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ABSTRACT
Geosocial networks serve as a critical bridge between cyber and
physical worlds by linking individuals to locations. In many real-
world scenarios, both the structure of social networks and the
spatial distribution of places are known—yet the connecting infor-
mation that links people to locations is missing. This absence is
often intentional to ensure user privacy. In this work, we investi-
gate the feasibility of estimating locations based solely on network
structure and a limited set of known user-location pairs. We pro-
pose and evaluate four algorithms for linking social and spatial
networks: (i) a greedy assignment algorithm, (ii) a hierarchical
approach using graph partitioning, (iii) a spatially-aware adapta-
tion of force-directed graph drawing, and (iv) a modified version
of Spatial Label Propagation. Each method is further enhanced to
incorporate a small number of known anchor vertex—users with
known locations. Using anonymized social network data from the
Virginia, USA region, our empirical evaluation shows that even
a sparse set of anchor points can enable accurate estimation of
users’ home locations. These findings highlight both the potential
analytical value and the privacy risks associated with linking social
and spatial data.
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Figure 1: Geosocial Network using Facebook Social Connect-
edness Data between Zone Improvement Plan (ZIP) Region
Centroids for the State of Virginia (VA), USA.
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1 INTRODUCTION
Location-Based Social Networks (LBSNs) [29], often also called
geosocial networks [4], capture both (1) social relationships such as
friendship between individuals or populations, and (2) the locations
of these individuals. By bridging physical and virtual spaces, LBSNs
have numerous applications, ranging from online-physical dating
to recommendation and advertising [19, 29]. An example of a real
geosocial network is shown in Figure 1. Here, locations of ZIP
code centroids are linked based on the strength of their social
connectedness. This network is generated using the Facebook Social
Connectedness Index [3].

In this work, we investigate the severity of the privacy risks of
being part of a geosocial network. Specifically, we explore whether
it is possible to estimate the location of a user who does not share
their location information by using the location of those in their so-
cial network who do share their location. Estimating the location of
users would incur severe privacy risks, as past research [8, 25] has
shown that only three location points are required to identify most
individuals among millions of individual people. Beyond privacy
loss, the exposure of location information creates tangible safety
threats for communities: stalkers, burglars, or malicious actors can
exploit mobility patterns to determine when people are away from
home, identify vulnerable populations, or target individuals, such
as minors or elderly, for physical harm. These risks are amplified
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in large-scale mobility datasets that cover entire urban regions,
as inference models can uncover behavioral regularities and pre-
dict future movements. Consequently, location inference is not
only a technical challenge in data management and anonymization
but also a fundamental ethical concern for safeguarding personal
security in spatial computing research.

The question we investigate in this paper is not whether we can
identify individuals based on where they go or where their direct
connections are, but where others in their social network are. The
remainder of this work is organized as follows. Section 2 surveys
existing research on location-based social networks and location pri-
vacy. Section 3 formally defines the problem of identifying vertices
in a location-based social network based on the location of others
in their social network. Section 4 then presents four algorithms to
solve this problem: (1) a greedy approach which maps users to loca-
tions by starting with users with a high degree and matching them
to dense locations, (2) an approach that hierarchically clusters both
the social and the spatial network and then maps similar clusters to
each other, (3) an approach based on graph-drawing, by minimizing
distance to friends with known location and maximazing distance
to non-friends with known locations, and (4) an approach that mod-
fies the Spatial Label Propagation algorithm [15] so that vertices
are matched to discrete and not continuous locations. Section 5
shows both qualitative and quantitative experiments to support our
hypothesis that it is possible to identify the location of users if a
large fraction of other users share their locations. Finally, Section 6
provides a brief conclusion to the paper and a discussion of areas
of further work.
2 RELATEDWORK
A substantial body of research has demonstrated that social net-
works exhibit significant spatial autocorrelation, whereby individu-
als are more likely to form social ties with geographically nearby
others. This phenomenon, often referred to as spatial homophily, is
rooted in both opportunity and preference: individuals who live,
work, or socialize in close geographic proximity are more likely
to interact and form relationships [9, 22]. Early studies of offline
networks, such as those examining high school friendship patterns,
found strong evidence of spatial proximity as a key determinant
of tie formation [23]. With the advent of large-scale digital social
networks, these findings have been corroborated at scale. For in-
stance, analyses of Twitter and Facebook data have shown that
the probability of a social connection decays with geographic dis-
tance, often following an inverse power-law relationship [2, 5].
Moreover, research on mobile phone communication networks has
revealed spatially clustered social structures, where communities
detected in the call graph tend to align with administrative or natu-
ral geographic boundaries [12]. These observations underscore the
importance of incorporating geographic context into the analysis
and modeling of social networks. In this work, we aim to leverage
the spatial homophily of social networks to infer the location of
users who do not share their location. Thus, our goal is to infer the
location of a user based on the location of their friends. Recent stud-
ies have demonstrated that even well-anonymized datasets, such as
mobility or transaction logs, can be re-identifiedwith alarming accu-
racy using a small number of spatiotemporal points [8, 25, 28]. This
has raised significant concerns in the context of data sharing and
geosocial research, as location data is often uniquely identifying due

to the regularity and sparsity of individual movement patterns [13].
This paper complements this existing research by investigating
how individuals can be identified not based on their own location
data, but based on the location data of those in their network. As
a result, research on privacy-preserving algorithms—such as dif-
ferential privacy, k-anonymity, and geo-indistinguishability—has
become a critical area for enabling data-driven innovation without
compromising individual privacy [26, 27].

Recent research investigated the use of social networks to es-
timate geographic locations of users based on spatial homophily.
Early works in this area showed that user location can be estimated
with surprising accuracy by leveraging the locations of a user’s
friends or followers in the social graph [2, 7, 24]. Backstrom et
al. [2] demonstrated that the location of a Facebook user can be
predicted with high accuracy using the locations of their friends.
Pontes et al. [24] explored cross-platform location inference using
data from Foursquare, Google+, and Twitter, demonstrating that
social proximity, combined with profile attributes, could predict
users’ home locations at city and neighborhood scales. While these
works solve the same problem defined in this work, the proposed
algorithm can only be used to infer the location of users having at
least one (direct) friend with known location, and cannot be applied
in the case where only a few sparse user locations are known. Jur-
gens et al. [15] solves a very similar problem to ours, but locations
are generated continuously. In our work, we aim to match users to
a set of known locations. Further refinements have incorporated
deep learning and probabilistic models. Li et al. [20] introduced
the Multiple Location Profiling (MLP) model to account for users
having multiple significant locations (e.g., home, work, travel des-
tinations). More recently, Luceri et al. [21] applied graph-based
neural networks to infer user locations in Twitter, showing that
even when only a fraction of users share geo-tagged posts, the lo-
cation of others can be inferred through social ties with non-trivial
accuracy. While these works also aim at inferring the location of
users of a social network, they assume that additional content (such
as microblogs or check-ins) is available to provide location samples
of users. In contrast, our problem definition assumes that the user
does not share any information, and our goal is to infer the location
of users solely on the locations of others in their social network.
3 PROBLEM DEFINITION
This section illustrates the problem proposed in this work and
provides a formal problem definition.

Example 3.1. Figure 2 shows information about eleven users of
an LBSN: The left section of the figure shows the users’ geolocations,
and the right shows their social network. However, the mapping
between these two sets—that is, which user is located where—is
only known for a small subset of users. Our goal is to estimate this
mapping for all users. In the example, we see that users 5, 6, 9, and
10 form a clique in the social network. Following the assumption of
spatial homophily, it seems likely that these social network users
may correspond to locations 𝐵-𝐸, which are close to each other.
Users 0-2 also form a social network clique that may correspond
to the locations 𝐺-𝐼 . In practice, we may have thousands of users
and locations, and there may be many spatial clusters of the same
size, making such a trivial inference impossible. We formalize this
problem as follows:
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Figure 2: Example of the LBSN Location Estimation Problem: (Left) Spatial locations of users. This may be a geographical
space with axes corresponding to geo-coordinates. (Right) Social network of users. Vertices are users and edges are social links
between users. The axes of this space do not have semantic meaning. Links between nodes across the two spaces indicate the
known location of users. The LBSN Location Inference Problem seeks to infer the location of all users.

Definition 3.2 (LBSN Location Estimation Problem). Let 𝐿𝐵𝑆𝑁 =

(𝑉 , 𝐸) be a location-based social network consisting of a set of
vertices (users)𝑉 and a set of links (friendship relations) 𝐸 ⊆ 𝑉 ×𝑉
between vertices. Furthermore, let 𝑆 be a set of spatial locations
(home locations or regions). Each vertex 𝑣 ∈ 𝑉 has a geolocation
𝑙𝑜𝑐 (𝑣) ∈ 𝑆 . We assume that this location is observable only for
a subset 𝑉𝑜𝑏𝑠 ⊂ 𝑉 . Our goal is to estimate the location of other
vertices 𝑉 ⊆ 𝑉𝑜𝑏𝑠 based on the locations of vertices in 𝑉𝑜𝑏𝑠 and
based on the network topology of 𝐿𝐵𝑆𝑁 .

We assume that the set of all possible locations is known, such
as residential buildings available in OpenStreetMap [1, 14]. We also
assume that the mapping 𝑙𝑜𝑐 (𝑣) : 𝑉 → 𝑆 is injective, such that no
two social network users can be mapped to the same location. This
assumption comes without loss of generality, as we can include
multiple vertices with the same location in 𝑆 to denote locations
that may have multiple users living in the same place. We also
assume this mapping to be surjective, such that each spatial lo-
cation must have one social network user mapped to it. We note
that this assumption does incur a loss of generality, as in practice,
many or even most individuals may not be users of the same social
networking service. However, we keep this assumption to simplify
the problem, and we note that relaxing this assumption remains an
open research direction. Thus, we assume that function 𝑙𝑜𝑐 (𝑣) is
bijective such that there exists a one-to-one matching between the
social network vertices 𝑉 and the spatial locations 𝑆 .

4 LBSN LOCATION ESTIMATION
ALGORITHMS

This section describes four algorithms to solve the LSBN Location
Estimation Problem (Definition 3.2). The first algorithm described
in Section 4.1 is a Greedy baseline approach, which follows the
intuition that is used in the toy example (Example 3.1): Iteratively
matching the social network vertex with the largest number of

connections to the spatial locations with the highest local den-
sity. Then, Section 4.2 presents an approach based on hierarchi-
cally clustering both the social network and the spatial locations
and iteratively mapping social clusters to location clusters to each
other. Then, Section 4.3 presents an approach inspired by the force-
directed graph drawing algorithm [16] which positions vertices
using attractive forces along edges and repulsive forces between
vertices. We augment this algorithm by including spatial locations
as fixed vertices (whose locations cannot change) that exhibit at-
traction forces, ensuring that spatially dense regions attract social
network vertices. Finally, in Section 4.4, we augment the Spatial
Label Propagation algorithm presented in [15] so that vertices are
matched to given locations. Additional implementation details and
Python code for each algorithm can be found in the GitHub reposi-
tory at https://github.com/KetevanGallagher/Geosocial-Network-
Location-Estimation.

4.1 Greedy Algorithm
The first algorithm we present for matching vertices in a social
network to spatial locations leverages spatial homophily, i.e., the
fact that links in geosocial networks exhibit spatial correlation. The
Greedy algorithm iteratively processes the unprocessed vertices
that have the highest number of connections to vertices with known
locations. Ties are broken by selecting, among these vertices, the
vertex with the highest number of total connections. Let 𝑣 denote
the selected social network vertex and let 𝑘𝑛𝑜𝑤𝑛(𝑣) denote the
(possibly empty) set of vertices connected to 𝑣 for which their lo-
cation is known. The selected vertex 𝑣 is assigned to the location
that minimizes the sum of distances to the connected known loca-
tions. If 𝑣 is not connected to any vertices with known locations,
then we choose the medoid of the unassigned locations. Then, the
social network neighbors of 𝑣 whose locations are unknown are
assigned to the spatial k-nearest neighbors of the selected location.
Vertices that have a degree of zero are not included in this process
and are randomly assigned a location from the remaining available
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locations. This approach aims at making sure that (1) the user with
the most social ties is mapped to the densest location and (2) that
the neighbors of this user are mapped to the nearest locations.

Example 4.1. We illustrate the greedy algorithm using the ex-
ample in Figure 2. We start by finding the social network vertex
having the largest number of connections to vertices with known
locations. Since locations are known only for social network ver-
tices 2 and 5, this results in a many-way tie. Vertices 0, 1, 3, 4, 6,
7, 9, and 10 are all connected to either Vertex 2 or Vertex 5, but
none are connected to both. We break this tie by selecting among
these vertices the vertex having the largest degree, which is Vertex
6 with a degree of 5. Thus, we select 𝑣 to be Vertex 𝑣6. The set
𝑘𝑛𝑜𝑤𝑛(𝑣6) of neighbors of 𝑣6 having a known location includes
only vertex 𝑣5. We then map 𝑣5 to the vertex that minimizes the
distances to 𝑘𝑛𝑜𝑤𝑛(𝑣6), which is the vertex with the least distance
to 𝑙𝑜𝑐 (𝑣5). This is known to be Location 𝐸. Location 𝐷 has the least
distance to Location 𝐸, so we map Vertex 𝑣6 to Location 𝐷 . We then
identify the 𝑑𝑒𝑔(𝑣6) − |𝑘𝑛𝑜𝑤𝑛(𝑣6) | = 5− 1 = 4 nearest neighbors of
𝐷 among the unassigned locations which includes Locations 𝐴, 𝐵,
𝐶 , and 𝐹 . We next map the unassigned neighbors 𝑣3, 𝑣8, 𝑣9, and 𝑣10
to these locations by having vertices with higher degree connect to
locations closer to 𝐷 . Since Vertex 10 has the highest degree of 4 it
is assigned to the closed Location 𝐵; then Vertex 9 with a degree of 3
is assigned to the second closest location𝐶 ; and then Vertices 3 and
8 each have a degree of 2 and are arbitrarily assigned to Locations
𝐴 and 𝐹 , respectively. In this example, we see that the social clique
of Vertices 5, 6, 9, and 10 is correctly mapped to Locations 𝐸, 𝐷 ,
𝐶 , and 𝐵. However, Vertex 3 is incorrectly mapped to Location 𝐴

instead of Location 𝐹 . We iterate this process until all vertices are
assigned to locations. We omit the remaining iterations but note
that, typical for Greedy Algorithms, incorrect assignments made
in previous iterations will cascade into later iterations as there is
no mechanism to correct bad decisions. In this example, Vertex 𝑣8,
which is the vertex that is actually located at Location 𝐴, will be
mapped to a location far from Location 𝐴 since all nearby locations
have already been assigned.

4.2 Partitioning-Based Algorithm
The Greedy algorithm iteratively processes vertices one by one
and wrong assignments cause incorrect assignments in later iter-
ations. Rather than mapping individual vertices, we propose an
algorithm that maps entire clusters of similar social vertices and
spatial locations to each other. To identify clusters, we use the
METIS network partitioning algorithm [18] to hierarchically parti-
tion both the social network and the spatial location graph, where
links correspond to spatial proximity. We use METIS to divide a
network into 𝑘 partitions. For our experiments, we use 𝑘 = 10 while
the population is greater than 100. Otherwise, the population is
divided into partitions of ten vertices. Social network partitions
and location clusters are matched by minimizing the sum of the dis-
tance between centroids multiplied by the number of connections
between two partitions for each combination of partitions. Each
subdivision is recursively partitioned until the resulting partitions
have fewer than 30 vertices. Within partitions, vertices are matched
to locations in descending order of their degree, with higher de-
grees matched to the medoid of the remaining locations. For each

vertex processed, its neighbors are assigned to the location closest
to that vertex. Similar to the Greedy algorithm, vertices that have a
degree of zero are matched randomly to remaining locations once
all other vertices have been assigned to a location. In this algorithm,
vertices that form similar communities in the social network are
often matched to locations that resemble these communities.

4.3 Graph Drawing
While the Partitioning-Based algorithm maps clusters rather than
points, it still follows the Greedy paradigm, and erroneous assign-
ments made in early iterations cascade into later iterations, as there
is no mechanism to revise decisions. To allow reassignment, we
next propose an optimization approach based on the force-directed
placement graph drawing algorithm [10], which is commonly used
to visualize networks. In this algorithm, vertices that are connected
attract each other while disconnected vertices repulse each other.
To estimate spatial locations, we make two adjustments to the algo-
rithm: (1) Social network vertices with known locations are fixed to
the location that represents their spatial location. This ensures that
known locations are mapped to the correct location. (2) Spatial loca-
tions exhibit a small attraction force to ensure that spatially dense
areas will attract social network users. The corresponding forces (i)
attract/repulse social network vertices, (ii) known locations hold
vertices in place, and (iii) spatial locations attracting social network
vertices are simulated until convergence. Thus, a new position is
generated for each vertex. The "temperature" of the system, a factor
that controls the movement speed of the vertices, is capped at 0.1
to maintain stability and avoid erratic movements. For our data, the
weighting of the attraction between vertices is increased from one,
the default, to the number of the population. This adjustment prior-
itizes the influence of connected vertices in the layout and ensures
that vertices connected to fixed vertices are drawn more strongly
toward them, while diminishing the effect of repulsive forces from
unconnected vertices. If there are no fixed vertices, the centroid
parameter is used. The centroid parameter is the coordinate pair
around which the layout is centered. The centroid parameter is set
to the centroid of the locations. The Spring Layout also has a pa-
rameter for the optimal distance between vertices. This parameter
is set to the average distance between locations. The Spring Layout
returns a new set of positions for each vertex, and these vertices are
matched to the available location using two different procedures.

The first is by using a greedy method: the vertex with the high-
est degree is assigned to the closest available true location, and its
neighbors are assigned to the locations closest to them. The vertex
with the next highest degree is assigned to its closest available lo-
cation, and the process repeats until all vertices have been assigned
a location.

The second is by using an optimal method: vertices are assigned
to a location using a modified Jonker-Volgenant algorithm[6].

4.4 Spatial Label Propagation
The final algorithm is Spatial Label Propagation, outlined in [15]. If
a vertex has any neighbors with a known location, its new location
is the average of its neighbors’ locations. This process repeats until
all vertices have been assigned a location. Although this generates
locations for all vertices, the locations are generated in continuous
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Known Random Greedy Partitioning Graph Graph SLP SLP
Locations Based Drawing

Greedy
Drawing
Optimal

Greedy Optimal

0 209.6 170.7 104.7 199.3 201.7 N/A N/A
3 208.0 182.8 122.1 139.5 204.9 120.5 122.9
68 188.4 164.1 125.5 88.82 91.72 24.12 16.35
206 146.4 123.3 96.35 39.91 22.97 10.90 6.061
344 105.7 92.52 86.91 24.55 11.87 5.905 2.373
481 61.92 30.81 58.20 13.49 5.850 2.881 0.8500

Table 1: Average distance (in kilometers) between estimated and true locations on the Facebook VA dataset.

Known Random Greedy Partitioning Graph Graph SLP SLP
Locations Based Drawing

Greedy
Drawing
Optimal

Greedy Optimal

0 14.32 11.92 13.29 13.22 12.28 N/A N/A
3 14.00 12.29 12.87 12.32 13.80 8.941 8.672
24 12.83 9.662 8.866 11.84 11.35 3.563 3.094
72 9.867 7.778 8.184 8.769 8.734 2.004 1.633
121 7.095 5.699 6.672 5.612 5.352 1.278 0.9474
169 4.169 3.139 3.820 3.355 3.147 0.6676 0.4058

Table 2: Average distance (in kilometers) between estimated and true locations on the Fairfax Mobility dataset.

space, so they will not match the true locations that are already
known. Thus, we expand this algorithm to match the generated
locations to given locations using either the greedy or optimal
method described in 4.3. If any vertices have a degree of zero, they
are assigned randomly to available remaining locations after all
other vertices have been assigned to locations. One disadvantage
of this algorithm is that it cannot be used for networks that do
not have any known locations. Although this algorithm may face
similar issues as the Greedy algorithm, where vertices that are
matched incorrectly early on have a cascading negative effect on
the rest of the vertices, this effect is minimized because vertices are
assigned continuous locations. The new location of each vertex is
informed by all neighbors with locations, and not just one of them.

5 EXPERIMENTAL EVALUATION
This section presents an empirical evaluation of the proposed algo-
rithms. Section 5.1 describes the datasets used for our evaluation.
Then, Section 5.2 uses these datasets to evaluate all algorithms
quantitatively by measuring the distances between estimated and
ground truth locations. Additionally, we present a qualitative eval-
uation to interpret and understand the strengths and weaknesses
of each algorithm in Section 5.3 and finally, Section 5.4 gives an
overview of the runtimes of each algorithm.

5.1 Datasets
To evaluate whether the proposed algorithms can identify the loca-
tions of users in a social network, we use two real-world geosocial
network datasets and a synthetically generated dataset. First, we
leverage data provided by Facebook Data for Good, referred to as
the Social Connectedness Index (SCI) [3]. The dataset provides a
measure of social connectedness between all pairs of 688 ZIP codes
for VA, USA. We connect each ZIP code to the ten ZIP codes with
which it has the highest SCI. The resulting network is depicted in
Figure 1 and has an average degree of 12.55. The second dataset
delineates space into census tracts for the region of Fairfax County,
VA, USA. Human mobility data from SafeGraph [17] from the date

1/4/2020 is used to estimate geosocial connections between census
tracts. We selected the top 87% of population flows as links between
census tracts, resulting in an average degree of 10.7.

We also provide experiments for synthetically generated geoso-
cial data. We utilize the Geosocial Erdős-Rényi network model
detailed in [11]. This model creates random locations in a two-
dimensional [0, 1]2 unit space with links based on distance, follow-
ing a power law having closer locations more likely to be connected.
5.2 Location Estimation Results
Prediction results on the Facebook data are shown in Table 1 for
different levels of known locations. Each of our proposed algorithms
was run with the locations of ZIP codes in Virginia and a variable
number of known locations. The social network was generated
using the Facebook Social Connectedness Index. As the number
of ZIP codes in Virginia is 688, the set of known locations to test
with was chosen as 3, 68, 206, 344, and 481, which is roughly 0%,
10%, 30%, 50%, and 70% of the locations, respectively. Each level of
known locations was run for 30 trials on each proposed algorithm,
and the average of these trials is displayed in Table 1. First, we
observe that all six algorithms consistently outperform a random
baseline, which maps social network vertices to locations randomly.
We observe that the Partitioning-Based algorithm can outperform
the other algorithms for cases with no known locations, but the
Graph Drawing algorithm, and especially Spatial Label Propagation,
benefit from having more a priori location information. For cases
with only a few known locations, the greedy version of the Graph
Drawing algorithm and Spatial Label Propagation outperform the
optimal version, but for all cases with a large number of locations
that are known, the optimal version has a shorter average distance.
For all cases with known locations, both versions of Spatial Label
Propagation outperform all other algorithms.

For the levels of zero, three, and 68 known locations for the Graph
Drawing algorithm, it can be observed that the optimal version has
a higher average distance to the correct location than the greedy
version. While this may seem counterintuitive, the optimal version
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Population Known Random Greedy Partitioning Graph Draw- Graph Draw- SLP SLP
Locations Based ing Greedy ing Optimal Greedy Optimal

100 0 0.5080 0.4991 0.4525 0.5198 0.5101 N/A N/A
100 3 0.5005 0.4501 0.4857 0.3330 0.3010 0.3531 0.3346
100 10 0.4699 0.3832 0.4359 0.1356 0.0931 0.2050 0.1745
100 50 0.2599 0.2108 0.2384 0.05462 0.03213 0.06192 0.03515
500 0 0.5176 0.5115 0.3746 0.4881 0.4840 N/A N/A
500 3 0.5168 0.4905 0.4172 0.4459 0.4418 0.3776 0.3707
500 10 0.5122 0.4835 0.4144 0.2755 0.2471 0.2393 0.2190
500 50 0.4701 0.4307 0.3128 0.1343 0.07462 0.1180 0.09681
1000 0 0.5218 0.5176 0.3561 0.5069 0.5032 N/A N/A
1000 3 0.5202 0.4867 0.3976 0.4691 0.4549 0.3754 0.3784
1000 10 0.5169 0.4860 0.3853 0.3288 0.3051 0.2424 0.2278
1000 50 0.4912 0.4709 0.3717 0.1656 0.09407 0.1187 0.09981
Table 3: Average distance between estimated and true locations on synthetic spatial Erdős-Rényi data.

does not know the ground truth. Thus, although it matches the new,
generated locations in a way such that the distances from the new
locations to the given locations are minimized, these new locations
may be far from their correct locations. In this case, while the greedy
version does not minimize the distances from the new locations to
the given locations, the locations assigned by the greedy version
may be closer to their correct location.

Results for the Fairfax Mobility data and the synthetic dataset for
different population sizes are shown in Table 2 and Table 3, respec-
tively. For the synthetic dataset, random locations were generated,
and a Geosocial Erdős-Rényi Network was generated from these
random locations. Three levels of the total number of locations
were used (100, 500, and 1,000), and four levels of known locations
were used (0, 3, 10, and 50). Our proposed algorithms were then run
with these random locations and generated Geosocial Erdős-Rényi
Networks. Similar to the Facebook results, we observe on the Fair-
fax dataset that the Spatial Label Propagation approach consistently
yields the highest accuracy location prediction. We also observe
that the optimal version outperforms the greedy version of Spatial
Label Propagation for each level of known locations.

For the synthetic dataset, we observe that for a population of
100, the optimal version of the Graph Drawing Algorithm has the
smallest average distance to the correct location. For all other lev-
els and populations, besides the population of 500 with 50 known
locations, the optimal version of Spatial Label Propagation outper-
forms other algorithms. We observe a similar pattern to the Fairfax
dataset, and find that for the level with no known locations, the
Partitioning-Based algorithm performs best.
5.3 Qualitative Results
Through the qualitative results shown in Figures 3 and 4, we can
see that as the number of known locations increases, vertices are
assigned to locations closer to their actual location. Each figure
shows unknown locations in blue and known locations in red. The
edges connect the location that a vertex in the social network was
assigned to its actual location. Thus, a vertex assigned correctly will
have no edge. Graphs with many long edges have many vertices
that are assigned far from their correct location, while graphs with
short edges and a large amount of whitespace have many vertices
that are assigned close to or simply to their correct location. The
blank cells in both figures are present because both SLP algorithms
cannot be used for cases with zero known locations.

5.3.1 Virginia Facebook Data. Figure 3 shows the distances be-
tween estimated and true locations on the Virginia Facebook data
for a random baseline and all proposed algorithms having zero,
three, 68, and 344 known locations. In Figures 3a-3d, for the ran-
dom baseline, we do not observe, as expected, any spatial patterns
and instead observe many long edges connecting vertices uniformly.
For the Greedy algorithm, we observe in Figures 3e-3h that some
areas match well while some communities are confused, leading
to large errors (indicated by long lines) in some parts while other
parts are matched well (indicated by short or no lines at all).

For the Partitioning-Based algorithm in Figures 3i-3l, we see
that when communities are matched incorrectly, large errors occur
due to mapping every single vertex from one partition to the true
locations of the community. But when the high-level mapping of
partitions is correct, we observe very good matchings within the
partition. For example, for the case having 68 known locations, we
see that the south-western area is matched very well. But for the
case of 344 known locations, the mapping of partitions mapped
the south-western area to the Northeast, creating very large lines
across the entire map.

Figures 3m-3p, show the results for the Graph Drawing Algo-
rithm. We observe in Figures 3p and 3t that for the case of having
very many known locations, the Graph Drawing Algorithm, in-
dependent of the mapping choice (Greedy vs Optimal), performs
extremely well. But for cases having fewer known locations, we
still observe a high level of confusion between estimated and true
locations. Finally, we observe the results of the Spatial Label Propa-
gation Algorithm in Figures 3u-3z. Since this algorithm cannot be
applied when there are no known locations, there are no results
for cases with zero known locations. But we observe that for the
case of having many known locations, this algorithm performs
particularly well. For the case of having 344 known locations, the
result seems even better than for the Graph Drawing Algorithm.
More importantly, we see that this algorithm, unlike others, can
obtain very good results even with only 68 known locations. We
also see that many vertices that are unknown (indicated by the blue
color in Figure 3) have no edge at all, indicating that this vertex was
matched correctly to the ground truth. We also observe that the op-
timal matching strategy yields visibly better results compared to the
greedy matching strategy, while not adding much computational
overhead, as we will show in Section 5.4.
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(a) Random (0 Known) (b) Random (3 Known) (c) Random (68 Known) (d) Random (344 Known)

(e) Greedy (0 Known) (f) Greedy (3 Known) (g) Greedy (68 Known) (h) Greedy (344 Known)

(i) Partitioning (0 Known) (j) Partitioning (3 Known) (k) Partitioning (68 Known) (l) Partitioning (344 Known)

(m) GD Greedy (0 Known) (n) GD Greedy (3 Known) (o) GD Greedy (68 Known) (p) GD Greedy (344 Known)

(q) GD Optimal (0 Known) (r) GD Optimal (3 Known) (s) GD Optimal (68 Known) (t) GD Optimal (344 Known)

(u) SLP Greedy (3 Known) (v) SLP Greedy (68 Known) (w) SLP Greedy (344 Known)

(x) SLP Optimal (3 Known) (y) SLP Optimal (68 Known) (z) SLP Optimal (344 Known)

Figure 3: Links between estimated location and true location using Facebook data for a random baseline and the proposed
algorithms having 0 (left), 3, 68 (10%), and 344 (50%) known locations (right).
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(a) Random (0 Known) (b) Random (3 Known) (c) Random (10 Known) (d) Random (50 Known)

(e) Greedy (0 Known) (f) Greedy (3 Known) (g) Greedy (10 Known) (h) Greedy (50 Known)

(i) Partitioning (0 Known) (j) Partitioning (3 Known) (k) Partitioning (10 Known) (l) Partitioning (50 Known)

(m) GD Greedy (0 Known) (n) GD Greedy (3 Known) (o) GD Greedy (10 Known) (p) GD Greedy (50 Known)

(q) GD Optimal (0 Known) (r) GD Optimal (3 Known) (s) GD Optimal (10 Known) (t) GD Optimal (50 Known)

(u) SLP Greedy (3 Known) (v) SLP Greedy (10 Known) (w) SLP Greedy (50 Known)

(x) SLP Optimal (3 Known) (y) SLP Optimal (10 Known) (z) SLP Optimal (50 Known)

Figure 4: Links between estimated location and true location using 1,000 random locations and a Geosocial Erdős-Rényi network
for a random baseline and proposed algorithms having 0 (left), 3, 10, and 50 known locations (right).
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Figure 5: Average runtimes for all algorithms for three popu-
lation levels with 50 known locations.

Figure 4 shows the result of all algorithms on the synthetically
generated Erdős-Rényi network having 100 vertices. In addition,
we also show the corresponding results for 1000 vertices in our
GitHub Repository found at https://github.com/KetevanGallagher/
Geosocial-Network-Location-Estimation. Figures 4e-4h again show
no spatial patterns using the random baseline for matching vertices
to locations. The Greedy algorithm, observed in Figures 4e-4h again
shows that some areas are matched well, which may correspond
to vertices that are chosen in early greedy iterations. But some
areas are completely confused, leading to groups of large groups
of mismatched vertices visualized by groups of long edges. For the
partitioning algorithm shown in Figures 4i-4l we observe quite
some different patterns for zero, three, ten and 50 known locations:
For zero and ten locations we observe many top-right directed
diagonal edges, and for three known locations we observe both
top-right and top-left directed diagonal edges leading to a dark area
in the center of the map. Conversely, for 50 known locations we
observe a circular structure avoid the center of the map. This can
be explained by how the partitions of the network were mapped
to the ground truth partitions. For zero and ten known locations,
it appears that the top-left and bottom-right regions have been
confused, but the top-right and bottom-left regions were mapped
correctly. For the three known location case, it appears that all
regions were diagonally confused, and for the case of having 50
known locations, there was a circular confusion between quadrants
of the synthetic map. Overall, we see a large error for any number
of known locations, even though sometimes the algorithm was able
to correctly match entire partitions. We observe similar patterns for
the Graph Drawing Algorithm, as shown in Figures 4m-4t. In some
of the cases, the Graph Drawing Algorithm confused entire regions,
either diagonally or circularly, leading to large errors. However,
in the cases with many known locations, Figures 4m and 4t, we
observe, consistent with the quantitative results in Table 3, that
the matching error is vastly reduced. We also see that the Graph
Drawing Algorithm with 50 known locations yields the best result
overall, which is also consistent with the quantitative results. We
note that the optimal matching and the greedy matching yield very
similar results. This is expected, as both algorithm start with the
same newly generated locations, and they only differ in the heuris-
tic to map new locations to ground truth locations. It seems that
the optimal approach yields a slight visible matching improvement,

particularly in the cases with ten and 50 known locations, but the
differences are rather subtle. Finally, Figures 4w-4z show the result
of the Spatial Label Propagation Algorithm. We observe that this
algorithm yields the best results with three and ten known loca-
tions, particularly avoiding any systematic error that mismatches
entire regions. But compared to the Virginia Facebook dataset, the
differences are not as distinctive.

5.4 Runtime Analysis
Figure 5 describes the runtime for each algorithm for three popula-
tions levels and 50 known locations with the Geosocial Erdős-Rényi
network. Each runtime was averaged over 30 trials and the results
are displayed on a log scale. As shown in Figure 5, the Partitioning-
Based algorithm is the longest to run by far on all population levels.
The optimal and greedy versions of the Graph-Drawing algorithm
are the next slowest, but they are still substantially faster than the
Partitioning-Based Algorithm. The Greedy algorithm is the fastest,
but both versions of the Spatial Label Propagation Approach are
not considerably slower.

6 CONCLUSIONS
This work demonstrates that geosocial networks can be leveraged
to estimate users’ home locations even when direct location infor-
mation is withheld. We present and evaluate four algorithms for
estimating such links using only social network structure and a
sparse set of known user-location anchors. Empirical results on
real-world data from VA, USA, reveal that these methods achieve
accurate location inference even when only a moderate number of
user locations are known. We find that the Spatial Label Propaga-
tion Optimal algorithm outperforms all other algorithms in most
cases. However, the Graph Drawing Optimal algorithm performs
best for smaller populations, as shown in Table 3, where Graph
Drawing Optimal outperformed Spatial Label Propagation Opti-
mal for populations of 100 vertices. For cases with zero known
locations, where Spatial Label Propagation is not applicable, the
Partitioning-Based Algorithm and Greedy Algorithm generate the
lowest average distance from assigned location to correct location.
Our findings underscore both the utility of such techniques for
spatial analysis and their implications for user privacy.
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