
A	Forward	Scan	based	Plane	Sweep	Algorithm	
for	Parallel	Interval	Joins	
Panagio;s	Bouros1	and	Nikos	Mamoulis2	

1Department	of	Computer	Science,	Aarhus	University,	Denmark	
2Department	of	Computer	Science	&	Engineering,	University	of	Ioannina,	Greece	

pbour@cs.au.dk, nikos@cs.uoi.gr

Interval	Joins	

43rd	InternaConal	Conference	on	Very	Large	Data	Bases	(VLDB),	Munich,	Germany,	August	28	-	September	1,	2017	

[1]		T.	Brinkhoff,	H.-P.	Kriegel,	and	B.	Seeger.	Efficient	
processing	of	spaCal	joins	using	r-trees.	In	SIGMOD,	
1993.	

[2]		F.	Cafagna	and	M.	H.	Böhlen.	Disjoint	interval	
parCConing.	VLDB	J.,	26(3):447–466,	2017.	

[3]		A.	Dignös,	M.	H.	Böhlen,	and	J.	Gamper.	Overlap	interval	
parCCon	join.	In	SIGMOD,	2014.	

[4]		D.	Piatov,	S.	Helmer,	and	A.	Dignös.	An	interval	join	
opCmized	for	modern	hardware.	In	ICDE,	2016.	

References	

Example	
	

Find	all	pairs	of	employees	whose	working	
periods	on	departments	D1	and	D2	intersect	

employee	 start	 end	

John	 1994	 2006	

Mary	 1992	 2002	

employee	 start	 end	

Jane	 1990	 1993	

Bob	 1995	 1996	

Hugo	 1997	 2003	

Helen	 2005	 2007	

Tom	 2006	 2008	

Applica;ons	
	

q  Temporal	databases	
q Mul1dimensional	data	management	
q  Uncertain	data	management	

Single-threaded	Processing	

Parallel	Processing	

Domain-based	Par;;oning	
	

q  Split	domain	into	k	Cles	
q  Replicate	intervals	spanning	mul1ple	1les	
q  Evaluate	k	independent	parCCon	joins	
q  Load	balancing	

R1									S1	
domain	

…	

R2									S2	 Rk									Sk	

t1	 t2	 tk	

Mini-joins	Breakdown	
	

Greedy	Scheduling	
	

q  Distribute	mini-joins	to	different	cores	
q Minimize	maximum	load	
q  NP-hard	assignment	problem	

Hash-based	Par;;oning	[4]	
	

q  Split	inputs	into	k	parCCons	using	hashing	
q  Evaluate	all	pair-wise	parCCon	joins	

R	

R1	

R2	

Rk	

…	
S	h	

S1	

S2	

Sk	

…	
h	

…	Core1	 Core2	 Coren	

Adap;ve	Par;;oning	
	

q Modify	iniCal	uniform	parCConing	
q  Reposi1on	Cle	borders	
q Move	load	between	neighboring	Cles	

domain	

…	t1	 t2	 tn	

Ri									Si	

(1)	
Ri									Si	 Ri									Si	

Ri									Si	 Ri									Si	

(2)	 (3)	

(4)	 (5)	

Same	complexity	as	
original	join	

Sweep	only	one	input	

No	comparisons	–	cross	product	

Experiments	

Op;mizing	FS	
	

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

FS
gFS

bgFS

 0.1

 1

 10

 100

 1000

0.25 0.5 0.75 1

E
n

d
p

o
in

t
co

m
p

ar
is

o
n

s
[%

]

FS
gFS

bgFS

|R|/|S| [1 core] |R|/|S| [1 core]

Single-threaded	Processing	
	

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1
E

x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

DIP

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 0.75 1Ex
ec

ut
io

n
ti

me
 [

se
cs

]

DIP
OIP

bgFS
LEBI
OIP

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 0.75 1Ex
ec
ut
io
n
ti
me
 [
se
cs
]

DIP
OIP

bgFS
LEBIbgFS

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 0.75 1Ex
ec
ut
io
n
ti
me
 [
se
cs
]

DIP
OIP

bgFS
LEBI

LEBI

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 0.75 1Ex
ec
ut
io
n
ti
me
 [
se
cs
]

DIP
OIP

bgFS
LEBI

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]
WEBKIT BOOKS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.25 0.5 0.75 1

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]
INFECTIOUS [4] GREEND [4]

Figure 6: Comparisons for single-threaded processing

the bundle of its corresponding 5 mini-joins to the same core, and
uniform to denote the (non-adaptive) uniform initial partitioning of
the domain. We tested the following setups:8

(1) atomic/uniform is the baseline domain-based partitioning of
Section 5.2 with all optimizations deactivated;

(2) mj+atomic/uniform splits each partition-join of the baseline
domain-based paradigm into 5 mini-joins which are all exe-
cuted on the same CPU core;

(3) atomic/adaptive employs only adaptive partitioning;
(4) mj+greedy/uniform splits each partition-join of the baseline do-

main-based paradigm into 5 mini-joins which are greedily dis-
tributed to the available CPU cores;

(5) mj+greedy/adaptive employs all proposed optimizations.

Figures 7(a) and (b) report the total execution time of bgFS for each
optimization combination (1)–(5) while Figures 7(c) and (d) report
the ratio of the average idle time over the total execution time.

We observe the following. First, setups (2)–(5) all manage to en-
hance the parallel computation of the join. Their execution time is
lower than the time of baseline atomic/uniform; an exception arises
for mj+atomic/uniform under 4 available cores. The most efficient
setups always include the mj+greedy combination regardless of ac-
tivating adaptive partitioning or not. In practice, splitting every
partition-join into 5 mini-joins creates mini-jobs of varying costs
(2 of them are cross-products and other 2 are also quite cheap),
which facilitates the even partitioning of the total join cost to pro-
cessors. For example, if one partition is heavier overall compared
to the others, one core would be dedicated to its most expensive
mini-join and the other mini-joins would be handled by less loaded
CPU cores. Also, notice that the mj optimization is beneficial even
when the 5 defined mini-joins are all executed on the same CPU
core (i.e., mj+atomic/uniform). This is because breaking down a
partition-join into 5 mini-joins greatly reduces the overall cost of
the partition-join (again, recall that 4 of the mini-joins are cheap).

Adaptive partitioning seems to have a smaller impact compared
to the other two optimizations. Among the setups that do not em-
ploy the greedy scheduling, atomic/adaptive ranks first (both in
8Based on our assumption in Section 6.1, greedy/uniform or
greedy/adaptive setups are meaningless since the number of par-
titions equals the number of available CPU cores.

atomic/uniform

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v

g
 i

d
le

 t
im

e
ra

ti
o

 [
%

] static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v

g
 i

d
le

 t
im

e
ra

ti
o

 [
%

] static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT

databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.

10

mj+atomic/uniform

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
] static/fixed

mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
] static/fixed

static/fixed
static/adaptive
static/adaptive
static/adaptive

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT

databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.

10

atomic/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
] static/fixed

mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
] static/fixed

static/fixed
static/adaptive
static/adaptive
static/adaptive

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT

databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.

10

mj+greedy/uniform

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v

g
 i

d
le

 t
im

e
ra

ti
o

 [
%

] static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v

g
 i

d
le

 t
im

e
ra

ti
o

 [
%

] static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT

databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.

10

mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
] static/fixed

mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
] static/fixed

static/fixed
static/adaptive
static/adaptive
static/adaptive

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT

databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.

10

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x
e
c
u
ti

o
n
 t

im
e
 [

se
c
s]

(a) |R|/|S| [16 cores] (b) # cores [|R| = |S|]

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
]

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
]

(c) |R|/|S| [16 cores] (d) # cores [|R| = |S|]

Figure 7: Optimizing the domain-based partitioning: bgFS on
WEBKIT

terms of the execution time the average idle time ratio) but when
activated on top of the mj+greedy/uniform setup, adaptive parti-
tioning enhances the join evaluation when the number of cores is
low, e.g., 4 or 9; notice how faster is the mj+greedy/adaptive setup
compared to mj+greedy/uniform in case of 4 available CPU cores.

Overall, (i) the mj optimization greatly reduces the cost of a parti-
tion join and adds flexibility in load balancing, (ii) the
mj+greedy/uniform and mj+greedy/adaptive schemes peform very
well in terms of load balancing, by reducing the average idle time
of any core to less than 20% of the total execution time in almost
all cases (|R|/|S| = 0.25 is the only exception). To take full ad-
vantage of all proposed optimizations, we setup the domain-based
paradigm as mj+greedy/adaptive for the remaining of this analysis.

6.5 Comparisons: Parallel Processing
In this section, we first compare the domain-based partitioning

against the hash-based proposed in [18]; this study is independent
of the join algorithm we may use to compute partition- or mini-
joins. Further, we compare our proposed implementation of FS

with all optimizations (i.e., bgFS) to the state-of-the-art (as shown
in Section 6.3) LEBI for parallel computation of interval joins.

Hence, we implemented the domain-based and the hash-based
paradigms of Section 5 coupled with both LEBI and our best method
bgFS, denoted by h-LEBI, d-LEBI and h-bgFS, d-bgFS; note that
the mj+greedy/adaptive optimizations evaluated in the previous sec-
tion are all activated on the LEBI powered implementation of the
domain-based paradigm. As discussed in Section 5.1, [18] sorts
each input collection prior to partitioning. We experimented also
with a variant of the hash-based paradigm, which does not perform
this pre-sorting step and proved to be always faster. Thus, for the
rest of this subsection we run our variant of the hash-based parti-
tioning. Figures 8(a)–(d) and Figures 9(a)–(d) report on this first
comparison for both WEBKIT and BOOKS datasets; we show the
speedup achieved by each parallel paradigm over the single-core
evaluation (either with LEBI or bgFS) and the number of conducted
endpoint comparisons. To better prove our points, we also include
a third paradigm denoted as theoretical which exhibits a linear to
the number of available cores, speedup and reduction of the con-
ducted comparisons. We observe that our domain-based paradigm

|R|/|S| [1 core] |R|/|S| [1 core]

Op;mizing	Domain-based	Par;;oning	
	

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT
E

x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
]

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
]

DIP

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 0.75 1Ex
ec
ut
io

n
ti

me
 [

se
cs

]

DIP
OIP

bgFS
LEBI
OIP

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 0.75 1Ex
ec
ut
io
n
ti
me
 [
se
cs
]

DIP
OIP

bgFS
LEBIbgFS

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 0.75 1Ex
ec

ut
io

n
ti

me
 [

se
cs

]

DIP
OIP

bgFS
LEBI

LEBI

 1

 10

 100

 1000

 10000

 100000

0.25 0.5 0.75 1Ex
ec

ut
io

n
ti

me
 [

se
cs

]

DIP
OIP

bgFS
LEBI

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]
WEBKIT BOOKS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

 1

 10

 100

 1000

 10000

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]
INFECTIOUS [4] GREEND [4]

Figure 6: Comparisons for single-threaded processing

the bundle of its corresponding 5 mini-joins to the same core, and
uniform to denote the (non-adaptive) uniform initial partitioning of
the domain. We tested the following setups:8

(1) atomic/uniform is the baseline domain-based partitioning of
Section 5.2 with all optimizations deactivated;

(2) mj+atomic/uniform splits each partition-join of the baseline
domain-based paradigm into 5 mini-joins which are all exe-
cuted on the same CPU core;

(3) atomic/adaptive employs only adaptive partitioning;
(4) mj+greedy/uniform splits each partition-join of the baseline do-

main-based paradigm into 5 mini-joins which are greedily dis-
tributed to the available CPU cores;

(5) mj+greedy/adaptive employs all proposed optimizations.

Figures 7(a) and (b) report the total execution time of bgFS for each
optimization combination (1)–(5) while Figures 7(c) and (d) report
the ratio of the average idle time over the total execution time.

We observe the following. First, setups (2)–(5) all manage to en-
hance the parallel computation of the join. Their execution time is
lower than the time of baseline atomic/uniform; an exception arises
for mj+atomic/uniform under 4 available cores. The most efficient
setups always include the mj+greedy combination regardless of ac-
tivating adaptive partitioning or not. In practice, splitting every
partition-join into 5 mini-joins creates mini-jobs of varying costs
(2 of them are cross-products and other 2 are also quite cheap),
which facilitates the even partitioning of the total join cost to pro-
cessors. For example, if one partition is heavier overall compared
to the others, one core would be dedicated to its most expensive
mini-join and the other mini-joins would be handled by less loaded
CPU cores. Also, notice that the mj optimization is beneficial even
when the 5 defined mini-joins are all executed on the same CPU
core (i.e., mj+atomic/uniform). This is because breaking down a
partition-join into 5 mini-joins greatly reduces the overall cost of
the partition-join (again, recall that 4 of the mini-joins are cheap).

Adaptive partitioning seems to have a smaller impact compared
to the other two optimizations. Among the setups that do not em-
ploy the greedy scheduling, atomic/adaptive ranks first (both in
8Based on our assumption in Section 6.1, greedy/uniform or
greedy/adaptive setups are meaningless since the number of par-
titions equals the number of available CPU cores.

atomic/uniform

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
] static/fixed

mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
] static/fixed

static/fixed
static/adaptive
static/adaptive
static/adaptive

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT

databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.

10

mj+atomic/uniform

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v

g
 i

d
le

 t
im

e
ra

ti
o

 [
%

] static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v

g
 i

d
le

 t
im

e
ra

ti
o

 [
%

] static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT

databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.

10

atomic/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v

g
 i

d
le

 t
im

e
ra

ti
o

 [
%

] static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v

g
 i

d
le

 t
im

e
ra

ti
o

 [
%

] static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT

databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.

10

mj+greedy/uniform

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
] static/fixed

mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
] static/fixed

static/fixed
static/adaptive
static/adaptive
static/adaptive

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT

databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.

10

mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v

g
 i

d
le

 t
im

e
ra

ti
o

 [
%

] static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v

g
 i

d
le

 t
im

e
ra

ti
o

 [
%

] static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(a) |R|/|S| [1 core] (b) |R|/|S| [1 core]

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

static/fixed
mj+static/fixed
static/adaptive

mj+greedy/fixed
mj+greedy/adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

static/fixed
static/fixed

static/adaptive
static/adaptive
static/adaptive

(c) |R|/|S| [1 core] (d) |R|/|S| [1 core]

Figure 6: Optimizing the domain-based partitioning paradigm: bgFS on WEBKIT

databases. Similar to plane sweep, merge join algorithms re-

quire the two input collections to be sorted, however, join

computation is sub-optimal compared to FS, which guaran-

tees at most |R| + |S| endpoint comparisons that do not

produce results.

Index-based algorithms. Enderle et al. [7] propose inter-

val join algorithms, which operate on two RI-trees [14] that

index the input collections. Zhang et al. [23] focus on find-

ing pairs of records in a temporal database that intersect in

the (key, time) space (i.e., a problem similar to that stud-

ied in [20, 10]), proposing an extension of the multi-version

B-tree [2].

Partitioning-based algorithms. A partitioning-based ap-

proach for interval joins was proposed in [22]. The domain

is split to disjoint ranges. Each interval is assigned to the

partition corresponding to the last domain range it over-

laps. The domain ranges are processed sequentially from

last to first; after the last pair of partitions are processed,

the intervals which overlap the previous domain range are

migrated to the next join. This way data replication is

avoided. Histogram-based techniques for defining good par-

tition boundaries were proposed in [21]. A more sophisti-

cated partitioning approach, called Overlap Interval Parti-

tioning (OIP) Join [6], divides the domain into equal-sized

granules and consecutive granules define the ranges of the

partitions. Each interval is assigned to the partition corre-

sponding to the smallest sequence of granules that contains

it. In the join phase, partitions of one collection are joined

with their overlapping partitions from the other collection.

OIP was shown to be superior compared to index-based ap-

proaches [7] and sort-merge join. These results are con-

sistent with the comparative study of [8], which shows that

partitioning-based methods are superior to nested loops and

merge join approaches. Yet another partitioning approach

[16] models each interval r as a 2D point (r.start,r.end) and

divides the points into spatial regions. Again, a partition of

one collection should be joined with multiple partitions of

the other collection. [Note: remove this one if we run out of

space]

Methods based on plane sweep. The Endpoint-Based

Interval (EBI) Join is the most recent approach and we con-

sider it to be the state-of-the-art. EBI (reviewed in detail in

Section 2.1) is an e�cient implementation of plane sweep,

which is based on a specialized gapless hash map data struc-

ture for managing the active sets of intervals. EBI and its

lazy version (LEBI) were shown to significantly outperform

the best partitioning-based approach [6] and to also be su-

perior to another plane sweep implementation [1]. An ap-

proach similar to EBI is used in SAP HANA [12]. To our

knowledge, no previous work was compared to FS [3].

Parallel algorithms. A domain-based partitioning strat-

egy, similar to that described in Section 4.2, for interval joins

on multi-processor machines was proposed in [15]. Each

partition is assigned to a processor and intervals replicated

to the partitions they overlap, in order to ensure that join

results can be produced independently at each processor.

However, a merge phase with duplicate elimination is re-

quired because the same join result can be produced by

di�erent processors. Our parallel join processing approach

(Section 4) also applies a domain-based partitioning but

does not produce duplicates. In addition, our breakdown

to mini-joins has never been proposed in previous work.

Distributed algorithms. A distributed interval join method

is proposed in [13]. The goal is to compute joins between

sets of intervals, which are located at di�erent clients. The

clients send statistics about the distribution of the local data

to the server, which merges them to form global statistics.

10

 0

 5

 10

 15

 20

 25

 30

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

(a) |R|/|S| [16 cores] (b) # cores [|R| = |S|]

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 0.75 1

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
]

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 9 16 25HT 36HT

A
v
g
 i

d
le

 t
im

e
ra

ti
o
 [

%
]

(c) |R|/|S| [16 cores] (d) # cores [|R| = |S|]

Figure 7: Optimizing the domain-based partitioning: bgFS on
WEBKIT

terms of the execution time the average idle time ratio) but when
activated on top of the mj+greedy/uniform setup, adaptive parti-
tioning enhances the join evaluation when the number of cores is
low, e.g., 4 or 9; notice how faster is the mj+greedy/adaptive setup
compared to mj+greedy/uniform in case of 4 available CPU cores.

Overall, (i) the mj optimization greatly reduces the cost of a parti-
tion join and adds flexibility in load balancing, (ii) the
mj+greedy/uniform and mj+greedy/adaptive schemes peform very
well in terms of load balancing, by reducing the average idle time
of any core to less than 20% of the total execution time in almost
all cases (|R|/|S| = 0.25 is the only exception). To take full ad-
vantage of all proposed optimizations, we setup the domain-based
paradigm as mj+greedy/adaptive for the remaining of this analysis.

6.5 Comparisons: Parallel Processing
In this section, we first compare the domain-based partitioning

against the hash-based proposed in [18]; this study is independent
of the join algorithm we may use to compute partition- or mini-
joins. Further, we compare our proposed implementation of FS

with all optimizations (i.e., bgFS) to the state-of-the-art (as shown
in Section 6.3) LEBI for parallel computation of interval joins.

Hence, we implemented the domain-based and the hash-based
paradigms of Section 5 coupled with both LEBI and our best method
bgFS, denoted by h-LEBI, d-LEBI and h-bgFS, d-bgFS; note that
the mj+greedy/adaptive optimizations evaluated in the previous sec-
tion are all activated on the LEBI powered implementation of the
domain-based paradigm. As discussed in Section 5.1, [18] sorts
each input collection prior to partitioning. We experimented also
with a variant of the hash-based paradigm, which does not perform
this pre-sorting step and proved to be always faster. Thus, for the
rest of this subsection we run our variant of the hash-based parti-
tioning. Figures 8(a)–(d) and Figures 9(a)–(d) report on this first
comparison for both WEBKIT and BOOKS datasets; we show the
speedup achieved by each parallel paradigm over the single-core
evaluation (either with LEBI or bgFS) and the number of conducted
endpoint comparisons. To better prove our points, we also include
a third paradigm denoted as theoretical which exhibits a linear to
the number of available cores, speedup and reduction of the con-
ducted comparisons. We observe that our domain-based paradigm

|R|/|S| [16 cores]

|R|/|S| [16 cores]

cores

cores

Parallel	Processing	
	

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 9 16 25HT 36HT

S
p
ee

d
u
p
 [

x
]

theoretical
h-LEBI
d-LEBI

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

1 4 9 16 25HT 36HT

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

 0

 2

 4

 6

 8

 10

 12

0.25 0.5 0.75 1

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

d-LEBI
d-bgFS

cores # cores

cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 9 16 25HT 36HT

S
p
ee

d
u
p
 [

x
]

theoretical
h-bgFS
d-bgFS

Related	work	
	

q  Nested	loops,	sort-merge	join	
q  Index-based	
q  Par11oning-based	

ü  OIP	[3],	DIP	[2]	
q  Plane-sweep	based	

ü  FS	[1],	EBI/LEBI	[4]	

domain	

r1’s	scanned	area	

r2	

s2	
s1	

s3	 s4	

r1	

s5	

r2’s	scanned	area	

s5	

r2	

s1	
s3	 s4	

r1	

s2	

GR
	 GR

	

domain	

(r1,s2),(r1,s3),	
(r2,s2),(r2,s3)	

(r2,s4)	

Sort	by	
end	

Sort	by	
end	

domain	

r1’s	scanned	area	

r2	

s2	
s1	

s3	 s4	

r1	

s5	 domain	

r2’s	scanned	area	

s5	

r2	

s1	
s3	 s4	

r1	

s2	

GR
	 GR

	

BIS	{s1}	 {s2,s3}	 {s4,s5}	 {s1}	 {s2,s3}	 {s4,s5}	

(r1,s2),(r1,s3),	
(r2,s2),(r2,s3)	

(r2,s4)	

Sort	by	
end	

Sort	by	
end	

domain	

r1’s	scanned	area	

r2	

s2	
s1	

s3	 s4	

r1	

s5	 domain	

r2’s	scanned	area	

s5	

r2	

s1	
s3	 s4	

r1	

s2	

Sort	by	
end	

Op;mizing	FS	
	

q  Reduce	comparisons	to	produce	results	
q  Grouping	

ü  Group	consecu1ve	intervals	from	same	
input	

ü  Avoid	redundant	comparisons	
q  Bucket	indexing	

ü  Produce	results	with	no	comparisons	

FS	
	

gFS	(grouping)	
	

bgFS	(grouping	+	bucket	indexing)	
	

Setup	
	

q  In-memory	processing	
q  Hyper-threading	enabled,	up	to	40	threads	
q Workload	as	[4],	XOR	of	start	aiributes	
q  Loop	unrolling	forced,	OpenMP	
	

John	

Bob	
Jane	

Hugo	
Helen	

Mary	

year	
Tom	

