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Abstract—A wide range of applications manage interval data with selections and overlap joins being the two most fundamental
querying operations. Selection queries are typically evaluated using interval indexing. However, the state-the-of-art HINT index and its
competitors, are only designed to service single query requests while modern systems receive a large number of queries at the same
time. In view of this challenge, we study the batch processing of selection queries on HINT. We propose two novel strategies termed
level-based and partition-based, which both operate in a per-level fashion, i.e., they collect the results for all queries at an index level
before moving to the next. The new strategies reduce the cache misses when climbing the index hierarchy, and in particular,
partition-based can prevent scanning every index partition more than once. Our experiments on real-world intervals showed that our
batch strategies always outperform a baseline which executes queries in a serial fashion, and that partition-based is overall the most
efficient one. Motivated by our shared computation techniques for query batches, we also study overlap joins anew across the entire
spectrum of different setups, based on the (pre)-existence of interval indexing. For unindexed inputs, we enhance the state-of-the-art
optFS join algorithm with effective partitioning proposed for HINT and for indexed inputs, we propose a novel algorithm HINT-join which
concurrently scans the HINT input indices, joining partition pairs with optFS. Our tests showed the advantage of HINT-join over indexed
nested-loops solutions that employ either B -trees or probing a single HINT even if powered by our partition-based batch processing.

Index Terms—Interval data, query processing, range queries, selections, overlap joins, batch processing
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1 INTRODUCTION

IVEN a discrete or continuous 1D space, an interval
Gis defined by a starting and an ending point in this
domain. For instance, in the space of all non-negative
integers N, an interval [st,end] with st, end € N and
st < end, is the subset of N, which includes all integers
x with st <z < endE] Two intervals r = [r.st,r.end] and
s = [s.st, s.end) overlap, denoted by r N s # (), if they share
at least one common point, ie., if s.st < t.st < s.end or
t.st < s.st < g.end. Collections of intervals (associated with
objects) are found in a wide range of applications; e.g., in
temporal databases [1], [2]], where each tuple has a validity
interval to capture the time period when the tuple is valid. In
statistics and probabilistic databases [3]|, uncertain values are
often approximated by (confidence or uncertainty) intervals.
In data anonymization [4], attribute values are often gen-
eralized to value ranges. Several computational geometry
problems [5] (e.g.,, windowing) use interval search as a
module. The internal states of window queries in Stream
processors (e.g. Flink) can be modeled as intervals [[6], while
input streams can be joined over relative time intervals [7].

The two most fundamental querying operations on in-
tervals are range (selection) queries and overlap joins; Fig-
ure 1] exemplifies these operations for a temporal database
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1. Note that the intervals in this paper are closed. Yet, our techniques
and discussions apply on generic intervals where the start and end sides
are either open or closed.
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Fig. 1: Querying intervals

which stores the employees of a company employed at two
departments (red and blue) during different time periods.
Consider the red department; a range query would retrieve
all employees whose employment periods overlap the time
window from 1994 to 2002, i.e., Bob and Hugo. Formally,
given a collection of intervals S and a query interval
q = [g.st,q.end], a selection query (g st,4.enq)(S) retrieves
all s € S intervals with s N ¢ # (. Now consider both
departments in the figure; an interval join would determine
all pairs of employees, whose employment periods overlap,
e.g., Mary from the blue department and Jane from the red.
Formally, the R < S join retrieves all (r, s) pairs of intervals
from R x S, such that r N s # (.

Motivation. A plethora of methods are proposed for effi-
ciently computing selection and join queries on intervals.
Data structures, such as the interval tree [§], an 1D-grid, the
period index [9]], the RD-index [10], and HINT [11] divide
the domain into disjoint partitions and assign the intervals
to them. Upon querying, only the partitions that overlap the
query range are examined to report results. Despite their
efficiency, these indexing structures are designed to service
single-query requests, i.e., execute queries in a serial fashion
by independently scanning overlapping partitions. How-



ever, modern transactional databases, OLTP systems and
cloud services (e.g., by Amazon and Google) must deal with
query-heavy workflows receiving thousands or millions of
queries per secondE] A straightforward serial evaluation
of queries under such a setting (1) is cache agnostic and
results in cache misses and (2) has no potential of accessing
data partitions once for multiple queries. Instead, modern
systems opt for processing the queries in batches to save
resources and reduce the overall time. AWS for instance
allows users to run batch jobs on their analytical services,
e.g.,, Amazon RedShiftE] Multi or batch query processing
relies on specialized computation sharing techniques to re-
duce the total execution time of a batch and minimize cache
misses. Such techniques are widely used e.g., for traditional
relational data [12], [13]], [14], spatial data [15], [16]], [17] and
graphs [18], [19], [20], and in IR systems [21], [22].

For interval joins, previous solutions either follow a
nested-loops approach [23], [24], employ partitioning [25],
[26], [27], [28] or interval indexing [29], [30], [31], [32], or
build upon the plane-sweep approach from computational
geometry [33], [34], [35]], [36]. Nevertheless, we observe
three issues with previous work on joins. First, a large part
of it, e.g., [24], [23]], [25], [27], [31] target disk-resident data
and so, their goal is to minimize I/O accesses during the
join. Such a setting is less relevant in contemporary in-
memory data management. Second, although plane-sweep
based evaluation was shown in [33] [34], [35] to outperform
the alternatives, it was never paired with efficient interval
indexing. Last, recent developments in partitioning and
interval indexing proposed in [11], [37] have never been
applied to boost the computation of interval joins.

Contributions. We present a framework for efficiently com-
puting massive workflows of selection queries. We build on
the state-of-the-art interval index HINT [11], [37], which is
shown to be typically an order of magnitude faster than
the competition, minimizing the number of data accesses
and comparisons. Moreover, HINT also exhibits low space
complexity, while offering a competitive building time.

We focus on batch processing of selection queries; to
the best of our knowledge, this is the first work that in-
vestigates such a setting for interval data. We propose two
novel evaluation strategies, termed level-based and partition-
based, which capitalize on HINT’s structure. The strategies
operate on a per-level fashion, i.e., they first evaluate all
queries for an index level before moving to the next, which
achieves better cache locality. We also enable access sharing
for partition-based, which allows us to scan the contents
of every index partition only once. Our tests showed that
our batch strategies achieve on average, a 30% performance
improvement for inputs with long intervals and a 50% with
short ones, over the serial execution of the query-based
baseline. When access sharing is also activated on top of
the partition-based strategy, the batch processing becomes
an order of magnitude faster than the serial execution.

Batch query processing also resembles a join, where the
query batch is set as the second join input. Although such an

2. https:/ /aws.amazon.com/blogs/aws/amazon-s3-two-trillion-
objects-11-million-requests-second /

3. https:/ /docs.aws.amazon.com/wellarchitected /latest/analytics-
lens/ batch-data-processing.html

TABLE 1: Notation summary

[ notation | description |
s (r) interval
s.id, s.st, s.end | identifier, start and end point of interval s
S(R) collection of intervals
prefiz(k,z) k-bit prefix of integer x
Py ; i-th partition at level £ of HINT
Py s (Ppy) first (last) relevant partition at level ¢
Pg,; (PZ}?Z.) division of P ; with originals (replicas)

Oin Oaf
P (P 6 ‘)
PzRf" (P, #*) | intervals in Pfi ending inside (after) P ;
Olq.st,q.end) (S) selection query

RS join query

intervals in Péoi ending inside (after) Py ;

approach allows for sharing computations among objects, it
is competitive only when the batch size is smaller than the
cardinality of the input collection [37]. Under this premise,
we study overlap joins anew across the entire spectrum
of different setups, based on the (pre)-existence of interval
indexing; we consider again the state-of-the-art HINT. For
unindexed inputs, we enhanced the state-of-the-art algo-
rithm optFS [35] to adopt the effective partitioning tech-
niques employed also for the partitions in HINT; our tests
showed a 25% performance improvement on average by
this enhanced optFS, with the exception of joining extremely
short intervals where the join is in fact cheap to begin with.
When inputs are indexed by HINT, we propose a novel
join algorithm termed HINT-join, which concurrently scans
the input index hierarchies and joins pairs of partitions as
unindexed inputs using optFS. Our tests showed that HINT-
join achieves an average performance enhancement of 25%
for inputs with long intervals and 50% with short ones,
compared to indexed nested-loops solutions that use HINT
indexing powered by our partition-based batch processing
strategy with access sharing or BT -trees [32].

Comparison to our previous publication. This article sig-
nificantly extends our preliminary work in [38]. First, we de-
vise a novel variant of the partition-based strategy for batch
processing selection queries on HINT, which guarantees ev-
ery index partition is accessed only once for the entire query
batch. Second, we study the efficient evaluation of interval
overlap joins. For unindexed inputs, we extend the state-of-
the-art optFS to use the subdivisions proposed in [11] and
the domain partitioning scheme, previously considered only
for the parallel computation. Last, we propose the HINT-join
algorithm when both inputs are indexed by HINT.

Outline. Section |2 provides the necessary background on
interval indexing and joins. Then, Section [3| details our
strategies for batch processing selection queries while Sec-
tion [4] presents our solutions for overlap joins, distinguish-
ing between the case of indexed or unindexed inputs. Sec-
tion [5| presents our experimental analysis. Finally, Section [f]
discusses related work and Section [7] concludes our study.

2 BACKGROUND

We revisit the state-of-the-art for indexing and joining inter-
vals. Table [Tl summarizes the notation used in the text.

2.1 Indexing Intervals with HINT

HINT [11], is a hierarchical index for intervals, utilizing their
binary representation. Parameter m indicates the number of
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Fig. 2: HINT example

bits for representing intervals, which results in establishing
m + 1 levels. Figure [2| exemplifies HINT for m = 3 and
a hierarchy of 4 index levels. Each level £ (0 < ¢ < m),
uniformly divides the domain into 2¢ partitions. As we
ascend the HINT hierarchy, each level ¢ corresponds to a
more significant bit of the binary representation. Hence, the
number of partitions in each level decreases by a factor of 2
while covering double the size. During the insertion process,
every interval s undergoes normalization and discretization
within the [0,2™ — 1] domain and is inserted to at most 2
partitions per level. If a given interval spans more than 2
partitions at a specific level, it is assigned to an upper level,
where partitions cover a larger part of the domain. Overall,
the assignment principle is based on selecting the smallest
set of partitions across all levels that collectively cover an
interval s. Moreover, intervals in each partition P are split
into two divisions: those that start inside P (called originals),
denoted by P, and those that start before P (called replicas),
denoted by P*. For instance, in Figure I 2| interval s is added
to the shaded partitions; in P51, s is added to the P
division which stores original intervals in P3 1, while in P271
and Ps 4, interval s is stored to the corresponding replica
divisions, i.e., Pfl and P3f4, respectively.

Given a selection query q = 0[4.s¢,q.ena) (S), at each index
level ¢ only the sequence of partitions P ; that intersect ¢
are accessed; we call these, the relevant partitions of ¢. For
query ¢ in Figure [2} only the partitions with a solid/bold
outline will be accessed. To avoid duplicate results, originals
and replicas divisions are only accessed for the first relevant
partition at each level ¢/, while for the remaining partitions
only originals are considered. Finally, the endpoints of an
interval s are compared to query ¢ only for the first and the
last relevant partition at a level; for every (original) interval
s inside the rest, intermediate partitions ¢.st < s.st < g.end
holds, by construction of the index.

Bottom-up traversal. We further reduce the number of
partitions where comparisons are required by traversing
HINT in a bottom-up fashion, instead of a conventional top-
down. Under the bottom-up traversal, the expected number
of partitions requiring comparisons is 4, according to [11].
Consider again Figure 2] For query ¢, no comparisons are
needed in partition P, 3, because all intervals assigned to
P53 should overlap with Ps;¢ and the extent of P3¢ is
covered by ¢. Hence, the start of all intervals in P 3 is
guaranteed to be before g.end (which is inside Ps 7).
Algorithm [1] illustrates how HINT evaluates a selection
query, in a bottom-up fashion. The algorithm uses two
auxiliary flags, compfirst and complast to mark if it is
necessary to perform comparisons at the current level (and
all levels above it), for the first and the last relevant parti-
tion, respectively, At each level /, the sequence of relevant
partitions to the query g is determined in Lines 4-5, based on
the (-prefixes of ¢.st and g.end, denoted by f and [, respec-

ALGORITHM 1: Selection query on HINT

Input
Output

: HINT index H, selection query ¢
: set of all intervals that overlap with ¢

1 compfirst < TRUE;
2 complast < TRUE;

3 foreach level £ = m to 0 do > bottom-up fashion
4 f < prefiz (4, q.st); > first overlapping partition
5 l < prefiz (4, q.end); > last overlapping partition
6 foreach partition i = f to | do

7 L ProcessPartition(H.Pg,;, q, compfirst, complast, f,1);

8 if f mod 2 = O then > last bit of f is 0

9 L comp first < FALSE;
10 if I mod 2 = 1 then > last bit of [ is 1
1 L complast < FALSE;

Function Process(partition Py ;, query q, flag comp first, flag
complast, f,1):

12 if ¢ = f then

13 if i = [l and compfirst and complast then

14 L output {s € P2, : q.st < s.end A s.5t < g.end};
15

output {s € P[:"‘i 1 q.st < s.end};
16 else if i = [ and complast then

17 output {s € P2, : s.st < g.end};
18 output {s € pry;

19 else if comp first then

20 L output {s € PZO,i UPZI?i 1 q.st < s.end};

21 else

22 L output {s € PZ(,)i U Pf’i};

23 else if i = [ and complast then >1l>f
24 L output {s € PKOJ 1 s.st < g.end};

25 else > in-between or last (I > f), no comparisons
26 L output {s € P,?i};

tively. Each relevant partition P, ; (and its divisions) is then
processed against g by the Process function in Lines 12 —26.
For the first relevant partition P, ; both originals P, f and
replicas P& s are accessed. If f =1, i.e., the first and the last
relevant partitions coincide, and both comp first, complast
are set, then comparisons are needed for both Pg and P[
Otherwise, if complast is only set, the algorithm safely SklpS
the g.st < s.end comparisons, while if comp fist is only set,
regardless whether f = [, we only perform g.st < s.end
comparisons to both PP 5 and Pg If neither flag is set,
then all intervals in the first relevant partition are simply
reported as results. When the last partition /% ; is examined
and [ > f (Lines 23-24) the algorithm considers P“ and
checks only if s.st < g.end for each interval there. Lastly,
for every partition in-between the first and the last one, all
original intervals are simply reported.

Optimizations. A series of optimizations were proposed
in [11] to boost the query processing on HINT. First, the
number of performed comparisons are reduced by further
dividing the P and P divisions of a partition P. Specif-
ically, PO is split into subdivisions POin and PO9aft, so that
POin (POart) holds the intervals from P© that end inside
(resp. after) P. Similarly, each P¥ is divided into P and
PHast Second, the storage optimization reduces the memory
footprint of the index. So far, each interval s is stored as
a (s.id, s.st, s.end) triplet. But, only the P%" subdivisions
require both endpoints. For PP/t and Pin, s.st and s.end
are only needed, respectively, while for P/t  none of the
endpoints are required, as no comparisons are performed.
Another optimization to save on comparisons is to keep



ALGORITHM 2: Forward Scan Plane Sweep (FS)

Input
Output

: collections of intervals R and S
: set of all overlapping interval pairs (r,s) € R X S

1 sort R and S by st endpoint;
2 r < first interval in R;
3 s « firstinterval in S;
4 while R and S not depleted do

> for plane-sweep

5 if r.st < s.st then

6 s’ «—s;

7 while s’ # null and r.end > s’.st do

8 output (r, s’); > update result
9 s’ + next interval in S; > scan forward
10 r < next interval in R;
11 else

12 r

13 while 7’ # null and s.end > 7’.st do

1 output (r’, s); > update result
15 7’/ < next interval in R; > scan forward
16 s < next interval in S;

the subdivisions sorted; each using its own beneficial sorting.
Due to data skewness & sparsity, many partitions may be
empty, especially at the lowest levels. To deal with this,
HINT merges the contents of all PY divisions at the same
level / into a single table 7 and builds an auxiliary index
which is used to access non-empty divisions upon querying.
The last optimization deals with potential cache misses while
traversing the index. As no comparisons are needed at most
of the levels, HINT stores the id and the endpoints of an
interval separately. When no comparisons are needed, the
index directly reports results from the id array.

2.2 Joining Intervals with optFS

The state-of-the-art optFS [34], [35] for overlap interval joins
builds upon the plane-sweep from [39ﬂ which performs
forward scans directly on the input collections. Algorithm 2]
illustrates the pseudo-code of this plane-sweep implementa-
tion, denoted by FS. Initially, the input collections R, S are
sorted by the starting endpoint of the intervals. Then, FS
sweeps a line, which stops at each st point in both inputs.
For each position of the sweep line, ie., the start of an
interval, say r € R, the FS produces join results by pairing r
with all intervals from the opposite collection, that start (1)
after the sweep line and (2) before r.end, i.e., all s’ € S with
r.st < s'.st < r.end (internal while-loops in Lines 7-9 and
13-15). To boost the performance of FS, the authors in [34],
[35] proposed the following four optimizations.

Grouping. The key idea is to group consecutively sweeped
intervals from the same input and produce join results in
batches, avoiding redundant comparisons. Assume that the
next interval to consider is 7 € R, i.e., r.st < s.st (the other
case is symmetric). Starting from r, FS accesses all v’ € R
with r.st < s.st to form a group G'z; the contents of G are
reordered by increasing end endpoint. Then, FS performs a
forward scan on S, but for the entire group G'z, instead of
interval r. Every interval from S that overlaps an interval
r; € G, is guaranteed to also overlap all intervals after r;
in G, without the need for further comparisons.

Bucket indexing. For this optimization, the domain is first
split into a number of equally-sized disjoint stripes; all

4. Originally for 2D rectangle joins but reduced for 1D intervals.
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Fig. 3: Running example

intervals from R (resp. S) that start inside a particular stripe
are stored in a dedicated bucket of the BIr (resp. BLs)
index. With bucket indexing, the forward scan of FS now
examines the contents of buckets. Consider current interval
r € R. FS finds the bucket B € BZs which covers r.end and
then, scans each s’ € S inside all buckets before B to directly
produce results, without any comparisons. In contrast, the
contents of bucket B are examined similar to Algorithm 2]

Enhanced loop unrolling. The third optimization builds
upon the loop unrolling/unwinding code technique [40],
[41], [42], which reduces the execution time by (1) elim-
inating the overhead of controlling a loop (i.e., checking
its exit condition) and the latency due to main memory
accesses, and (2) reducing branch penalties. To enhance FS,
the forward scans are unrolled by a 32 factor and the join
conditions are checked only once every 32 intervals.

Decomposed layout. The last technique is inspired by
the Decomposition Storage Model (DSM) [43], in column-
oriented database systems [44]. The idea is to modify how
the intervals are stored to reduce the footprint of FS and the
number of cache misses. Instead of storing an input as an
array of (id, st, end) tuples, we maintain two separate st and
end arrays. With this decomposition, FS iterates only over
the st arrays when advancing the sweep line or forward
scanning, and over the end arrays for the interval groups.

optFS: a self-tuning FS. The above optimizations can be
combined but their effect depends on the selectivity of the
join. optFS is a self-tuning variant of FS, that decides online
which of the optimizations should be activated. For this
purpose, optFS relies on sampling to measure the average
extent of the conducted forward scans, as an indicator for
the join selectivity. When forward scans cover only some
tens (or a hundred in the worst case) of intervals on average
then grouping, bucket indexing and the decomposed data
layout will not payoff and therefore, optFS deactivates them.
In contrast, enhanced loop unrolling is always activated.

3 BATCH PROCESSING SELECTION QUERIES

Given a collection of intervals S indexed by HINT, and a
batch of selection queries Q, we next discuss four evaluation
strategies. Without loss of generality and for illustration pur-
poses, we describe the strategies using a HINT without the
optimizations from Section 2.1 To exemplify the strategies,
we use the index and the Q = {q1, g2, g3 } batch in Figure
For each query ¢, we highlight its relevant (i.e., overlapping)
partitions on each level based on its [g.st, ¢.end] range.

3.1 Query-based

A straightforward approach for processing Q is to inde-
pendently compute each query in a serial fashion, using



TABLE 2: Access patterns for the queries in Figure for each
query, relevant partitions are accordingly colored; partitions
colored in black are accessed only once for all relevant
queries

Strategy [ Accessed partitions
Py — P13 — Py
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Algorithm [I} We call this strategy, query-based. Despite its
simplicity, a major shortcoming of query-based is that the
strategy operates in a cache agnostic fashion. As every query
g typically overlaps multiple partitions from different levels
of the index, the computation of all queries in Q requires
accessing data in different parts of the memory. Hence, the
memory access pattern is prone to cache misses.

Consider our running example in Figure |3} the query-
based strategy will execute the queries in the order of their
subscript. The first row in Table [2] illustrates the occurred
access pattern, i.e., the order in which the partitions of the
index will be accessed. First, all relevant partitions for ¢;
are accessed on each level of the index (highlighted in blue),
following the bottom-up approach from [11]; similarly, the
relevant partitions for gy (highlighted in gray) are accessed
next. The two sets of partitions are located on opposite sides
of the index, which causes several “jumps” to different parts
of the memory; we refer to these jumps as horizontal. Finally,
for query g3, we need to “jump” back to the front part of the
index to access the partitions highlighted in red.

To improve the above access pattern, one solution is to
execute the queries according to their starting point g.st.
In Figure |3} the query-based strategy will now execute first
q1, followed by ¢3 and last, g». The modified access pattern
is depicted in the second row of Table [2} This new pattern
enables us to finish with all queries accessing partitions in
the front part of the index, before moving to the back.

3.2 Level-based

Sorting the queries by their start will reduce cache misses
caused by horizontal jumps and therefore, will enhance
the query-based strategy. However, the bottom-up approach
employed for each query will still incur cache misses be-
cause of the vertical jumps in the index. For example in case
of the adjacent ¢; and g3 queries in Figure [} we have to first
climb all levels of the index to compute ¢; and then, start
over from the bottom level for ¢s.

To deal with these vertical jumps, we propose a different
strategy which capitalizes on the fact that partitions in HINT
are physically organized in a level-based fashion. The level-
based strategy still builds upon the bottom-up approach but
the evaluation process proceeds to the next level of the index
only after the relevant partitions for all queries in batch

ALGORITHM 3: Level-based strategy

: HINT index 7, batch of queries Q
: set of all overlapping intervals, for each ¢ € Q

Input
Output

1 foreach query q € Q do > Initialization
2 L comp first[q] < TRUE;

complast[q] < TRUE;

w

4 foreach level £ = m to 0 do > bottom-up fashion

5 foreach query g € Q do

6 f < prefiz(4,q.st); > first overlapping partition

7 I + prefiz(¢,q.end); > last overlapping partition

8 foreach partition i = f to | do

9 Process(H.Py,;, q, comp first[q], complast[q], f,1);
> From Algorithm

10 if f mod 2 = 0 then > last bit of f is 0

1 | compfirst[q] < FALSE;

12 if I mod 2 = 1 then > last bit of I is 1

13 | complastq] < FALSE;

Q are already accessed and processed to report potential
results. Algorithm [3|shows the pseudocode of this strategy,
essentially extending Algorithm [I in two ways. First, we
maintain a compfirst[q] and a complast]q] flag for each
query ¢ in batch Q, which are initialized in Lines 2-3 and
updated in Lines 10-13 at each level, according to the last
bits of the first relevant partition f and the last . Second,
we introduce in Line 5, a new for-loop to iterate over all
queries in the batch, at current level ¢. Each query g is then
processed for all relevant partitions at ¢ in Lines 8-9 using
the Process function from Algorithm [I| Similarly to query-
based, the level-based strategy can also benefit from sorting
the queries by their start, avoiding the horizontal jumps
when accessing the relevant partitions at each level. Return-
ing to our running example, the third row in Table 2] depicts
the access pattern for the level-based strategy, with sorting
activated. To better illustrate the effect of the strategy, we
write the sequence of accessed partitions in five lines, one
for each level of the index. Notice how on every line (index
level), the evaluation switches from the relevant partitions
of g1, to the ones of ¢3 and finally, to ¢, before moving
to the next level. Under this premise, we avoid the vertical
jumps incurred by independently applying the bottom-up
approach in the query-based strategy.

3.3 Partition-based

Despite evaluating queries on a per-level basis and exam-
ining the queries by their start, jumps can still occur in
the level-based strategy. Consider again the access pattern
of level-based in Table [} specifically, the first line which
corresponds to the bottom level of the index. The strategy
will access partitions Py 4 and P, first for ¢; and then
again for go, in the exact same order. To deal with this type
of horizontal jumps, we next introduce the partition-based
strategy. Similar to level-based, the partition-based strategy
adopts the per-level evaluation and can benefit from sorting
the queries, but it processes independently every partition.
Intuitively, in order to proceed to the next partition on
a level, all queries relevant to the current partition must
be first evaluated. Algorithm [4] illustrates the pseudocode
of the strategy. As the key difference to Algorithm [3} the
partition-based strategy introduces a new for-loop to iter-
ate over all partitions on current level ¢, in Line 5. Notice



ALGORITHM 4: Partition-based strategy

: HINT index 7, batch of queries Q
: set of all overlapping intervals, for each ¢ € Q

Input
Output

1 foreach query q € Q do > Initialization

2 comp first[q] < TRUE;
3 complast[q] <+ TRUE;
foreach level £ = m to 0 do

4 > bottom-up fashion
5 foreach partition i on level £ do

6

7

foreach relevant query q € Q to partition i do
f < prefizx({, q.st); > first overlapping

partition

8 l + prefiz(¢, q.end); > last overlapping
partition

9 Process(H.Py,;, q, comp first[q], complast[q], f,1);
> From Algorithm

24 foreach ¢ € Q do

25 if f mod 2 = O then > last bit of f is 0

26 L comp first[q] < FALSE;

27 if I mod 2 = 1 then > last bit of [ is 1

28 | complast|q] < FALSE;

how Algorithm [3| iterates over each query in batch Q for
current level ¢, while Algorithm 4] iterates over all relevant
queries in batch Q (Line 6) for current partition i, i.e., all
queries whose range overlaps with ¢, on the current level.
These relevant queries are executed in Line 9 using again
Process from Algorihtm [I} for current partition 7.

The fourth row in Table2|shows the access pattern for the
partition-based strategy. If we compare this pattern to the
level-based, we observe that when processing the bottom
level of the index, the partition-based strategy will first
finish with partition P44 for both queries ¢; and g3, then
access P, 5, for the same queries and finally, move on to
partition P 10. Note that despite applying a partition-based
evaluation at each level, the contents of Py 7, Py g, P49 and
P34 will be never scanned as no query overlaps with them.

Last, we elaborate on Line 6 of Algorithm [4and the fast
computation of the relevant queries for current partition
i. A simple approach would compare each query in Q to
partition i, incurring extra costs. Instead, we rely on the
cheap bitwise operations that determine the first and the last
relevant partitions of a query. We define for each partition
1, a range of relevant queries; for this, the queries need to
be examined in increasing order of their start. The range
of i’s relevant queries starts from the first query ¢ with
prefixz(l,q.st) = i to the last with prefiz(¢,g.end) = i.

3.4 Access Sharing

Partition-based is able to achieve good cache locality by
reducing the number of horizontal and vertical jumps that
occur on the index. The strategy however is unable to pre-
vent multiple accesses of the same index entriesE] Consider
once again our running example in Figure 3|and the fourth
row in Table 2} The intervals of all partitions relevant to
both ¢ and g3 (e.g., P44 and P, 5 in the fourth level) will
be accessed two times; the partition-based strategy can only
guarantee that these two access operations will take place
one right after the other to reduce cache misses. To prevent
accessing HINT entries multiple times, we next propose

5. The same point holds for the query-based and level-based, as well.
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an extension to the partition-based strategy which allows
access sharing among the queries in the query batch.

Algorithm [5| provides a high-level pseudocode of the
partition-based variant with access sharing. Despite the dif-
ferences in the code structure compared to Algorithm [ the
key principle of processing every partition before moving to
the next on the level remains the same, i.e., the for-1loops
in Lines 1 and 2. For every partition P, ; in a level ¢, we dis-
tinguish among three types of relevant queries; essentially,
we breakdown the relevant queries determined in Line 6 of
Algorithm i} We denote by Qy and Q;, the queries in the
query batch Q for which P, ; acts as the first and the last
relevant partition, respectivelyﬂ We also denote by Q. the
rest of the relevant queries, i.e., those that contain current
partition P ;. Then, to share accesses while processing F; ;,
it suffices to compute a series of joins between the original
and replica divisions of Pp; and the Qf, Q;, Q. sets.
Specifically, following the principles for evaluating selection
queries in HINT discussed in Section the Pé(,)i originals
are joined with all three query sets, while replicas Pfi, only
with Q;. The remaining combinations are dropped to avoid
duplicate results. The last row in Table [2| details the access
pattern of the partition-based strategy with access sharing.
We mark in black font the partitions for which accessing
is shared. Observe for instance, how sharing allows the
strategy to access P, 4 and P, s only once, in order to
produce results for both ¢; and g3 at the same time.

For the joins in Lines 6-7, we can directly employ the
optFS algorithm from [34], [35] (see Section , provided
that the queries in batch Q (and thus, also in QO and Q) are
sorted by their start. Note that PEZ. is already sorted by start
because of the beneficial sorting optimization discussed in
Section 2.1} The plane-sweep approach of optFS guarantees
that every interval in Pfi is accessed and compared against
the queries, only once. On the other hand, the join in Line 8
is essentially a cross product as all original intervals in P ;
overlap with every query that contains the partition, by
definition. This product can be efficiently computed by ap-
pending the contents of Pe?i to the result set of each query in
Qy. Lastly, for the join in Line 9, we cannot directly employ
optFS as Pfi and Qy use different sorting; specifically, the
intervals in Pfi are sorted by their end [11f], [37] while Qf
is sorted by start. Under this, we can either make a copy of
Qy, sorted by end, and then use optFS or simply handle the
Pfi and Q¢ pair the way the typical partition-based strategy
does in Algorithm ] For our experiments, we selected the
second approach to avoid the online sorting costs.

We further enhance the join computation in Lines 6, 7
and 9 by utilizing the compfirst and complast flags of the
queries. To this end, we first have to include Lines 1-3 and
Lines 24-28 from Algorithm 4 With these flags in place,
we split each Oy set into two subsets; subset Q%" contains
all queries ¢ with both compfirst[q] and complast[q] set
to FALSE, while subset Q?eSt contains the rest. Under this
breakdown, the joins in Lines 6 and 7 are also broken into
PZ, 1 OFF, PO, b1 Q7% and PP, > OFF, PO, 1 976t Out
of the above, the two joins that include QI;F are computed
as cross products, following the properties of the bottom-up

6.If P, ; is both first and last relevant for a query g, only Q has gq.



ALGORITHM 5: Partition-based with sharing

Input : HINT index 7, batch of queries Q
Output : set of all overlapping intervals, for each ¢ € Q
1 foreach level £ = m to 0 do > bottom-up fashion
2 foreach partition i on level £ do
3 Qr +{q€ Q:i=prefix(¢q.st)}; > as first
overlapping partition
4 Q; «+ {g€ Q:i=prefix({,qg.end)}; > as last
overlapping partition
5 Q.+ {q € Q:prefix(l,q.st) < i< prefiz(l,qg.end)};

> fully contained partition

3(s,q) € H.P2, > Qy};
(s, q) € H.Pﬂ > 9 };
3(s,q) € H.PO, x Qo};
(s, q) € H.PLY > Qs );

output {s :
output {s :
output {s :
output {s :

> Cross product

© ® 9 o

approach. A similar approach can be also adopted for Q;
and the PE(,)z‘ > Q; join. Finally, the Pfi and Qg join in Line 9
naturally benefits from the above breakdown by considering
the cases in Lines 13, 16, 19 and 22 from Algorithm which
are incorporated inside Algorithm [#as well.

4 PROCESSING JOIN QUERIES

We next study overlap joins under different cases depending
whether the inputs are pre-indexed by HINT. Following a
classification similar to [45], we consider three settings.

4.1 Unindexed Inputs

When none of the R, § inputs is indexed, we can use the
optFS algorithm from [34], [35] to compute the R > S join.
Next, we show how to further enhance the join performance
by extending optFS towards two directions. First, the study
in [34], [35] considered a space-based partitioning (referred
to as “domain-based partitioning”) solely as a means for
processing the join in parallel. Here, we extend optFS to
employ such a partitioning also for the single-threaded
computation. Second, the domain partitioning in [34], [35]
splits each input collection into 3 classes, termed A, B and
C. Class B and C fully correspond to the P%in and Pfarst
subdivisions defined by HINT, while the A class consists
of all original intervals that start inside a partition, regard-
less where they end, i.e., it corresponds to POin UPOW.
We extend the domain-based partitioning to consider all 4
subdivisions from [11]], [37], instead of the above 3.
Specifically, the unified R|JS domain is first split into
k equally sized, non-overlapping stripes; each stripe holds
a partition for input R and one for S. Every interval s € S
(resp. r € R) is assigned to the partition of the stripe
that contains s.st and replicated to the partitions of all
other stripes it intersects. With this partitioning in place an
R < S join is broken down into £ independent partition-
to-partition joins, i.e, R.P, > S.Py, ..., R.Py <1 S.Py.
Next, in a similar fashion to HINT, every domain partition P
from each collection, is further divided into 4 subdivisions
POin POast  PRin and PPRart. With these subdivisions
in place, we subsequently break down every partition-to-
partition join into 16 smaller tasks, called mini-joins. Figure 4]
illustrates this mini-joins breakdown. We next elaborate on
the computation of every mini-join type:
« First, to avoid duplicate results, a join result (r,s) is
reported only if at least one of the involved intervals

normal normal reduced cross-product

P P P P
R.PO" 1 S.PO% | R.PO" q S.POt | R.PO 1 S. PR | R. PO 0 S PHeve
normal cross-product reduced cross-product

P P P P

R.POst pq S. PO | R.POst 1 S. POt | R.POut pa S.PFin | R.POest b S PHere

reduced pruned pruned

reduced
reported reported

2 P in this P in this e
partition| partition|
S—

R.PIn S PP R Pl na 8 pli

R.PHin pq 8. POin R.PH g 8. PHare

cross-product cross-product pruned pruned
reported reported

P P in this P in this

partition partition

P—

R.PRast g §. POin | R PRast pq S POust | R PRatt pq S PHin | R PRas pq S PRt

Fig. 4: Mini-joins breakdown for partition-to-partition joins

is not a replica, i.e., if it is not contained inside a Phin
or a PRast gubdivision. Under this premise, we never
compute the 4 replica-to-replica mini-joins R.P%in g
S.PRin, R PRin pq §.Plast, R PRast pq S.PEin and
R.PERast pq S.PRart ghaded in orange color in Figure @

o The 3 original-to-original mini-joins R.P%" > S.P%n,
R.POn pq §. POt and R.P%/t xq S.PY" have iden-
tical complexity to the original R > S join. Therefore,
these mini-joins are evaluated as normal, ie., using
optFS from [34], [35].

o The remaining original-to-original mini-join R.P%/t <
S.POart differs from the previous case. By definition,
an (r,s) pair of intervals in this case always overlap,
regardless where their start is located inside the corre-
sponding stripe, as they both span to the next stripe.
Under this premise, R.P%/t 1 S. P9/t is computed
without conducting any comparisons, as a cross-product;
we highlight this mini-join in pink color, in Figure

o For the 4 original-to-replica mini-joins R.P%" <
S.PRin, R.POast pq §.PRin R .PRin pq § PO and
R.PEin pq S POart g simplified (reduced) version of
OptFS can be used. As every replica interval inside P
starts in a preceding stripe, optFS only conducts forward
scans to the P9 or PP/t subdivisions from the other
input; no forward scans are needed for the replica inter-
vals. In addition, if the grouping optimization of optFS
is activated, the entire Pfi" is used as a group. We
highlight this mini-join type in tan color, in Figure

o Fach interval in PFast spans the entire range of the
corresponding domain stripe. Such intervals overlap by
definition with all intervals from the other input that
start inside the same stripe, i.e., the intervals in the POin
and P9t subdivisions. So, the 4 original-to-replicas
mini-joins R.POin g S.PRast, R.POart pq S.PRast,
R.PRart pq §.POn and R.PFRast g S POt are cross-
products and we color them in pink in Figure



ALGORITHM 6: HINT-oin

: HINT indices Hr, Hs
: set of all overlapping interval pairs (r,s) € R X S

Input
Output

1 foreach level £ = max(mr,ms) to 0 do > outer bottom-up
2 foreach partition Hg .P; ; do > current R partition
3 J 1 > same-prefix S partition on £
4 output {(r,s) € Hr.Ppi M\ Hs.Py;}; > optFS+
5 comp first < TRUE;

6 complast < TRUE;

7
8
9

foreach level ¢/ = ¢ 4+ 1to 0 do > inner bottom-up

J—Ji+2 > same-prefix partition on £
if comp first and complast then

10 | output {(r,s) € Hr.Ppi X Hs. P ;}; > optFS+
1 else
12 output {(r, s) € HR'PE«L X Hs.Poj};

> Cross—product
13 if j mod 2 = 0 then > last bit of j is 0
14 L comp first < FALSE;
15 if j mod 2 = 1 then > last bit of j is 1
16 L complast < FALSE;
17 foreach partition Hs.Pg,; do > current S partition
18 J 1 > same-prefix R partition on £
19 comp first < TRUE;
20 complast < TRUE;
21 foreach level ¢/ = ¢ 4+ 1to 0 do > inner bottom-up
22 J—J+2; > same-prefix partition on £
23 if comp first and complast then
2 | output {(r,s) € Hs.Pri < Hr Py ;}; > optFS+
25 else
26 output {(r, s) € HS.Pﬁi X Hr.Pej;};

> Cross—-product
27 if j mod 2 = 0 then > last bit of j is 0
28 | compfirst < FALSE;
29 if j mod 2 = 1 then > last bit of j is 1
30 L complast < FALSE;

4.2 Both Inputs Indexed

For the second setting, we assume that the input collections
R, S are indexed by the Hr, Hs HINT indices, respectively,
on the same domain; note that the index hierarchies need
not to be of the same height. Next, we devise a novel
algorithm termed HINT-oin, which concurrently scans the
two index hierarchies in a bottom-up fashion, and joins pairs
of partitions as unindexed inputs. Specifically, let Hr.P;;
be the current partition from input R on level ¢ of the
Hr HINT. We join Hr.P; with the i-th partition from
Hs on the same level, ie., Hs.FP; and with the partition
sharing the same prefix to ¢ on higher levels. In contrast
we ignore the rest of the S partitions on levels below ¢ to
avoid producing duplicate results. The case of the current
partition being from Hs is symmetric, but we also ignore
the Hs.P;; > Hg. Py join to avoid duplicate results.
Algorithm [f illustrates the pseudocode of HINT-join.
The algorithm combines two bottom-up traversal opera-
tions. The outer bottom-up (for-loop in Line 1) concur-
rently ascends both index hierarchies. For this purpose, the
for-loop runs from the highest value between mg and
ms to OE] For each level £, HINT-join accesses every partition
Py ; from both hierarchies executing the two independent
for-loops in Lines 2-16 and 17-30. We detail the first loop
for the current partition Hr . P ;. We use the variable j to de-
note the partition from Hs with the same prefix which will

7. The highest m value corresponds to the tallest HINT hierarchy.
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be joined with Hr.F, ;. Initially for level £, j = i (Line 3)
and therefore, Hr.Fp,; is joined with Hs.F;; in Line 4.
Then, in the for-loop of Lines 7-16, HINT-join climbs H s
in a bottom-up fashion (inner bottom-up) starting from the
next level ¢/ = £ + 1. The algorithm joins current partition
Hr.Py,; with the j-th partition on level ¢ which shares the
same prefix to 7. This partition can be easily determined
by iteratively dividing j by 2 on each level (Line 8). To
accelerate this join operation, the algorithm takes advantage
of HINT’s bottom-up principle. Similar to Algorithm [1} we
maintain the comp first and complast flags by checking the
last bit of j. Initially both flags are set to TRUE, and the
HINTHoin computes Hr.FP,; > Hs. Py ;. However, after
both flags are switched to FALSE, we no longer need to
consider the replicas of the current R partition and the join
is reduced to the HR.PK‘% X Hs.Py j cross-product (Line 12).

For the partition-to-partition joins computed by HINT-
join, we can adopt the same approach as the extended optFS
from the previous section because the input partitions are
unindexed. In practice, since the HINT partitions usually
contain significantly fewer intervals than the R, S inputs,
the domain-based partitioning is no longer needed but the
mini-joins breakdown can be directly applied when the
subdivisions are already in place for Hr, Hs. Regarding the
remaining optimizations, out tests showed that the extended
optFS is typically reduced to either an unoptimized FS or
gFS, with the grouping optimization activated.

4.3 One Input Indexed

For the last setting, we assume without loss of generality
that input collection S is indexed by HINT, while R is unin-
dexed. In this case, there are essentially three alternatives to
evaluate R >< S. First, we can completely ignore the existing
index, and evaluate the join using the extended optFS from
Section Second, we can build a temporary HINT on
R and apply the HINTHoin algorithm from Section
Third, we can evaluate the join in an indexed nested-loops
fashion, where we issue a selection query to the indexed
input S (also known as inner), for each interval in the
unindexed input R (also known as the outer). To enhance
the performance of this third approach, we treat R as a batch
of queries and rely on the processing strategies discussed in
Section 3| to efficiently process the issued selection queries.

5 EXPERIMENTAL ANALYSIS

Finally, we present the results of our experimental analysis.
We implemented all batch strategies for selection queries
and join methods in C++, compiled using gcc (v4.8.5) with
flags 03, -mavx and -march=native activated. [ﬂ Our
experiments ran on an Intel(R) Xeon(R) CPU E5-2630 v4 at
2.20GHz with 384GBs of RAM, running AlmaLinux 8.5.

5.1 Setup

All methods using index were developed on top of the
subs+sort version of HINT [11], which employs the subdivi-
sions and sorting optimizations. We activated also the skew-
ness & sparsity and the cache misses optimizations. However,

8. Source code available in https://github.com/pbour/batch_hint/,


https://github.com/pbour/batch_hint/

TABLE 3: Characteristics of test datasets

[ [ BOOKS | WEBKIT [ TAXIS [ GREEND |
Cardinality 2,312,602 | 2,347,346 |172,668,003|110,115,441
Size [MBs] 27.8 28.2 2072 1321
Domain [sec] 31,507,200 | 461,829,284 | 31,768,287 | 283,356,410
Min duration [sec] 1 1 1 1
Max duration [sec] |31,406,400|461,815,512| 2,148,385 | 59,468,008
Avg. duration [sec] | 2,201,320 | 33,206,300 758 15
Avg. duration [%] 6.98 7.19 0.0024 0.000005

TABLE 4: Parameters of synthetic datasets

[ parameter [ values (defaults in bold) |

32M, 64M,128M, 256M, 512M
10M, 50M, 100M, 500M, 1B
1.01,1.1,1.2,14,18
10K, 100K, 1M, 5M, 10M

Domain length
Cardinality

a (interval length)
o (interval position)

in line with [37], we dropped the storage optimization; i.e.,
we save each interval as a (id, st, end) triplet in the index,
to ensure the best performance on selection queries for all
basic relationships in Allen’s Algebra [46]. Lastly, similar
to previous works, all data, input collections, indices and
the queries reside in main memory, while the test workload
accumulates an XOR of result ids for selections and the
sum of an X OR between the ids of result pair, for joins.

We experimented with 4 collections of real intervals,
which have been also used in previous works; Table
summarizes their characteristics. BOOKS contains the pe-
riods of time in 2013 when books were lent out by Aarhus
libraries (https://www.odaa.dk). WEBKIT records the file
history in the git repository of the Webkit project from
2001 to 2016 (https:/ /webkit.org); the intervals indicate the
periods during which a file did not change. TAXIS stores the
time periods of taxi trips (pick-up and drop-off timestamps)
from NY City in 2013 (https://wwwl.nyc.gov/site/tlc/
index.page). GREEND [47] records time periods of power
usage from households in Austria and Italy from January
2010 to October 2014. Collections BOOKS and WEBKIT
contain around 2M, long on average, intervals each; TAXIS
and GREEND have over 100M short intervals. To build a
HINT index for each dataset, we set parameter m using the
cost model and the analysis in [11], i.e., 10 for BOOKS, 12
for WEBKIT and 17 for TAXIS, GREEND.

To showcase the effect of the input characteristics in
batch processing, we also generated synthetic collections as
in [11]. Table E] summarizes the construction parameters and
their default values. The datasets domain ranges from 32M
to 512M while their cardinality, from 10M to 1B. The interval
length follows a zipfian distribution, controlled by param-
eter o; a small value of « results in most intervals being
relatively long, while with a large value the great majority
of intervals have length 1. The middle point of every interval
is positioned according to a normal distribution centered at
the middle point of the domain. We control this position
using the deviation parameter o; the greater the value of o,
the more spread the intervals are in the domain.

5.2 Selection Queries

We start off with selection queries. To evaluate the batch
processing strategies, we study their total execution cost
incurred for the entire query batch, which includes the sort-
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ing costs whenever employedﬂ We ran queries uniformly
distributed in the domain, varying (1) their selectivity, in
terms of their extent as a percentage of the domain inside
the {0.01%, 0.05%,0.1%,0.5%, 1%} range, and (2) the size
of the query batch inside {1K, 5K, 10K, 50K, 100K}. In each
test, we vary one of the above parameters while fixing the
other to its default value; 0.1% of the domain, for the query
extend; 10K for the batch size.

Figure[5|reports the total execution time for each strategy
while Figure [6] reports on advanced statistics, namely the
number of cache misses at the first (L1) and last (LLC) cache
level, and the number of issued instructions; due to lack of
space, we include the numbers only for the default query
setting. In the first row of plots in Figure |5, we vary the
selectivity of the queries, and in the second, the size of the
query batch. We consider the query-based strategy without
sorting powered by HINT as our baselineET] As the first
observation, the tests confirm our intuition in Section [3.1
examining the queries in the batch sorted by their start
will enhance the performance, due to reducing the num-
ber of horizontal jumps and improving the cache locality.
Indeed, the query-based strategy with this sorting clearly
outperforms the baseline query-based without, in all cases.
The performance gain is more pronounced in TAXIS and
GREEND, where intervals are typically stored at the bottom
levels, rendering the horizontal jumps more impactful. Our
findings are supported by the cache misses stats in Figure[f]
especially at LLC, showing that query-based without sorting
will issue more requests to the main memory. Under this
prism, we test level-based and partition-based (both vari-
ants) with the query sorting always activated.

In addition, the experiments show the benefits of batch
processing and the advantage of our proposed level-based
and partition-based advanced strategies over query-based
with sorting. We observe that the performance gain is in
practice larger in case of BOOKS and WEBKIT, compared to
TAXIS and GREEND, because of the length of the contained
intervals (see Table[3). The intervals in BOOKS and WEBKIT
are stored at the higher levels of the index due to their
significantly large length. Consequently, the impact of the
vertical jumps is more pronounced in these datasets. As a
result, level-based has almost identical total times to query-
based with sorting on TAXIS and GREEND, while partition-
based is always faster, because additional horizontal jumps
are avoided by depleting all queries relevant to a partition
before moving to the next, at the current level. Again, our
findings are backed up by the advanced stats in Figure[6] For
partition-based, partition subdivisions often reside in L1,
allowing to fast scan them and answer the relevant queries.

When access sharing is employed, the performance
of partition-based is significantly enhanced; in fact this
partition-based variant is up to one order of magnitude
faster than the typical partition-based. The performance gap
is larger for BOOKS, WEBKIT in all tests and for all datasets

9. To deal with latency, systems employ a waiting timeout for defin-
ing a batch. When the waiting time exceeds this threshold, the batch is
executed regardless its size. Under this premise, the system executes the
previous batch while waiting for the next, and so, we can completely
ignore the waiting time in our experiments.

10. Our analysis in [11], [37] already showed the advantage of a
HINT-powered query-based strategy against competitive indexing.
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Fig. 7: Batch processing selection queries (synthetic datasets)

when the selectivity is high or the batch contains a lot
of queries. Besides ensuring that each partition is scanned
once, this is also due to the large number of cross products
conducted in these case by the access sharing approach.
These two factors drastically reduce both the number of
issued instructions and the cache misses in L1, justifying

more queries are positively affected by batch processing.
The figure clearly shows both the benefit of batch processing
selection queries over a serial execution (with or without
sorting) and the advantage of the partition-based strategy
with access sharing activated. An exception arises for a very
small batch (1K queries) and TAXIS, WEBKIT, where using
optFS to join a subdivision with all its relevant queries does
not pay off; this finding is in line with the second row in
Figure[5| As expected this benefit grows for all strategies as
the batch size (i.e., number of contained queries) increases.

Regarding the impact of the experimental parameters,
all strategies are slowed down (1) when increasing the
query extent as the queries become less selective and so,
more time-consuming with larger result sets, and (2) when
increasing the batch size, as more queries are evaluated.
Nevertheless, partition-based with access sharing is consis-
tently the faster strategy for all datasets and in all tests.

Lastly, Figure [/ reports on the synthetic datasets. Param-
eter m is again set using the model in [11]]. The plots unveil
similar trends to Figure 5| As expected the domain size, the
dataset cardinality, the query extent and the batch size, all
negatively affect the performance of the strategies. Increas-
ing the domain size under a fixed query extent, affects the
performance similar to increasing the query extent, i.e., the
queries become longer and less selective, including more
results. In contrast, when a grows, the intervals become
shorter, so the performance of all strategies improves. Simi-
larly, when increasing o the intervals are more widespread,
meaning that the queries are expected to retrieve fewer
results, and the query cost drops accordingly.

5.3 Join Queries

We continue with join queries. Our analysis considers two
setups, depending on whether input collections are already
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Fig. 8: Impact of batch processing - lower numbers better; default query extent 0.1%

indexed (i.e., to answer other queries such as selections), or
the inputs are unindexed. To assess the performance of each
join method, we measured its total execution time which
includes sorting, indexing and partitioning costs, wherever
applied. We ran a series of interval joins using uniformly
sampled subsets of each real collection as the outer input R
and the entire dataset as the inner S; for each setting, the
|R|/|S| ratio varies inside the {0.25,0.5,0.75,1} set

5.3.1 Unindexed Inputs

We compare the state-of-the-art optFS method for joining
unindexed inputs from [34], [35] (recapped in Section
against our extension in Section we denote the latter as
optFS+ur extension method first splits the domain into
equally sized, non-overlapping stripes and constructs the
Oin, Ouft, Rin, Rayi subdivisions inside a stripe, for each
dataset. Then, optFS+ applies the mini-joins breakdown
in Figure 4| and utilizes optFS to compute the mini-joins.
Recall that optFS samples the input subdivisions to decide
which optimizations will be activated for each mini-join, as
proposed in [35] for the entire input datasets.

Figure [J] investigates the best granularity for the par-
titioning of optFS+; the plots show a breakdown of the
total time. Partitioning time measures the cost of splitting
the domain into stripes, constructing the 4 subdivisions
inside each stripe and computing the decomposed layout
(if activated). Sorting is required in order to use the plane-
sweep based approach of optFS. Indexing time measures the
cost of building the bucketing index (if optimization acti-
vated). The cost of determining the groups for the grouping
optimization (if activated) is included in the joining time.
As the key take away of Figure [9) we observe that 100
stripes (partitions) incur the best performance for optFS+ on
datasets with long intervals, such as BOOKS and WEBKIT,
while on the datasets with short intervals such as TAXIS
and GREEND, the best performance is exhibited for 100K
stripes. Hence, we fix the partitioning for the next tests
accordingly. Note that the stiff decrease in time for TAXIS
from 10K to 100K is due to optFS+ switching off the group-
ing, bucket indexing and decomposed layout optimizations.
These optimizations no longer pay off as the capacity of the
TAXIS partitions significantly drops.

Finally, Figure [10| compares the performance of optFS+
against the optFS state-of-the-art. The results confirm that

11. We also tested disjoint subsets observing similar behavior.

12. We omit the OMJ] method in [32], which adopts a merge-join
evaluation, as it was shown to have similar or even worse performance
than bgFS [34], a preliminary and slower version of optFS, which only
uses the grouping and bucket indexing optimizations.

the domain-based partition with the mini-joins breakdown
further accelerates the join computation, even under a
single-thread setting; recall that [34], [35] considered this
optimization only for a multi-threaded setting. optFS+ is the
best method for joining undindexed inputs in the majority
of our tests. Only for inputs with extremely short intervals,
such as the GREEND, we observe that the partitioning does
not pay off. Nevertheless, the join in these cases is already
significantly cheaper compared to the other datasets.

532

When indexing already exists in the input collections, we
consider two approaches for computing an overlap join.
The first is a typical index-based nested-loops approach,
where R >a S is evaluated as a series of selection queries.
Specifically, for each interval in the outer input, e.g., r € R,
we issue the oy, st r.cnd) (S) selection query in the inner input
S, to determine all s intervals that overlap r. We evaluate
all these selection queries in a single batch utilizing the
partition-based approach with sorting and sharing, which
was shown to have the best performance in Section
For completeness purposes, we additionally consider OMJ*
from [32] which also follows an index-based nested-loops
approach. However, instead of utilizing an interval index, it
uses a typical relational index, i.e., a B*—treﬂ to efficiently
evaluate the 0, s4<s.st<r.end)(S) selection for each r € R
and the 0, st<r.st<s.end) (R) selection for each s € S. Finally,
the second join approach is the HINT-join method described
in Section {4.2| which uses the HINT indices on both inputs.
Figure |11| reports the results of our tests. For the index-
based nested-loops approach, the largest input is typically
selected as inner. To confirm this rule, we experimented with
either R or § (|R| < |S|) as the inner input. Our analysis
confirms the above rule only for BOOKS and WEBKIT that
contain long intervals; using the HINT on the larger input
S is always faster than using the index on R. However,
for the TAXIS and GREEND collections that contain short
intervals, it is more beneficial to probe the HINT on the
smaller R. When comparing the index-based nested-loops
methods to each other, OM]' is competitive only if the input
collections contain short intervals; in contrast, for BOOKS
and WEBKIT, OMJ’ is usually two times slower than the
best batch processing on HINT. Regardless, we observe
that none of the indexed-based nested-loops methods can
compete with HINT-join, which takes full advantage of the
interval indexing on both inputs. Finally, by juxtaposing

Indexed Inputs

13. We used the implmentation from the TLX library [48].
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Figures [10] with we observe that optFS+ and HINT-
join have comparable performance with the exception of
GREEND where HINT-join is the best method.

6 RELATED WORK

We discuss previous work on indexing and joining intervals,
besides HINT and optFS, respectively, covered in Section 2]

Indexing intervals. A simple data structure for intervals is a
1D-grid, which divides the domain into k pair-wise disjoint,
partitions P, P, ..., P;. Input intervals are assigned to
all partitions they intersect and selection queries ¢, obtain
results by accessing all partition P; that overlap with g. The
reference value [49] can be adapted for result deduplication.

The interval tree [8] offers optimal worst-case space and
time guarantees. The tree divides the input domain hier-
archically by placing all intervals strictly before (after) the
domain’s center to the left (right) subtree and all intervals
that overlap with the domain’s center at the root. This
process is repeated recursively for the left and right subtrees
using the centers of the corresponding sub-domains. The
intervals assigned to each tree node are sorted in two lists
based on their starting and ending values, respectively. To
answer a selection range query, the interval tree is traversed
top-down comparing the center represented on each node to
the query range. A relational interval tree Rl-tree for disk-
resident data was proposed in [29]. Another binary search

tree for intervals is the segment tree [5], which however was
designed for stabbing (or point) queries where the goal is to
determine the intervals that contain a specific value.

Other solutions for indexing intervals are the timeline
index, the period index and the RD-index. The timeline index
[50] is a general-purpose access method for temporal (ver-
sioned) data, implemented as SAP-HANA tables. A table,
called the event list, stores a (time,id,isStart) triple for
the endpoints of all intervals, where time is either the start
or end of an interval, specified accordingly by the boolean
isStart flag. In addition, at certain timestamps, called check-
points, the entire set of active objects is materialized, i.e.,
those with an interval that contain the checkpoint. Selection
queries ¢ = [q.st,q.end] are evaluated by comparing the
contents of the closest checkpoint before ¢.st and the entries
in the event list after the checkpoint against the query range.
Period [9] and RD-index [10] split the domain into coarse
partitions, then subdivide each partition hierarchically to
organize intervals by position and duration, optimized for
range and duration queries. The RD-index [10] essentially
improves upon the period index by supporting arbitrary
distributions of interval durations and allowing to index
the intervals either first by duration or time. Moreover,
RD-index does not replicate intervals, yielding a smaller
memory footprint and better query performance.

The experiments in [11]], [37] showed that HINT outper-
forms the above methods for selection queries. Moreover,



HINT exhibits low space complexity at a competitive build-
ing time. Thus, our study builds upon HINT as the state-of-
the-art interval indexing solution in main memory.

Joining intervals Early works [23], [24] on interval joins
relied on nested-loops (unsorted inputs) or sort-merge join
(sorted inputs), introducing specialized data structures for
append-only data. To reduce join costs, index-based and
partitioning-based solutions emerged. Enderle et al. [31]
leveraged two Rl-trees [29] while Zhang et al. [30] em-
ployed an extension of the multi-version B-tree [51]]. Luo
et al. [52] proposed O2iJoin which utilizes a flat two-level
index, where the first level organizes the indexed input in a
sorted array and the second level contains inverted lists that
approximate the nesting structure of the period timestamps.
Recently, Dignos et al. [32] reformulated R 1 & over-
lap joins as the union (with duplicate elimination) of two
range queries O[r.st<s.st<r.end] (S> and O[s.st<r.st<s.end] (R)
For unindexed inputs, the proposed OM] method adopts
a sort-merge join approach while for indexed inputs, OM]J*
evaluates the range queries using two B -trees, which index
the starting point of the intervals.

Soo et al. [25] proposed a partitioning-based approach
which first splits the domain into disjoint ranges and then,
assigns each interval to the partition of the last domain
range it overlaps. To evaluate the join, the partitions are
processed sequentially from last to first; after the last pair
of partitions are processed, the intervals which overlap
the previous domain range are migrated to the next join.
This way data replication is avoided. Dignos et al. [27]
proposed the Ouverlap Interval Partitioning (OIP) join which
divides the inputs into groups of intervals with similar end-
points, maximizing the percentage of matching objects per
partition. The Disjoint Interval Partitioning (DIP) algorithm
proposed in [28] creates disjoint partitions, each containing
non-overlapping intervals. To compute the overlap join a
sort-merge approach without backtracking is employed.

For unindexed inputs, methods that build upon plane-
sweep have been also proposed. Similar to sort-merge join
evaluation, plane-sweep based methods require the two
input collections to be sorted, but they can guarantee at most
|R| + |S| comparisons to produce the results. The Endpoint-
based Interval (EBI) algorithm and its lazy version LEBI [33],
[36] extend the timeline index core idea utilizing the same
event list. To compute the join, EBI concurrently scans the
input event lists accessing their entries in increasing global
order of their sorting key (i.e., the endpoint), simulating a
“sweep line” that stops at each endpoint from either input
R or S. At each position of the sweep line, the algorithm
keeps track of the active (open) intervals using a gapless
hash map optimized for sequential reads.

The tests in [33], [36] and [34], [35] showed the advantage
of the plane-sweep based evaluation for overlap joins on
unindexed inputs. Between EBI/LEBI [33], [36] and optFS
[34], [35], the latter achieves competitive or better perfor-
mance, without any specialized data structure. In addition,
the tests in [32] showed that OM] performs comparably to
bgFS [34], a preliminary and slower version of optFS. Hence,
our study adopts optFS as the state-of-the-art join method
for unindexed inputs. For indexed inputs, we build upon
HINT and consider as a competitor, OMYJ* from [32].
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7 CONCLUSIONS

We studied two fundamental querying operations on in-
tervals building on the state-of-the-art in-memory index
for intervals, HINT. For the efficient batch processing of
selection (range) queries, we proposed two novel strategies
termed level-based and partition-based, which evaluate all
queries for an index level before moving to the next. In
addition, we extended partition-based to guarantee that
each index partition is scanned only once for all relevant
queries. Our tests showed that our strategies always out-
perform the serial execution of the queries. We also study
overlap joins anew across the entire spectrum of different
setups. For unindexed inputs, we enhanced the state-of-the-
art algorithm optFS with effective partitioning employed
in HINT, while for indexed inputs, we devise a new join
algorithm termed HINT-oin, which concurrently scans the
HINT indices, joining partition pairs with optFS.

In the future, we plan to study the parallel and dis-
tributed processing of the queries. For our batch processing
strategies, we will investigate how to schedule the scanning
of HINT partitions to the available threads in multi-core
environments, and how to distributively store and process
these partitions in the available machines. Another interest-
ing direction is integrating HINT in OpenMLDB as its time-
travel data structure to enable faster retrieval of relevant
intervals; that would also enable our batch-processing tech-
niques into OpenMLDB’s Scale-OJ] [7] to reduce redundant
computations and improve cache efficiency.
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