.28

WILDFIRES
0.30 0.23

59.97 [44.95 IK{eRelg (XY 23.88 19.38 50% 50%

34.54 19.56 40% 11.76 8.60 40% 0.30 0.15

34.06 ~ 30% 11.55 8.59 = 30% 0.15

30.92 23.61 16.05 20% 11.43 8.41 20% 0.14

28.93 15.87

10%

10.52

<

20%- &

0 10%

5}

Z215%- Y
o

3

20%- —

X
)
=1

10%

E
)
=

20%-

B
)
=

215%- ;
20%-
215%-

Fig.
factor r

the remaining tests, an empirical +5% adjustment en-
sures a fair comparison under similar memory pressure.

Figure [21] (left) breaks down LIT*’s update time for
budget M = 20%. We observe that dataset cardinality
impacts update time; larger steams (e.g., TAXIS) re-
quire substantially more time than smaller ones (e.g.,
WILDFIRES). Overall, LiveIndex dominates, since it
processes all insertions and deletions, and DeadIndex
is costlier than Fossillndex. A notable exception is
BOOKS, where long intervals inflate LiveIndex’s mem-
ory footprint, thus, leading to frequent fossilizations
and a small, cheap to maintain DeadIndex.

Figure [21] (right) shows the same breakdown for a-
LIT*. As with LITT, Livelndex is the slowest compo-
nent to maintain. Interestingly, all datasets exhibit the
DeadIndex dip seen in BOOKS of Figure [21] (left). This
is due to: (1) attribute A increasing memory pressure
and triggering frequent fossilizations, and (2) the over-
head of the 3D R-tree used for Fossillndex compared to
DeadIndex’s lighter HINT.

9.8.2 Querying LITY and a-LIT"

We study the query performance of the LIT" and a-
LITT frameworks. Figure provides a breakdown of
the total query time for LITT, across all three in-

Il TAXIS(-P) [E BIKES I FLIGHTS [WILDFIRES [BOOKS
7.40 | 5.86 (%Y o + A
\as § 102 LIT 102 a-LIT
' o 10t 10t
=~ 30% 4.01 g 100 100
21071 107t
3.83 2
g 1072 1072
4.99 3.59 =) et et et et ot
- e oo 0% e
M N 52 <9 N o2 9
§ E é \% O <O W o} <0
M

20 LIT: total update time [secs] varying memory budget M and reduction Fig. 21 Update time breakdown: LIT*

(M = 20%) and a-LITT (M = 25%), r = 10%

dex components while varying the memory budget M.
Fossillndex bars are annotated with the percentage of
queries that access fossils on disk. As M increases,
the fraction of disk-bound queries decreases, leading
to lower Fossillndex query times, and an increase in
DeadIndex query times. In contrast, LiveIndex remains
unaffected by the varying memory budget. This behav-
ior is consistent across all datasets, confirming that re-
ducing I/O overhead improves performance.

We next compare LITT against a disk-resident
Timeline and a hybrid baseline that shares LIT’s in-
memory Livelndex with an on-disk 2D R-tree indexes
both dead and fossil records. Both these competitors
use the available memory as an LRU cache. Figure
reports the total and query times; the R-tree based so-
lution was terminated on TAXIS as it was extremely
slower than the other methods. LITT outperforms
Timeline on both metrics, as in the in-memory query
processing study (Figure. Even though Livelndex +
2D R-tree avoids transfers from DeadIndex to Fossilln-
dex, it exhibits higher update time than LIT™, because
it inserts dead intervals to the on-disk R-tree one-by-
one, which is computationally intensive and also incurs
many I/Os. Further, it experiences higher query times
for queries on recent data than LIT+’s HINT, as each
query potentially accesses the disk.

Scalable Lighting-fast Temporal Indexing

23

I Livelndex
BIKES
g' 10! 10! 10!
% 10° 10° 10°
£ 1071 1071 107!
> 1072 1072 1072
:3; 1073 1073 1073

10% 15% 20% 10% 15% 20%

M M

B Deadindex

10%

[Fossillndex

FLIGHTS WILDFIRES BOOKS
10! 10!
10° 100
1071 1071
1072 1072
103 1073
15% 20% 10% 15% 20% 10% 15% 20%
M M M

Fig. 22 Pure time-travel queries: LITT breakdown; default query extents, » = 10%, annotations show percentage of queries

on Fossillndex

I Liveindex [Deadindex [Fossilindex
— 102 102 BIKES 102 FLIGHTS 107 WILDFIRES 107
§ 10* 10t 10t 10! 10!
o 100 10° 10° 100 100
£ 10! 1071 10-1 10-1 1071
21072 1072 1072 1072 1072
3 1073 1073 1073 1073 1073
15% 20% 25% 15% 20% 25% 15% 20% 25% 15% 20% 25% 15% 20% 25%
M M M M M

Fig. 23 Range time-travel queries: a-LITT breakdown; default query extents, r = 10%), annotations show percentage of queries

on Fossillndex

B LIT* [Timeline WM Livelndex + 2D R-tree
= 7
8 10t 8 100
& 103 & 108
o 102 g 102
g 100 g 10!
% 100 & 100
< 107! g 107!
a S < © S)
& &
& @ ,\0‘2’ Q\Q& &VA}' “& \C’ Q@& O
& $x

Fig. 24 Pure time-travel queries: LITt against competition;
default query extents, M = 20%, r = 10%

3 [3
7 10 510
o]
® iz
—10? o 107
(]
g £
E=IR S 10t
5 10 10
3 5
B 100 0

107 2 3 C10mT 2 3

Years Years
25 Pure time-travel queries: LITT scalability on
M = 20%, r = 10%

Fig.
TAXIS; default query extents,

We also study how LIT* scales with the size of the
input stream. Figure [25]| reports total and query times
on TAXIS streams spanning 1 to 3 years. Both met-
rics scale smoothly with stream size indicating stable
behavior as the index grows. a-LIT* exhibits the same
scaling behavior; plots omitted due to space constraints.

Figure 23] provides the query time breakdown for a-
LIT*, while varying memory budget M. As observed
in Figure Livelndex is the fastest component, fol-
lowed by DeadIndex, and finally Fossillndex. An excep-
tion occurs in BOOKS where Livelndex is slower than
DeadIndex, due to the dataset’s long-lived intervals.

3 a-LIT* [MVB-tree M Livelndex + 3D R-tree
i~ 7
Q 10°1 8 10°
B 1044 2104
gaa 103 4 & 103
5 1024 5 102 A
= 10! 4 210! 4
2 100 D 190
o 10° 4 = 1004
a Q S O) © RO & & &
S & q@ s g LSS
& 9 &S VTS
AN N

Fig. 26 Range time-travel queries: a-LITT against competi-
tion; default query extents, M = 25%, r = 10%

Lastly, we compare a-LITT against a disk-resident
MVB-tree and a hybrid solution, with a single in-
memory Livelndex (similar to a-LIT) and an on-disk
3D R-tree for dead and fossil records. Figure 26| reports
total and query times; numbers on TAXIS-P for the R-
tree based solution again omitted. a-LITT is the best
on all datasets in total time; MVB-tree is the runner
up. The Livelndex + 3D R-tree processes queries faster
than MVB-tree on every dataset except WILDFIRES.

10 Conclusions and Future Work

We proposed LIT, a hybrid index for time-evolving
databases, which decouples the handling of current
(live) record versions from past (dead) record versions.
We studied different implementation options for the live
and dead components to minimize update and query
costs. We considered both pure time-travel queries that
retrieve active record versions at some time point or pe-
riod in the past, and range time-travel queries, which
additionally apply a selection predicate on a search-key

24

P. Simatis et al.

attribute. This work revisits our previously proposed
LIT [19] by introducing LITT. LITT extends LIT to
manage memory-bounded scenarios, where the indexed
version history exceeds the system’s memory capacity.
LIT* stores old dead versions on disk, while keeping
the recently dead versions in memory. We study mech-
anisms for batch transfers of versions between LIT™’s
components. Our tests unveil the best approaches for
handling live and dead record versions in LIT and shows
that LIT is orders of magnitude faster than temporal
indices that index live and dead versions in the same
structure. LIT uses linear space to the number of record
versions, which renders it suitable for in-memory index-
ing of temporal data. We also demonstrate the efficiency
and scalability of LITT in indexing long version histo-
ries. Future work includes studying the applicability of
LIT on other temporal query types (e.g., aggregation,
joins), multi-threaded processing, and LIT’s integration
into an open-source database system.

References

1. Al-Kateb, M., Ghazal, A., Crolotte, A., Bhashyam,
R., Chimanchode, J., Pakala, S.P.: Temporal query
processing in teradata. In: EDBT, pp. 573-578
(2013)

2. Arge, L., Vitter, J.S.: Optimal dynamic interval
management in external memory (extended ab-
stract). In: FOCS, pp. 560-569 (1996)

3. Arge, L., Vitter, J.S.: Optimal external memory in-
terval management. SIAM J. Comput. 32(6), 1488
1508 (2003)

4. Becker, B., Gschwind, S., Ohler, T., Seeger, B.,
Widmayer, P.: An asymptotically optimal multiver-
sion b-tree. VLDB J. 5(4), 264275 (1996)

5. Beckmann, N., Kriegel, H., Schneider, R., Seeger,
B.: The R*Tree: An efficient and robust access
method for points and rectangles. In: ACM SIG-
MOD, pp. 322-331 (1990)

6. Behrend, A., Dignos, A., Gamper, J., Schmiegelt,
P., Voigt, H., Rottmann, M., Kahl, K.: Period in-
dex: A learned 2d hash index for range and duration
queries. In: SSTD, pp. 100-109 (2019)

7. Bellomarini, L., Nissl, M., Sallinger, E.: itemporal:
An extensible generator of temporal benchmarks.
In: IEEE ICDE, pp. 20212033 (2022)

8. de Berg, M., Cheong, O., van Kreveld, M.J., Over-
mars, M.H.: Computational geometry: algorithms
and applications, 3rd Edition. Springer (2008)

9. Bernhardt, A., Tamimi, S., Vincon, T., Knédler, C.,
Stock, F., Heinz, C., Koch, A., Petrov, I.: neodbms:
In-situ snapshots for multi-version DBMS on native

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

computational storage. In: IEEE ICDE, pp. 3170-
3173 (2022)

Bohlen, M.H., Dignés, A., Gamper, J., Jensen,
C.S.: Temporal data management - an overview.
In: eBISS, vol. 324, pp. 51-83 (2017)

Bohlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalesc-
ing in temporal databases. In: VLDB, pp. 180-191
(1996)

Bornemann, L., Bleifu}, T., Kalashnikov, D.V.,
Nargesian, F., Naumann, F., Srivastava, D.: Match-
ing roles from temporal data: Why joe biden is not
only president, but also commander-in-chief. Proc.
ACM Manag. Data 1(1), 65:1-65:26 (2023)
Bouros, P., Mamoulis, N.: A forward scan based
plane sweep algorithm for parallel interval joins.
Proc. VLDB Endow. 10(11), 1346-1357 (2017)
Bouros, P., Mamoulis, N., Tsitsigkos, D., Terrovitis,
M.: In-memory interval joins. VLDB J. 30(4), 667—
691 (2021)

Campbell, F.S., Arab, B.S., Glavic, B.: Efficient an-
swering of historical what-if queries. In: ACM SIG-
MOD, pp. 1556-1569 (2022)

Ceccarello, M., Dignés, A., Gamper, J., Khnaisser,
C.: Indexing temporal relations for range-duration
queries. In: SSDBM, pp. 3:1-3:12 (2023)
Christodoulou, G., Bouros, P., Mamoulis, N.:
HINT: A hierarchical index for intervals in main
memory. In: ACM SIGMOD, pp. 1257-1270 (2022)
Christodoulou, G., Bouros, P., Mamoulis, N.:
HINT: a hierarchical interval index for allen rela-
tionships. VLDB J. 33(1), 73-100 (2024)
Christodoulou, G., Bouros, P., Mamoulis, N.: LIT:
lightning-fast in-memory temporal indexing. Proc.
ACM Manag. Data 2(1), 20:1-20:27 (2024)
Dignés, A., Glavic, B., Niu, X., Gamper, J., Bohlen,
M.H.: Snapshot semantics for temporal multiset re-
lations. Proc. VLDB Endow. 12(6), 639-652 (2019)
Ding, J., Nathan, V., Alizadeh, M., Kraska, T.:
Tsunami: A learned multi-dimensional index for
correlated data and skewed workloads. Proc. VLDB
Endow. 14(2), 74-86 (2020)

Edelsbrunner, H.: Dynamic rectangle intersection
searching. Tech. Rep. 47, Institute for Information
Processing, TU Graz, Austria (1980)

Elmasri, R., Wuu, G.T.J., Kim, Y.: The time index:
An access structure for temporal data. In: VLDB,
pp. 1-12 (1990)

Gao, D., Jensen, C.S., Snodgrass, R.T., Soo, M.D.:
Join operations in temporal databases. VLDB J.
14(1), 2-29 (2005)

Gao, J., Sintos, S., Agarwal, P.K., Yang, J.: Durable
top-k instant-stamped temporal records with user-
specified scoring functions. In: IEEE ICDE, pp.

Scalable Lighting-fast Temporal Indexing

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

720-731 (2021) 42.

Guttman, A.: R-trees: A dynamic index structure
for spatial searching. In: ACM SIGMOD, pp. 47-57

(1984) 43.

Hsu, S.H., Jensen, C.S., Snodgrass, R.T.: Valid-
time selection and projection. In: R.T. Snodgrass

(ed.) The TSQL2 Temporal Query Language, pp. 44.

249-296. Kluwer (1995)
Hu, X., Sintos, S., Gao, J., Agarwal, P.K., Yang,

J.: Computing complex temporal join queries effi- 45.

ciently. In: ACM SIGMOD, pp. 2076-2090 (2022)

Kanellakis, P.C., Ramaswamy, S., Vengroff, D.E., 46.

Vitter, J.S.: Indexing for data models with con-
straints and classes. In: ACM PODS, pp. 233-243

(1993) 47.

Kaufmann, M., Manjili, A.A., Vagenas, P., Fischer,
P.M., Kossmann, D., Farber, F., May, N.: Time-
line index: a unified data structure for processing

queries on temporal data in SAP HANA. In: ACM 48.

SIGMOD, pp. 1173-1184 (2013)
Kline, N., Snodgrass, R.T.: Computing temporal

aggregates. In: IEEE ICDE, pp. 222-231 (1995) 49.

Kraska, T., Beutel, A., Chi, E.H., Dean, J., Poly-
zotis, N.: The case for learned index structures. In:

ACM SIGMOD, pp. 489-504 (2018) 50.

Kriegel, H., Potke, M., Seidl, T.: Managing inter-
vals efficiently in object-relational databases. In:

VLDB, pp. 407-418 (2000) 51.

Kulkarni, K.G., Michels, J.: Temporal features in

SQL: 2011. SIGMOD Rec. 41(3), 34-43 (2012) 52.

Leutenegger, S.T., Edgington, J., Lépez, M.A.:
STR: A simple and efficient algorithm for r-tree

packing. In: IEEE ICDE, pp. 497-506 (1997) 53.

Liu, Q., Li, M., Zeng, Y., Shen, Y., Chen, L.: How

good are multi-dimensional learned indexes? an ex-

perimental survey. VLDB J. 34(2), 17 (2025) 54.

Loskot, M., Wulkiewicz, A (2019).
Https://github.com/mloskot /spatial index_benchmark
Lu, W., Zhao, Z., Wang, X., Li, H., Zhang, Z., Shui,

Z., Ye, S., Pan, A., Du, X.: A lightweight and ef- 55.

ficient temporal database management system in
TDSQL. Proc. VLDB Endow. 12(12), 2035-2046

(2019) 56.

Michalopoulos, A., Tsitsigkos, D., Bouros, P.,
Mamoulis, N., Terrovitis, M.: Efficient nearest

neighbor queries on non-point data. In: ACM 57.

SIGSPATIAL, pp. 33:1-33:4 (2023)
Moon, B., Lépez, I.LF.V., Immanuel, V.: Efficient
algorithms for large-scale temporal aggregation.

IEEE TKDE 15(3), 744-759 (2003) 58.

Moro, M.M., Tsotras, V.J.: Transaction-time in-
dexing. In: Encyclopedia of Database Systems, Sec-
ond Edition. Springer (2018)

Moro, M.M., Tsotras, V.J.: Valid-time indexing.
In: Encyclopedia of Database Systems, Second Edi-
tion. Springer (2018)

Nathan, V., Ding, J., Alizadeh, M., Kraska, T.:
Learning multi-dimensional indexes. In: ACM SIG-
MOD, pp. 985-1000 (2020)

Papaioannou, K., Theobald, M., Bohlen, M.H.:
Outer and anti joins in temporal-probabilistic
databases. In: IEEE ICDE, pp. 1742-1745 (2019)
Piatov, D., Helmer, S.: Sweeping-based temporal
aggregation. In: SSTD, pp. 125-144 (2017)
Piatov, D., Helmer, S., Dignés, A.: An interval join
optimized for modern hardware. In: IEEE ICDE,
pp. 1098-1109. IEEE Computer Society (2016)
Piatov, D., Helmer, S., Dignés, A., Persia, F.:
Cache-efficient sweeping-based interval joins for ex-
tended allen relation predicates. VLDB J. 30(3),
379-402 (2021)

Qi, J., Liu, G., Jensen, C.S.,; Kulik, L.: Effec-
tively learning spatial indices. Proc. VLDB Endow.
13(11), 2341-2354 (2020)

Salzberg, B., Tsotras, V.J.: Comparison of access
methods for time-evolving data. ACM Comput.
Surv. 31(2), 158-221 (1999)

Saracco, C.M., Nicola, M., Gandhi, L.: A matter of
time: Temporal data management in db2 10. Tech.
rep., IBM (2012)

Snodgrass, R.T., Ahn, I.: Temporal databases.
Computer 19(9), 35-42 (1986)

Song, Z., Roussopoulos, N.: Seb-tree: An approach
to index continuously moving objects. In: MDM,
pp. 340-344 (2003)

Tao, Y., Papadias, D., Faloutsos, C.: Approximate
temporal aggregation. In: IEEE ICDE, pp. 190-201
(2004)

Tsitsigkos, D., Lampropoulos, K., Bouros, P.,
Mamoulis, N., Terrovitis, M.: A two-layer partition-
ing for non-point spatial data. In: IEEE ICDE, pp.
1787-1798 (2021)

U, L.H., Mamoulis, N., Berberich, K., Bedathur,
S.J.: Durable top-k search in document archives.
In: ACM SIGMOD, pp. 555-566 (2010)

Vitter, J.S.: External memory algorithms and data
structures. ACM Comput. Surv. 33(2), 209271
(2001)

Zhang, D., Markowetz, A., Tsotras, V.J., Gunop-
ulos, D., Seeger, B.: Efficient computation of tem-
poral aggregates with range predicates. In: ACM
PODS (2001)

Zhang, Z., Hu, H., Xue, Z., Chen, C., Yu, Y., Fu,
C., Zhou, X., Li, F.: SLIMSTORE: A cloud-based
deduplication system for multi-version backups. In:
IEEE ICDE, pp. 1841-1846 (2021)

	Introduction
	Related Work
	Problem Definition
	Time-evolving HINT
	The LIT Hybrid Index
	Indexing Non-Temporal Record Attributes
	Temporal Indexing under Limited Memory
	Persistence, Recovery, Concurrency Control
	Experimental Analysis
	Conclusions and Future Work

