
RODGEN: An Interactive Interface for Road Network Generation
Claudia Perez Martinez

Johannes Gutenberg University
Mainz, Germany

cperezma@students.uni-mainz.de

Panagiotis Bouros
Johannes Gutenberg University

Mainz, Germany
bouros@uni-mainz.de

Theodoros Chondrogiannis
University of Konstanz, Germany
theodoros.chondrogiannis@uni.kn

ABSTRACT
We present RODGEN, an interactive, graphical user interface for
generating road networks that adopts the growth-based model. The
first step in the generation process is to construct the backbone of
the network by either choosing between a grid-based and a ring-
based predefined topology or allowing the users to define a custom
one. The backbone divides the space into a number of areas, called
neighborhoods. The user can populate neighborhoods either by
importing existing road networks or adding roads by hand. Besides
generating road networks, our interface also provides a platform
for analysis. For this purpose, we employ a general-purpose graph
analytics library, which allows the users to compute graph statistics,
perform connectivity analysis and execute basic routing tasks.

CCS CONCEPTS
• Human-centered computing→ Graphical user interfaces;
Graph drawings; • Information systems → Geographic infor-
mation systems.

KEYWORDS
Road networks, graphs, generator, user interface
ACM Reference Format:
Claudia Perez Martinez, Panagiotis Bouros, and Theodoros Chondrogiannis.
2022. RODGEN: An Interactive Interface for Road Network Generation. In
The 30th International Conference on Advances in Geographic Information
Systems (SIGSPATIAL ’22), November 1–4, 2022, Seattle, WA, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3557915.3560989

1 INTRODUCTION
Graphs are ubiquitous for modeling data. Road networks are an ex-
ample of using graphs to model road information and connections
e.g., between parts of a city. Several generators have been proposed
in the past for graphs, e.g., the random model [4], the small-world
model [18], the preferential attachment [1, 9] and the Kronecker
matrix multiplication [10], but generating road networks has re-
ceived less attention. Despite, the availability of real road networks
on the Web, e.g., extracted from the OpenStreetMap (OSM) project1
or uploaded on files repositories2, generated road networks can
find application in multiple scenarios:
1https://www.openstreetmap.org
2https://figshare.com/articles/dataset/Urban_Road_Network_Data/2061897,
http://www.diag.uniroma1.it/challenge9/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9529-8/22/11.
https://doi.org/10.1145/3557915.3560989

• Query processing. Synthetic road networks can be used for
benchmarking (e.g., [15]) the efficiency and the robustness of
routing algorithms, e.g., for shortest or fastest path queries.
An extensive performance comparison of the algorithms can
be conducted by studying the impact of parameters/factors
such as the network size and its topology.

• Digital entertainment. In digital entertainment industry,
game design and Virtual Reality require the generation of
realistic road networks, that mimic the characteristics and
the structure of real-world networks.

• Analytics. The generation of road networks is an important
task in transportation analysis for identifying significant
characteristics in networks [17].

Previous work. Procedural generative methods are among the
first techniques used for road network generation. Growth-based
models such as [2, 7] create an initial set of primary roads which
are then filled with secondary, to create city blocks. The authors
in [12] modelled road networks based on L-systems [13]; starting
from a single road segment they add more segments to grow a road
network, similar to growing a tree. In [3], an interactivemodel based
on tensor fields was proposed. These sensory fields serve as a guide
for the generation of the road network by taking into account the
terrain and population density. The user can interact in each step
of the process and perform high-level modeling operations, such
as adding, deleting and modifying roads. As points of criticism, the
above techniques employmultiple steps and parameters which need
to be carefully and finely tuned to obtain quality results. Further,
in many cases they offer little customization options and so, users
are often unable to control the types of roads being generated.

Deep generative models [14] that rely on neural networks, have
been also developed for road network generation. [6, 8, 11]. Street-
GAN [6] builds upon Generative Adversarial Networks (GANs) to
create realistic road networks, requiring as input, a real network,
e.g., extracted from OSM. RoadNetGAN [11] employs the network
in its graph form to feed the generator neural network. The gener-
ator learns the distribution of the network through random walks
and displacement attributes, and outputs sequences of nodes with
their spatial position. These sequences are then used to generate a
planar road network, with a structure similar to the original one.
As a point of criticism, deep generative methods do not usually
offer a graphical user interface and therefore do not allow direct vi-
sualization and interaction with the users. Nevertheless, we plan to
investigate how such methods can be incorporated in our interface.

Contributions. In this paper, we present RODGEN3, an interactive
graphical user interface for road network generation, which serves
a twofold mission. First, it allows users to graphically construct and
generate road networks. We build upon the concept of backbone

3https://rodgentool.github.io/

https://doi.org/10.1145/3557915.3560989
https://doi.org/10.1145/3557915.3560989


SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Perez Martinez et al.

(a) (b) (c)

Figure 1: Different types of backbone networks; (a) a 4 × 4
grid-based, (b) a ring-based of degree 2, and (c) a custom, user-
defined backbone.

networks or simply backbones previously used in [15], as collections
of primary roads (similarly to [2, 7]) that allow for fast traveling
between different parts of a city. The backbone essentially defines
the basic topology of the generated road network, dividing it into
a number of areas called neighborhoods. RODGEN offers different
options to the users for graphically constructing the backbone of a
road network, including two predefined types, and for populating
the inner network of each neighborhood, either by manually adding
roads or by importing existing networks from external sources. Be-
sides generating road networks, our interface also offers a platform
for executing a preliminary graph analysis. The goal is to under-
stand the nature and the structure of the generated network, which
offers an intuition how realistic the network is. In addition, our
interface can answer basic path-finding queries. For this purpose,
the interface communicates with our back-end where NetworkX4,
a general-purpose graph analytics Python library, is installed.

2 NETWORK GENERATION
In what follows, we detail the process of generating road networks,
presenting the key features and functionality of RODGEN.

Backbone construction. The process starts with the construction
of the backbone network. Our interface offers three options for
this purpose. As the first option, the user can choose between two
predefined types of backbones, named grid-based and ring-based,
which are inspired by real-world road networks such as the ones in
many US cities and in many European cities, e.g., Vienna, respec-
tively, Figures 1(a) and (b) exemplify these two types of predefined
backbones. For a grid-based backbone, the 𝑛 × 𝑚 granularity of the
grid is provided as a user-defined input parameter. The interface
then creates a backbone that contains 𝑛 ·𝑚 neighborhoods and
(𝑛 + 1) · (𝑚 + 1) road intersections. Figure 2 illustrates the construc-
tion screen of a 2 × 3 grid-based backbone. For the ring-based, the
user inputs the degree 𝛿 and the interface creates a backbone of
4 · (𝛿 − 1) + 1 neighborhoods and 4 · 𝛿 intersections. The second
option allows users to import an existing road network which will
serve as the backbone for the new. Currently, the user can import
the network from a .gr formatted file which contains the road
segments of the network as graph edges, along with a .co file that
contains the coordinates of the road intersections5. Alternatively,
this road network can be extracted from OSM; we exemplify this
extraction task in the next paragraph, when we discuss how to

4https://networkx.org
5Details on the format of these files in http://www.diag.uniroma1.it/challenge9/.

Figure 2: Creating a grid-based backbone network

populate neighborhoods. Lastly, the user can also define a custom
backbone by drawing a set of lines as the backbone roads, e.g., the
custom backbone in Figure 1(c). In this case, RODGEN automati-
cally creates an intersection for every pair of intersecting backbone
roads, rendering the backbone a planar network.

Managingneighborhoods. After constructing the backbone, ROD-
GEN automatically determines the set of contained neighborhoods
as closed polygons. Users maintain full control over this set, es-
sentially allowing them to modify the neighborhoods and hence,
adjust or expand the backbone at will. Specifically, existing neigh-
borhoods can be split or merged by adding or deleting backbone
roads, respectively, while entire new neighborhoods can be also
created. Under this premise, the user can start by constructing a
backbone of predefined type (e.g., a grid-based) and then alter its
topology resulting into a new custom backbone.

Every neighborhood can be populatedwith an inner network. For
this purpose, the same two options to import a backbone network,
are offered to the users. However, as a backbone already exists, the
user also needs to specify how the inner network of a neighborhood
is connected to the backbone. Figure 3 illustrates how to populate
the inner network of a neighborhood, using an OSM extract. As
the first step, the user navigates to the area of the map where
from the road network should be extracted (Figure 3(a)). In the
second step (Figure 3(b)), the user can specify the dimensions (in
meters) of the entire neighborhood; the numbers are initially set
according to the dimensions of the extracted network from OSM.
In addition, the user can specify how many connections to the
backbone should be created on each neighborhood side. These
connections are automatically materialized as new, bi-directional
road segments from the closest intersections of the inner network to
the backbone roads on each side. To ensure that the inner network
is strongly connected to the backbone, one connection is created by
default. Finally, users can also modify the positioning of the inner
network inside the neighborhood. Figure 3(c) shows the network
after populating one of its neighborhoods.

Managing roads. RODGEN distinguishes between two types of
roads, namely backbone and inner network roads. The user is al-
lowed to add and delete roads of both types. In case of backbone



RODGEN: An Interactive Interface for Road Network Generation SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

(a) (b) (c)

Figure 3: Populating a neighborhood from the backbone in Figure 1(c).

roads, such modifications also affect the neighborhoods of the net-
work and therefore, its topology. It is also possible to modify the
characteristics of a road (both backbone and inner); specifically, its
direction, the speed limit and its class. For the latter, we consider
the classes defined in OSM6. Figure 2 shows the characteristics of
the roads included in the 2 × 3 grid-based backbone. By default,
backbone roads are bi-directional roads of motorway class, but the
user can modify these characteristics either collectively for all back-
bone roads in the screen of Figure 2 or by clicking on a road in the
main screen of the interface.

Coordinates system. For visualizing the generated network, ROD-
GEN defines a Cartesian two-dimensional coordinates system. The
user can expand or shrink the extent of the network in this two-
dimensional space by specifying the dimensions of the contained
neighborhoods and the length of the contained roads. The coordi-
nates system also models the geometry of the roads as lines; the
user can decide whether only road intersections or all road points
are shown. Finally, when an existing network is imported from an
external source (i.e., to serve as backbone or to populate a neigh-
borhood), the interface automatically transforms the coordinates
of its intersections to the underlying coordinates system.

3 NETWORK ANALYSIS
We now switch our focus to the analysis tasks. For this purpose,
RODGEN connects to the back-end via Django7, and passes the
generated road network as input to the NetworkX methods.

Statistics and analysis. The goal of our analysis is to compute
key graph characteristics of the generated network in an effort to
understand howwell the network mimics real-world road networks.
For this purpose, we compute the degree distribution of the road
intersections, the diameter of the network and its clustering co-
efficient. In addition, we check whether the network is planar and
conduct a connectivity analysis. Figure 4(a) displays the results
of our analysis for the ring-based road network in Figure 4(b). As
expected in a road network, the degree of the road intersections
does not exceed 8, which corresponds to the case of connecting 4
bi-directional roads. We also observe that the network is planar and

6https://wiki.openstreetmap.org/wiki/Key:highway
7https://www.djangoproject.com

(a)

(b)

Figure 4: Network analysis: (a) the results of our network
analysis, (b) details on connectivity analysis

exhibits a low clustering coefficient, also typical for road networks.
In this particular example, the generated network is weakly but
not strongly connected. In such a case, the interface informs on the
number of strongly connected components identified.



SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Perez Martinez et al.

Connectivity analysis. If the generated road network is not strongly
connected, by clicking on the "Show Components" button in Fig-
ure 4(a), the user returns to the main screen of the interface where
all strongly connected components are now highlighted. Figure 4(b)
illustrates the results of the connectivity analysis. The two com-
ponents are colored in green and yellow. In addition, the interface
colors in red the road segments responsible for breaking the strong
connectivity property. Under this premise, the user can either mod-
ify the direction of these segments or add new roads, in order to
ensure that the final generated graph is strongly connected.

Path-finding. Finally, users can use the generated road network to
test path-finding algorithms. Figure 5 illustrates the computation of
the shortest (in blue color) and the fasted path (in beige) between
two neighborhoods of the network. For the fastest path, we assume
travelling at themaximum allowed speed on each road segment. The
figure exemplifies the impact of the backbone network. Travelling
longer on the backbone roads which typically have higher speed
limits, usually reduces the total travel time while travelling through
the neighborhoods usually results in reducing the total distance.

4 DEMONSTRATION SCENARIOS
We plan to demonstrate the creation of networks and the analysis
platform of the interface. For this purpose, we will use different
types of backbones and populate the inner network of the defined
neighborhoods, e.g., by extracting networks from OSM. The atten-
dees will be also able to interact with the interface by modifying
roads and neighborhoods, and to use the project managing and
export (to .gr and .co files) features. Regarding the analysis tasks,
besides computing the statistics of the generated road network, we
will elaborate on how to deal with strongly disconnected networks,
e.g., by adding new roads or altering existing. Lastly, the attendees
will be also to use the path-finding tasks to study the impact of
different types of backbone topologies.

5 CONCLUSIONS
We presented an interactive, graphical user interface for generating
road networks. RODGEN also offers a platform for analysis tasks to
determine graph characteristics of the network and for basic path-
finding, i.e., shortest and fastest path computation. In the future,
we intend to extend our work towards multiple directions. First, we
plan to further investigate how realistic are the generated networks.
For this purpose, we will consider additional graph statistics (e.g.,
the highway dimension) and similarity measures for comparing
generated networks to a repository of existing real road networks.
An interesting idea for the latter is to study the effectiveness of
path-finding techniques specialized for road networks, e.g., the
contraction hierarchies in [5]. Moreover, we plan to enrich the
generation process by including additional types of predefined
backbone topologies, considering deep generative models, e.g., for
populating the inner network of a neighborhood, and allowing user
to define meta-data for roads and nodes. Finally, we also intend to
incorporate additional functionality by integrating external tools,
e.g., the CityFlow [19] for traffic generation or CASPER [16] for
evacuation planning.

Figure 5: Computing shortest (in blue) and fastest path (in
beige); shortest path has a length of 3.15 km and 3mins travel
time, fastest path has 4.02 km and 2 mins, respectively.

ACKNOWLEDGMENTS
Partially supported byGrant No. CH 2464/1-1 of Deutsche Forschungs-
gemeinschaft (DFG). Panagiotis Bouros is a Carl-Zeiss Stiftungspro-
fessor for “Big Data: In-Memory Databases and Data Analytics”.

REFERENCES
[1] Albert-Laszlo Barabasi and Reka Albert. 1999. Emergence of Scaling in Random

Networks. Science 286, 5439 (1999), 509–512.
[2] Jan Benes, Alexander Wilkie, and Jaroslav Krivánek. 2014. Procedural Modelling

of Urban Road Networks. Comput. Graph. Forum 33, 6 (2014), 132–142.
[3] Guoning Chen, Gregory Esch, Peter Wonka, Pascal Müller, and Eugene Zhang.

2008. Interactive procedural street modeling. ACM Trans. Graph. 27, 3 (2008).
[4] Paul Erdos and Alfred Renyi. 1960. On the evolution of random graphs. Publ.

Math. Inst. Hungary. Acad. Sci. 5 (1960), 17–61.
[5] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008.

Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Net-
works. In WEA. 319–333.

[6] Stefan Hartmann, Michael Weinmann, Raoul Wessel, and Reinhard Klein. 2017.
StreetGAN: Towards Road Network Synthesis with Generative Adversarial Net-
works. In WSCG. 133–142.

[7] George Kelly and Hugh McCabe. 2007. Citygen: An Interactive System for
Procedural City Generation. In GDTW. 8–16.

[8] Lin Ziwen Kelvin and Anand Bhojan. 2020. Procedural Generation of Roads with
Conditional Generative Adversarial Networks. In ACM SIGGRAPH. 12:1–12:2.

[9] JonM. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and An-
drew Tomkins. 1999. The Web as a Graph: Measurements, Models, and Methods.
In COCOON. 1–17.

[10] Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, and Christos Faloutsos.
2005. Realistic, Mathematically Tractable Graph Generation and Evolution, Using
Kronecker Multiplication. In PKDD. 133–145.

[11] Takashi Owaki and Takashi Machida. 2020. RoadNetGAN: Generating Road
Networks in Planar Graph Representation. In ICONIP. 535–543.

[12] Yoav I. H. Parish and Pascal Müller. 2001. Procedural modeling of cities. In ACM
SIGGRAPH. 301–308.

[13] Przemyslaw Prusinkiewicz andAristid Lindenmayer. 1990. The algorithmic beauty
of plants. Springer.

[14] Lars Ruthotto and Eldad Haber. 2021. An Introduction to Deep Generative
Modeling. CoRR abs/2103.05180 (2021). https://arxiv.org/abs/2103.05180

[15] Dimitris Sacharidis and Panagiotis Bouros. 2013. Routing directions: keeping it
fast and simple. In ACM SIGSPATIAL. 164–173.

[16] Kaveh Shahabi and John P. Wilson. 2014. CASPER: Intelligent capacity-aware
evacuation routing. Comput. Environ. Urban Syst. 46 (2014), 12–24.

[17] Philippe Y. R. Sohouenou, Panayotis Christidis, Aris Christodoulou, Luis A. C.
Neves, and Davide Lo Presti. 2020. Using a random road graph model to under-
stand road networks robustness to link failures. Int. J. Crit. Infrastructure Prot. 29
(2020), 100353.

[18] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-
world’ networks. Nature 393, 6684 (1998), 440–442.

[19] Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou,
Weinan Zhang, Yong Yu, Haiming Jin, and Zhenhui Li. 2019. CityFlow: A Multi-
Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario.
In ACM WWW. 3620–3624.

https://arxiv.org/abs/2103.05180

	Abstract
	1 Introduction
	2 Network Generation
	3 Network Analysis
	4 Demonstration Scenarios
	5 Conclusions
	Acknowledgments
	References

