
Most Diverse Near-Shortest Paths
Christian Häcker

Johannes Gutenberg University Mainz, Germany

chaecker@students.uni-mainz.de

Panagiotis Bouros

Johannes Gutenberg University Mainz, Germany

bouros@uni-mainz.de

Theodoros Chondrogiannis

University of Konstanz, Germany

theodoros.chondrogiannis@uni.kn

Ernst Althaus

Johannes Gutenberg University Mainz, Germany

ernst.althaus@uni-mainz.de

ABSTRACT
Computing the shortest path in a road network is a fundamental

problem that has attracted lots of attention. However, in many

real-world scenarios, determining solely the shortest path is not

enough as users want to have additional, alternative ways of reach-

ing their destination. In this paper, we investigate a novel variant

of alternative routing, termed the 𝑘-Most Diverse Near-Shortest

Paths (𝑘MDNSP). In contrast to previous work, 𝑘MDNSP aims at

maximizing the diversity of the recommended paths, while bound-

ing their length based on a user-defined constraint. Our theoretical

analysis proves the 𝑁𝑃-hardness of the problem at hand. To com-

pute an exact solution to 𝑘MDNSP, we present an algorithm which

iterates over all paths that abide by the length constraint and gen-

erates 𝑘-subsets of them as candidate results. Furthermore, in order

to achieve scalability, we also design three heuristic algorithms that

trade the diversity of the result for performance. Our experimental

analysis compares all proposed algorithms in terms of their runtime

and the quality of the recommended paths.

CCS CONCEPTS
• Information systems→ Geographic information systems;
• Mathematics of computing→ Graph algorithms.

KEYWORDS
Alternative routing, Route planning, Path similarity, Near-shortest

paths, Path diversification

ACM Reference Format:
Christian Häcker, Panagiotis Bouros, Theodoros Chondrogiannis, and Ernst

Althaus. 2021. Most Diverse Near-Shortest Paths. In 29th International Con-
ference on Advances in Geographic Information Systems (SIGSPATIAL ’21),
November 2–5, 2021, Beijing, China. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3474717.3483955

1 INTRODUCTION
Shortest path computation is a fundamental problem in road net-

works where the length of a path captures, e.g., the overall covered

distance or the travel time. In many real-life scenarios though, rec-

ommending solely the shortest path is not enough. Contemporary

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8664-7/21/11.

https://doi.org/10.1145/3474717.3483955

Figure 1: Motivation example

route planning and navigation services recommend multiple and

diverse paths that might be longer than the shortest path, but have

other desirable properties, e.g., less traffic congestion. Another sce-

nario arises in emergency situations such as natural disasters or

terrorist attacks, where dissimilar evacuation plans need to be deter-

mined. To this end, various approaches have been proposed in the

past to determine a set of alternative or diverse paths. The majority

of these approaches consider two key factors, namely the dissimi-
larity and the length of the recommended paths. The length is used

to define a cost for the set of recommended paths that has to be

minimized [11, 12, 24], while dissimilarity is treated as a constraint

under a user-defined threshold, e.g., the recommended paths must

be at least 50% pairwise dissimilar. For this purpose, a number of

(dis)similarity measures can be considered [24].

We observe two important shortcomings in existing works. First,

expecting the user to properly define a dissimilarity threshold is

in most cases counter intuitive. Even if the users are aware of the

path similarity measure used, it would be hard to understand the

semantics of a 50% threshold for example, or the difference to a 40%

one. Second, to abide by the dissimilarity constraint, a methodmight

end up recommending paths that are too long. For instance, Figure 1

shows three paths between Zurich and St. Gallen in Switzerland

and their length in terms of travel time. Assume that only two

of these paths will be displayed to the user. In scenarios such as

routing electric vehicles, where the recommended paths need to

abide by energy consumption constraints, a result containing the

black (solid line) and the blue path (dashed line) is preferred over

a result containing the black and the red path (dotted line). While

the black and the red path are clearly dissimilar, the red path is too

long in comparison to the other alternatives.

https://doi.org/10.1145/3474717.3483955
https://doi.org/10.1145/3474717.3483955

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Christian Häcker, Panagiotis Bouros, Theodoros Chondrogiannis, and Ernst Althaus

In view of the aforementioned shortcomings, we introduce in

this paper a novel variant of alternative routing, termed the 𝑘-Most
Diverse Near-Shortest Paths (𝑘MDNSP) problem. First, we consider

path length under a user-defined constraint, i.e., the user requests

the length of the recommended paths not to exceed a given thresh-

old. Such a length constraint allows us to guarantee the quality of

the result, and can be easily defined from a user perspective, e.g.,

with respect to the shortest path. This path-finding task is known

as the near-shortest path problem [6, 7]. Second, we consider path

dissimilarity as part of the optimization objective, i.e., to recom-

mend the set of paths with the highest diversity, defined as the

lowest pairwise dissimilarity among the recommended paths. Note

that our problem bears some resemblance to the well-studied prob-

lem of result diversification [15, 29–31]. However, typical result

diversification methods are not applicable in the context of routing

problems. The key difference is that these methods expect the entire

space of the objects to be given in advance. For routing problems,

precomputing and storing all possible paths between every pair of

nodes is unrealistic, even for small networks.

The contributions of this work can be summarized as follows:

• We introduce the problem of identifying the 𝑘-Most Diverse
Near-Shortest Paths (𝑘MDNSP) as a novel instance of alter-

native routing (Section 3).

• We conduct a theoretical analysis to prove the hardness of

the problem at hand; specifically, for 𝑘 = 2, 𝑘MDNSP is

weakly 𝑁𝑃-hard, while for arbitrary values of 𝑘 , the problem

is strongly 𝑁𝑃-hard (Section 3).

• We investigate the exact computation of𝑘MDNSP.We present

the 𝐸𝑋𝐴𝐶𝑇 algorithm which first computes the set of all

near-shortest paths, and then generates 𝑘-subsets of these

paths using a binomial tree [20] while pruning unpromising

subsets (Section 4).

• As 𝐸𝑋𝐴𝐶𝑇 is not applicable to real-world networks due

to the prohibitively large number of near-shortest paths,

we design the 𝑆𝑆𝑉𝑃 and 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 heuristic algorithms

which build upon the concepts of simple single-via paths and
penalty-based routing, respectively, to reduce the number of

examined paths (Sections 5.1– 5.2).

• Furthermore, we devise an additional heuristic approach that

incrementally constructs the result set, completely avoiding

the generation of 𝑘-subset candidates performed by both

𝑆𝑆𝑉𝑃 and 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 (Section 5.3).

In Section 7, we present the results of our extensive experimental

analysis on real-world road networks. Our tests showed that the

computation of 𝑘MDNSP using 𝐸𝑋𝐴𝐶𝑇 is not practical even for

small networks, while 𝐷𝐼𝑅𝐸𝐶𝑇 and 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 are able to scale

to large networks, but with different properties. 𝐷𝐼𝑅𝐸𝐶𝑇 trades

the result quality for performance while 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 aims at recom-

mending the most diverse set of paths, possible. Finally, concluding

remarks and directions for future work are given in Section 8.

2 RELATEDWORK
In what follows, we overview existing works that tackle alterna-

tive routing from different angles. Note that a recent qualitative

comparison of alternative routing definitions can be found in [23].

Liu et al. [24] introduced the 𝑘-Dissimilar Paths with Minimum
Collective Length (𝑘DPwML) problem, which was further investi-

gated in [11]. A 𝑘DPwML query computes the set of 𝑘 sufficiently

dissimilar paths w.r.t. a similarity threshold 𝜃 , that exhibits the

lowest collective path length among all sets of 𝑘 sufficiently dis-

similar paths. Another formal definition of alternative routing is

the 𝑘-Shortest Path with Limited Overlap (𝑘SPwLO) problem [9]. In

contrast to the 𝑘DPwML which aims at minimizing the collective

length of the result paths, a 𝑘SPwLO query aims at computing dis-

similar paths while minimizing the length of each subsequent result.

Since both problems are hard, i.e., 𝑘DPwML is strongly 𝑁𝑃-hard

and 𝑘SPwLO is weakly 𝑁𝑃-hard, various heuristic algorithms have

been proposed [10–12]. In contrast to our work, both 𝑘DPwML

and 𝑘SPwLO aim at optimizing either the collective or the individ-

ual length of the alternative paths, and treat path similarity as a

constraint, i.e., a user-defined threshold is required.

To the best of our knowledge, the only existing work that treats

path similarity as an optimization criterion is by Cheng et al. [8].

Specifically, this work tackles the problem of finding k-Diversified
Shortest Paths, i.e., a set of 𝑘 simple paths from a source to a target

node such that (1) the collective length of the paths in the result

set is minimum, and (2) the similarity of the paths is minimum.

However, this problem definition comes with two important short-

comings. First, since both path length and similarity are used as

optimization criteria, it is possible that the recommended paths

are either too long (minimizing similarity) or too similar (mini-

mizing length). Second, similar to other approaches that involve

multi-criteria optimization [13, 21, 26], the k-Diversified Shortest
Paths problem may not have a unique solution. Besides incurring

a high computational cost, the final result is determined in a post-

processing phase where the trade-off between the total length of

the paths and the diversity of the result is considered.

Apart from the above approaches, various methods adopt an iter-

ative approach to compute alternative paths. For instance, penalty-

based methods [3, 8, 18, 28] first introduce a penalty on the weights

of the edges and then compute the paths by repeatedly running a

shortest path algorithm on the input road network. More specifi-

cally, before each run, the weights of the edges on already computed

paths are increased by a fixed value (penalty) thus prioritizing the

expansion of edges that are not on those paths. In Section 5, we

discuss how a penalty-based approach can be used for 𝑘MDNSP.

In the same context, Jeong et al. [17] presented an approach to

compute alternative paths by imposing a limit on both the length

and the similarity of paths. At each round, the proposed algorithm

alters the last path added to the tentative result set to obtain a set of

candidate paths, and adds to the result the most dissimilar path to

the already found ones. Peng at al. [27] proposed a similar method

to compute hop-constrained dissimilar paths in web graphs.

Another approach for alternative routing is to first compute a

large set of candidate paths and then evaluate these paths with

respect to some predefined objective criteria to determine the final

result. The Plateau method [1, 22] builds two shortest path trees,

one from the source and one from the target, and looks for paths

that appear in both trees simultaneously, termed plateaus. A similar

idea is formally captured by the alternative graph, i.e., a subgraph

of the original network that contains many promising alternative

paths [4]. Abraham et al. [2] introduced the notion of single-via

Most Diverse Near-Shortest Paths SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

paths. Given a source 𝑠 and a target 𝑡 , the single-via path of a node 𝑛

is defined by the concatenation of the shortest path from 𝑠 to 𝑛 and

the shortest path from 𝑛 to 𝑡 . The authors also propose to evaluate

each single-via path against a set of user-defined constraints, i.e.,

length, local optimality and stretch. In Section 5.1, we present how

𝑘MDNSP can benefit from an extension to the single-via paths [11].

Last, there also exist methods that, in contrast to our work, utilize

additional information about the network to recommend paths that

can be seen as alternative routes. For instance, pareto-optimal paths

or the route skyline [13, 21, 26] can be directly seen as alternative

routes or can be further examined in a post-processing phase to

provide the final result.

3 NOTATION AND PROBLEM DEFINITION
We model a road network 𝐺 = (𝑁, 𝐸) as a directed weighted graph

with a set of nodes 𝑁 and a set of edges 𝐸 ⊆ 𝑁 ×𝑁 . Every edge 𝑒 =

(𝑛𝑖 , 𝑛 𝑗) ∈ 𝐸 is assigned a positive weight𝑤 (𝑒) or𝑤 (𝑛𝑖 , 𝑛 𝑗), which
captures the cost of moving from node 𝑛𝑖 to node 𝑛 𝑗 . A (simple)

path 𝑝 (𝑠{𝑡) from a source node 𝑠 to a target 𝑡 is a connected and

cycle-free sequence of edges ⟨(𝑠, 𝑛𝑖), . . . , (𝑛 𝑗 , 𝑡)⟩. The length ℓ (𝑝)
of a path 𝑝 is the sum of the weights of all contained edges, i.e.,

ℓ (𝑝) =
∑

∀(𝑛𝑖 ,𝑛 𝑗) ∈𝑝
𝑤 (𝑛𝑖 , 𝑛 𝑗) (1)

The shortest path 𝑝𝑠 (𝑠{𝑡) has the lowest length among all paths

from node 𝑠 to 𝑡 . Further, a path 𝑝 (𝑠{𝑡) is called near-shortest if its
length is within a 1 + 𝜖 factor of the 𝑝𝑠 (𝑠{𝑡) shortest path length,

i.e., ℓ (𝑝) ≤ (1 + 𝜖) · ℓ (𝑝𝑠), where 𝜖 ≥ 0 is a user-defined parameter.

Let 𝑝 , 𝑝 ′ be two paths from node 𝑠 to 𝑡 . We define their dissimi-

larity based on the Jaccard coefficient (similar to [11, 24]), i.e.,

𝐷𝑖𝑠 (𝑝, 𝑝 ′) = 1 −
∑
∀(𝑛𝑖 ,𝑛 𝑗) ∈𝑝∩𝑝′ 𝑤 (𝑛𝑖 , 𝑛 𝑗)∑
∀(𝑛𝑖 ,𝑛 𝑗) ∈𝑝∪𝑝′ 𝑤 (𝑛𝑖 , 𝑛 𝑗)

(2)

We also define the diversity of a set of paths 𝑃 as the lowest pairwise

dissimilarity among the contained paths, i.e.,

𝐷𝑖𝑣 (𝑃) = min

∀𝑝,𝑝′∈𝑃
𝐷𝑖𝑠 (𝑝, 𝑝 ′) (3)

We now formally define the problem of finding the most diverse
near-shortest paths.

Problem 1 (𝑘MDNSP). Given a road network𝐺 = (𝑁, 𝐸), a source
𝑠 and a target 𝑡 , both in 𝑁 , a requested number of paths 𝑘 , and a
length constraint threshold 𝜖 ≥ 0, find the 𝑃𝑘MDNSP

set of 𝑘 paths
from 𝑠 to 𝑡 , such that:
(A) all paths in 𝑃𝑘MDNSP

are near-shortest, with respect to the shortest
path 𝑝𝑠 (𝑠{𝑡), i.e.,

∀𝑝 ∈ 𝑃𝑘MDNSP : ℓ (𝑝) ≤ (1 + 𝜖) · ℓ (𝑝𝑠)
(B) 𝑃𝑘MDNSP

has the highest diversity among every subset of 𝑘 paths
𝑃𝐴 that satisfy Condition A, i.e.,

𝑃𝑘MDNSP = argmax

∀𝑃⊆𝑃𝐴
{𝐷𝑖𝑣 (𝑃)}, 𝑤𝑖𝑡ℎ |𝑃 | = 𝑘

Example 3.1. Consider the road network 𝐺 in Figure 2 and the

query𝑘MDNSP(𝐺, 𝑠, 𝑡, 𝑘=3, 𝜖=0.7). The 𝑝𝑠 (𝑠{𝑡) = ⟨(𝑠, 𝑛2), (𝑛2, 𝑡)⟩
shortest path has a length of 35; hence, the length of a recommended

near-shortest path cannot exceed the (1 + 𝜖) · ℓ (𝑝𝑠) = 59 thresh-

old. Besides 𝑝𝑠 , the paths that abide by this constraint are 𝑝1 =

𝑠

𝑛1

𝑛2

𝑛3

𝑛4

𝑡

10

15

50

25

6

15

20

20

30

10

Figure 2: Running example

⟨(𝑠, 𝑛2), (𝑛2, 𝑛4), (𝑛4, 𝑡)⟩ with ℓ (𝑝1) = 40, 𝑝2 = ⟨(𝑠, 𝑛1), (𝑛1, 𝑛3),
(𝑛3, 𝑡)⟩with ℓ (𝑝2) = 46, 𝑝3 = ⟨(𝑠, 𝑛1), (𝑛1, 𝑛3), (𝑛3, 𝑛4), (𝑛4, 𝑡)⟩with
ℓ (𝑝3) = 46 and 𝑝4 = ⟨(𝑠, 𝑛1), (𝑛1, 𝑛2), (𝑛2, 𝑡)⟩ with ℓ (𝑝4) = 55. We

apply Formulas 2 and 3 to compute the diversity of all distinct

sets that contain 𝑘 = 3 out of these paths. The answer to the

𝑘MDNSP query is 𝑃𝑘MDNSP
= {𝑝1, 𝑝2, 𝑝4} with 𝐷𝑖𝑣 (𝑃𝑘MDNSP

) =
min{𝐷𝑖𝑠 (𝑝1, 𝑝2), 𝐷𝑖𝑠 (𝑝1, 𝑝4), 𝐷𝑖𝑠 (𝑝2, 𝑝4)} = 0.89.

Finally, we elaborate on the complexity of the 𝑘MDNSP problem.

Theorem 3.2. The 𝑘MDNSP problem is weakly NP-hard for 𝑘 = 2

and strongly NP-hard if 𝑘 is part of the input.

Proof. To prove the first part of the theorem, we make a re-

duction from the Partition-Problem, a known weakly 𝑁𝑃-complete

problem. For the second part of the theorem, we make a reduc-

tion from the Disjoint-Path-Problem, a known strongly 𝑁𝑃-hard

problem. The full proof is available in the appendix. □

4 AN EXACT APPROACH
A naïve approach for 𝑘MDNSP would first construct all possible
paths from source 𝑠 to target 𝑡 and filter out those that violate Con-

dition A in Problem 1. Then, it would examine all possible 𝑘-subsets
of near-shortest paths to find the one that satisfies Condition B.

Such an approach is clearly impractical. In view of this, we present

an exact approach which directly computes the set of near-shortest

paths and efficiently generates only promising 𝑘-subsets.

4.1 The 𝐸𝑋𝐴𝐶𝑇 Algorithm
Algorithm 1 illustrates a high-level pseudocode of 𝐸𝑋𝐴𝐶𝑇 . The

algorithm invokes the GetNearShortestPaths function to com-

pute the set of all near-shortest paths 𝑃NSP from source 𝑠 to target

𝑡 with respect to threshold 𝜖 (cf. Section 4.2). Between Lines 3 to 7,

𝐸𝑋𝐴𝐶𝑇 iterates through the contents of 𝑃NSP; let 𝑝 be the current

near-shortest path. The first step is to compute the dissimilarities of

𝑝 to the rest of the paths in 𝑃NSP (Line 4). Then, the algorithm exam-

ines the 𝑘-subsets of 𝑃NSP that contain 𝑝 as candidate solutions to

Problem 1. Their diversity is then compared to the diversity of cur-

rent 𝑃𝑘MDNSP
and the result set is updated, if necessary (Lines 5-7).

We elaborate on the computation of these 𝑘-subsets in Section 4.3.

Finally, the result set 𝑃𝑘MDNSP
is returned in Line 8.

4.2 Computing Near-Shortest Paths
As 𝐸𝑋𝐴𝐶𝑇 does not examine the near-shortest paths in any par-

ticular order, we build upon the path enumeration method from

[6, 7] for their computation. Function 1 details the pseudocode of

GetNearShortestPaths. The key idea is to traverse the network

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Christian Häcker, Panagiotis Bouros, Theodoros Chondrogiannis, and Ernst Althaus

ALGORITHM 1: 𝐸𝑋𝐴𝐶𝑇
Inputs : road network𝐺 = (𝑁, 𝐸) , source node 𝑠 , target node 𝑡 ,

number of results 𝑘 , threshold 𝜖

Variables : set of near-shortest paths 𝑃NSP
Output : set 𝑃𝑘MDNSP

1 𝑃𝑘MDNSP ← ∅;
2 𝑃NSP ← GetNearShortestPaths(𝐺, 𝑠, 𝑡, 𝜖) ;
3 foreach 𝑝 in 𝑃NSP do
4 compute 𝐷𝑖𝑠 (𝑝, 𝑝′) , ∀𝑝′ ∈ 𝑃NSP ; ⊲ dissimilarities of 𝑝

5 foreach 𝑃 ⊆𝑃NSP with 𝑝 ∈ 𝑃 and |𝑃 | = 𝑘 do
6 if 𝐷𝑖𝑣 (𝑃) > 𝐷𝑖𝑣(𝑃𝑘MDNSP) then
7 𝑃𝑘MDNSP ← 𝑃 ; ⊲ update result set

8 return 𝑃𝑘MDNSP ;

FUNCTION 1: GetNearShortestPaths
Inputs : road network𝐺 = (𝑁, 𝐸) , source node 𝑠 , target node 𝑡 ,

threshold 𝜖

Variables :current path as stack 𝑆 , shortest path tree𝑇𝑁{𝑡 from all

nodes in 𝑁 to 𝑡 , maximum allowed path length L𝑚𝑎𝑥

Output : set 𝑃NSP of all near-shortest paths from 𝑠 to 𝑡

1 𝑇𝑁{𝑡 ← ComputeShortestPathsRev(𝐺, 𝑡) ; ⊲ all sp’s to 𝑡

2 𝑝𝑠 (𝑠{𝑡) ← GetShortestPath(𝑇𝑁{𝑡 , 𝑠) ;
3 L𝑚𝑎𝑥 ← (1 + 𝜖) · ℓ (𝑝𝑠 (𝑠{𝑡)) ; ⊲ set length constraint

4 𝑃NSP ← {𝑝𝑠 }; ⊲ initialize result set with 𝑝𝑠
5 𝑆.push(𝑠) ; ⊲ initialize current path

6 mark 𝑠 as 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ; ⊲ to avoid cycles

7 while 𝑆 is not empty do
8 𝑛 ← 𝑆.top() ; ⊲ last node in current path

9 (𝑛,𝑛′) ← GetNextEdge(𝐺,𝑛) ;
10 if (𝑛,𝑛′) ≠ 𝑛𝑢𝑙𝑙 then
11 𝑝𝑠 (𝑛′{𝑡) ← GetShortestPath(𝑇𝑁{𝑡 , 𝑛

′) ;
12 if 𝑛′ is 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and ℓ (𝑆) + 𝑤 (𝑛,𝑛′) + ℓ (𝑝𝑠 (𝑛′{𝑡)) ≤ L𝑚𝑎𝑥

then
13 if 𝑛′ = 𝑡 then ⊲ new near-shortest path found
14 add 𝑆

⋃{𝑡 } to 𝑃NSP ;
15 else
16 𝑆.push(𝑛′) ; ⊲ extend current path

17 mark 𝑛′ as 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ;

18 else
19 𝑆.pop(𝑛) ; ⊲ all edges of 𝑛 examined

20 mark 𝑛 as 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ; ⊲ reset 𝑛’s status

21 return 𝑃NSP ;

in a depth-first fashion, filtering out paths that violate the near-

shortest path constraint. At each stage, a single path is maintained

by the function inside stack 𝑆 , while every node in this path is

marked as 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (or 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑) to avoid cycles.

At each iteration in Lines 7–20, GetNearShortestPaths retrieves
the last node 𝑛 in the current path (i.e., the top of 𝑆) and considers

its next unused outgoing edge to extend the current path (Line 9). If

such an edge does not exist, i.e., 𝑛 does not have an outgoing edge

or all its edges are already considered, the node is removed from 𝑆

(Line 19). In addition, the status of 𝑛 is reset (Line 20), so that the

node and all its outgoing edges can be reused in future iterations.

Otherwise, assume that edge (𝑛, 𝑛′) is used to extend the current

path. Function GetNearShortestPaths checks two conditions in

Line 12 to complete this extension. First, to avoid cycles, node 𝑛′

must be marked as 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , i.e., 𝑆 should not currently contain

the node. Second, the length of new path to be created should not

exceed the maximum allowed length as defined based on the 𝜖

threshold, i.e., L𝑚𝑎𝑥 = (1 + 𝜖) · ℓ (𝑝𝑠 (𝑠{𝑡)). Following from previ-

ous work [7, 12], we further enhance this pruning by estimating a

lower bound for the length of every path which extends 𝑆
⋃{𝑛′} to

reach target 𝑡 . For this purpose, GetNearShortestPaths executes

in Line 1 a shortest path algorithm (e.g., Dijkstra’s algorithm [14])

that traverses the network starting from node 𝑡 considering the

direction of the edges reversed. The shortest path algorithm com-

putes all shortest paths 𝑝𝑠 (𝑛{𝑡) for every node 𝑛 ∈ 𝑁 (including

𝑝𝑠 (𝑠{𝑡)) and stores them in the shortest path tree 𝑇𝑁{𝑡 . With

𝑇𝑁{𝑡 , GetNearShortestPaths checks in Line 12 if the length of

the shortest extension of the new path 𝑆
⋃{𝑛′} to target 𝑡 would

be a near-shortest path. If both conditions in Line 12 are met, the

function either constructs the new path by pushing 𝑛′ to stack 𝑆

(Lines 16–17) or appends 𝑆
⋃{𝑡} to 𝑃NSP when 𝑛′ is in fact tar-

get 𝑡 . Otherwise, all possible extensions of 𝑆
⋃{𝑛′} to the target

would also violate the near-shortest path constraint, and thus,

GetNearShortestPaths ignores edge (𝑛, 𝑛′).

4.3 Generating Candidate 𝑘-Subsets
To generate candidate 𝑘-Subsets of paths, we employ a dynamic

programming scheme called “filling a rucksack” (or Algorithm 𝐹 for

simplicity), from [20]. Algorithm 𝐹 builds upon the concept of the

binomial tree and constructs path sets by reusing already generated

smaller subsets. More specifically, a binomial tree 𝑇 of height 𝑘 is

incrementally built to represent all subsets 𝑃 ⊆ 𝑃NSP of cardinality

|𝑃 | ≤ 𝑘 . For every near-shortest path 𝑝 examined by 𝐸𝑋𝐴𝐶𝑇 (Al-

gorithm 1, Line 3), Algorithm 𝐹 extends all existing subsets in 𝑇 of

cardinality up to 𝑘 − 1 by adding the new path. Essentially, a new

branch is attached to the root of the tree using an edge labeled by

𝑝 , and the subtree representing subsets of cardinality up to 𝑘 − 1 is
copied under this new branch.

We enhance the above expansion process using the following

pruning idea. Intuitively, when a new path 𝑝 is added to a subset

𝑃 , the diversity of the set can only decrease, i.e., 𝐷𝑖𝑣 (𝑃 ⋃{𝑝}) ≤
𝐷𝑖𝑣 (𝑃); this monotonicity directly follows from Formula 3 and the

definition of path set diversity. Therefore, when we copy the subtree

that represents all subsets of cardinality up to 𝑘 − 1 before adding 𝑝 ,
we use the diversity𝐷𝑖𝑣 (𝑃𝑘MDNSP

) of the current result set to prune
unpromising subsets, i.e., those with a diversity below or equal to

𝐷𝑖𝑣 (𝑃𝑘MDNSP
). Finally, to amplify the effect of this pruning, we

consider the subsets in the binomial tree in decreasing order of their

cardinality, i.e., starting with the (𝑘 − 1)-subsets. This examination

order allows us to faster improve the 𝐷𝑖𝑣 (𝑃𝑘MDNSP
) bound and

discard unpromising subsets earlier.

Example 4.1. Consider Figure 2. Without loss of generality, as-

sume that 𝐸𝑋𝐴𝐶𝑇 examines the near-shortest paths in the fol-

lowing order: 𝑝2 = ⟨(𝑠, 𝑛1), (𝑛1, 𝑛3), (𝑛3, 𝑡)⟩, 𝑝4 = ⟨(𝑠, 𝑛1), (𝑛1, 𝑛2),
(𝑛2, 𝑡)⟩, 𝑝3= ⟨(𝑠, 𝑛1), (𝑛1, 𝑛3), (𝑛3, 𝑛4), (𝑛4, 𝑡)⟩, 𝑝𝑠 = ⟨(𝑠, 𝑛2), (𝑛2, 𝑡)⟩,
and 𝑝1 = ⟨(𝑠, 𝑛2), (𝑛2, 𝑛4), (𝑛4, 𝑡)⟩. Figure 3 illustrates two stages in

the binomial tree construction; under each path subset, we show its

diversity. Note that the height of both trees is limited to 𝑘 = 3. The

tree at the top is constructed after examining the first three near-

shortest paths. Subset {𝑝3, 𝑝4, 𝑝2} contains exactly 𝑘 paths and thus,

acts as the current (tentative) solution with 𝐷𝑖𝑣 (𝑃𝑘MDNSP
) = 0.79.

In the next step, path 𝑝𝑠 is examined, which produces the bi-

nomial tree at the bottom. The bold lines indicate the new edges

Most Diverse Near-Shortest Paths SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

{𝑝4, 𝑝2 }
0.89

{𝑝3, 𝑝2 }
0.79

{𝑝3, 𝑝4 }
0.89

𝑝2 𝑝4 𝑝3

𝑝2

𝑝2 𝑝4𝑝2

{𝑝3, 𝑝4, 𝑝2 }
0.79

{𝑝4, 𝑝2 }
0.89

{𝑝3, 𝑝2 }
0.79

{𝑝3, 𝑝4 }
0.89

{𝑝𝑠 , 𝑝2 }
1.0

{𝑝𝑠 , 𝑝4 }
0.71

{𝑝𝑠 , 𝑝3 }
1.0

{𝑝3, 𝑝4, 𝑝2 }
0.79

{𝑝𝑠 , 𝑝4, 𝑝2 }
0.71

{𝑝𝑠 , 𝑝3, 𝑝2 }
0.79

{𝑝𝑠 , 𝑝3, 𝑝4 }
0.71

𝑝2 𝑝4 𝑝3

𝑝2

𝑝2 𝑝2 𝑝4

𝑝𝑠

𝑝2 𝑝4 𝑝3

𝑝2 𝑝4𝑝2

Figure 3: Binomial trees for subsets of pathswith cardinality
up to 𝑘 = 3 in our running example from Figure 2.

to be added for constructing subsets that include 𝑝𝑠 . In addition,

we color in red every pruned edge/subset, while a light gray color

indicates an edge/subset never constructed. We elaborate on these

cases. Subset {𝑝𝑠 , 𝑝3, 𝑝4} is constructed but pruned as its diversity

0.71 does not exceed 𝐷𝑖𝑣 (𝑃𝑘MDNSP
) = 0.79. In the same manner,

subset {𝑝𝑠 , 𝑝4} with diversity equal to 0.71 is pruned from fur-

ther extension, which also means that its {𝑝𝑠 , 𝑝4, 𝑝2} extension is

never constructed. Last, {𝑝3, 𝑝2} is pruned during the copy process

because its diversity does not exceed 𝐷𝑖𝑣 (𝑃𝑘MDNSP
), and so the

{𝑝𝑠 , 𝑝3, 𝑝2} subset is never constructed.

4.4 Complexity Analysis
Finally, we show that the worst-case running time of 𝐸𝑋𝐴𝐶𝑇 grows

more than exponentially. For the first phase, the algorithm enu-

merates all possible near-shortest paths. The total number of sim-

ple paths from source 𝑠 to target 𝑡 in a complete network 𝐺 is

|𝑃NSP | =
∑ |𝑁 |−2
𝑟=0

((|𝑁 |
𝑟

)
· 𝑟 !

)
. Notice that (|𝑁 | − 2)! ≤ |𝑃NSP | ≤

2
|𝑁 |−1 (|𝑁 | − 2)! holds in this case. In the worst case, all paths in𝐺

are near-shortest, i.e., if the weight of the edges adjacent to source

𝑠 is high, e.g.𝑊 , while the rest of the edges are short, e.g. 1. Un-

der this premise, the shortest path has length𝑊 and the longest

𝑊 + |𝑁 | − 1. For the second phase, 𝐸𝑋𝐴𝐶𝑇 to enumerate in the

worst case all subsets containing up to 𝑘 near-shortest paths, i.e.,(|𝑃NSP |
𝑘

)
subsets, where |𝑃NSP | is the number of near-shortest paths.

Overall, we have a worst-case running time between ((|𝑁 | − 2)!)𝑘
and (2 |𝑁 |−1 · (|𝑁 | − 2)!)𝑘 , resulting in a 2

Θ(𝑘 |𝑁 | log |𝑁 |)
complexity,

using 𝑛! ∈ 2Θ(𝑛 log𝑛)
.

5 HEURISTIC APPROACHES
Our complexity analysis in Section 4.4 showed that the cost of

𝐸𝑋𝐴𝐶𝑇 is prohibitively high due to the large number of near-

shortest paths; in real-world networks, we expect this number

to be exponential to the size of the network. In view of this, we

next present three heuristic algorithms which trade the quality of

the result set (i.e., the degree of diversity) for performance.

FUNCTION 2: GetNearShortestSSVPaths
Inputs : road network𝐺 = (𝑁, 𝐸) , source node 𝑠 , target node 𝑡 ,

threshold 𝜖

Variables : shortest path tree𝑇𝑠{𝑁 from 𝑠 to all nodes in 𝑁 , shortest

path tree𝑇𝑁{𝑡 from all nodes in 𝑁 to 𝑡 , maximum allowed

path length L𝑚𝑎𝑥

Output : set 𝑃NS-SSVP of near-shortest simple single-via paths from 𝑠 to

𝑡

1 𝑇𝑠{𝑁 ← ComputeShortestPaths(𝐺, 𝑠) ; ⊲ all sp’s from 𝑠

2 𝑇𝑁{𝑡 ← ComputeShortestPathsRev(𝐺, 𝑡) ; ⊲ all sp’s to 𝑡

3 𝑝𝑠 (𝑠{𝑡) ← GetShortestPath(𝑇𝑠{𝑁 , 𝑡) ;
4 L𝑚𝑎𝑥 = (1 + 𝜖) · ℓ (𝑝𝑠 (𝑠{𝑡)) ; ⊲ set length constraint

5 foreach 𝑛 ∈ 𝑁 \ {𝑠, 𝑡 } do
6 if 𝑛 not in 𝑝𝑠 then
7 𝑝𝑠 (𝑠{𝑛) ← GetShortestPath(𝑇𝑠{𝑁 , 𝑛) ;
8 𝑝𝑠 (𝑛{𝑡) ← GetShortestPath(𝑇𝑁{𝑡 , 𝑛) ;
9 𝑝𝑠𝑣 (𝑛) ← 𝑝𝑠 (𝑠{𝑛) ◦ 𝑝𝑠 (𝑛{𝑡) ; ⊲ 𝑛’s SVP

10 if 𝑝𝑠𝑣 (𝑛) is simple then
11 if ℓ (𝑝𝑠𝑣 (𝑛)) ≤ L𝑚𝑎𝑥 then
12 add 𝑝𝑠𝑣 (𝑛) to 𝑃NS-SSVP ; ⊲ 𝑝𝑠𝑠𝑣 (𝑛) found

13 else
14 𝐺1 ← 𝐺 without the nodes and the edges in 𝑝𝑠 (𝑠{𝑛) ;
15 𝐺2 ← 𝐺 without the nodes and the edges in 𝑝𝑠 (𝑛{𝑡) ;
16 𝑝1 ← 𝑝𝑠 (𝑠{𝑛) ◦ ComputeShortestPath(𝐺1, 𝑛, 𝑡) ;
17 𝑝2 ← ComputeShortestPath(𝐺2, 𝑠, 𝑛) ◦ 𝑝𝑠 (𝑛{𝑡) ;
18 if ℓ (𝑝1) ≤ L𝑚𝑎𝑥 then
19 add 𝑝1 to 𝑃NS-SSVP ;

20 if ℓ (𝑝2) ≤ L𝑚𝑎𝑥 then
21 add 𝑝2 to 𝑃NS-SSVP ;

22 return 𝑃NS-SSVP ;

5.1 The 𝑆𝑆𝑉𝑃 Algorithm
Our first heuristic algorithm builds upon the concept of the simple
single-via paths (simple SVP or SSVP, for short) introduced in [11],

extending the idea of single-via paths (SVP) from [2, 25]. In brief,

for each network node 𝑛 ∉ 𝑝𝑠 (𝑠{𝑡), the SSVP 𝑝𝑠𝑠𝑣 (𝑛) is identical
to SVP 𝑝𝑠𝑣 (𝑛), if the latter is simple. Otherwise, 𝑝𝑠𝑠𝑣 (𝑛) can be

constructed by concatenating either 𝑝𝑠 (𝑠{𝑛) with the shortest

path from 𝑛 to 𝑡 that visits no nodes in 𝑝𝑠 (𝑠{𝑛), or the shortest
path from 𝑠 to 𝑛 that visits no nodes in 𝑝𝑠 (𝑛{𝑡) with 𝑝𝑠 (𝑛{𝑡).

With SSVP’s, we can accelerate the construction of the 𝑃𝑘MDNSP

paths at the expense of not computing the exact solution to Prob-

lem 1. The 𝑆𝑆𝑉𝑃 heuristic algorithm captures this idea. Essentially,

the algorithm operates almost identically to 𝐸𝑋𝐴𝐶𝑇 . However, in-

stead of computing all near-shortest paths from source node 𝑠 to

target 𝑡 (set 𝑃NSP), 𝑆𝑆𝑉𝑃 computes all near-shortest simple single-

via paths that connect 𝑠 to 𝑡 (set 𝑃NS-SSVP). Note that by definition,

we have |𝑃NS-SSVP | << |𝑃NSP | and so the search space of 𝑆𝑆𝑉𝑃 is

significantly smaller compared to 𝐸𝑋𝐴𝐶𝑇 . As a result, the overall

cost of generating candidate 𝑘-subsets is also reduced.

Finally, we discuss the GetNearShortestSSVPaths function that
replaces GetNearShortestPaths in Algorithm 1 to construct the

𝑃NS-SSVP set. Function 2 illustrates its pseudocode. In Lines 1–2, the

function computes two shortest path trees. Tree 𝑇𝑁{𝑡 models the

shortest paths from all network nodes 𝑁 to target 𝑡 (similar to Func-

tion 1, Line 1) while𝑇𝑠{𝑁 , the paths from source 𝑠 to all nodes in 𝑁 .

At this point, the 𝑝𝑠 (𝑠{𝑡) shortest path is retrieved from either of

the trees, and the length constraint is set based onL𝑚𝑎𝑥 (Lines 3–4).

Then, in Lines 5–21, GetNearShortestSSVPaths examines the SVP

for all nodes 𝑛 ∈ 𝑁 \ {𝑠, 𝑡} not contained in the 𝑝𝑠 (𝑠{𝑡) shortest

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Christian Häcker, Panagiotis Bouros, Theodoros Chondrogiannis, and Ernst Althaus

path (Line 6). Every such 𝑝𝑠𝑣 (𝑛) path is efficiently constructed by

combining the𝑇𝑠{𝑁 and𝑇𝑁{𝑡 trees (Lines 7–9). If 𝑝𝑠𝑣 (𝑛) is simple

and its length does not violate the near-shortest path constraint then

a new near-shortest SSVP 𝑝𝑠𝑠𝑣 (𝑛) = 𝑝𝑠𝑣 (𝑛) is found (Lines 10–12).

However, if 𝑝𝑠𝑣 (𝑛) is not simple, GetNearShortestSSVPaths needs
to construct 𝑝𝑠𝑠𝑣 (𝑛) (Lines 14–21) as described in the beginning of

the subsection. For this purpose, GetNearShortestSSVPaths first

virtually constructs the necessary reduced networks 𝐺1,𝐺2 ⊆ 𝐺

(Lines 14–17) and then constructs near-shortest SSVP’s 𝑝1, 𝑝2 by

combining 𝑇𝑠{𝑁 or 𝑇𝑁{𝑡 with a shortest path computed on the

𝐺1 or 𝐺2 reduced network, respectively (Lines 18–19). To increase

the diversity of 𝑃NS-SSVP, we use both 𝑝1 and 𝑝2, as long as they

abide by the near-shortest path constraint.

Example 5.1. In our running example and the 𝑘MDNSP(𝐺, 𝑠, 𝑡,
𝑘 = 3, 𝜖 = 0.7) query, Function 2 constructs three distinct near-

shortest SSV paths, compared to the five computed by Function 1 in

𝐸𝑋𝐴𝐶𝑇 . The first path is 𝑝𝑠 = ⟨(𝑠, 𝑛2), (𝑛2, 𝑡)⟩ as the shortest path
is by definition an SSVP. In addition, the function will compute an

SSVP for each of the 𝑛1, 𝑛3, 𝑛4 nodes which are not contained in

𝑝𝑠 . Specifically, we have 𝑝𝑠𝑠𝑣 (𝑛1) = 𝑝𝑠 (𝑠{𝑛1) ◦ 𝑝𝑠 (𝑛1{𝑡) = 𝑝2,

𝑝𝑠𝑠𝑣 (𝑛3) = 𝑝𝑠 (𝑠{𝑛3) ◦𝑝𝑠 (𝑛3{𝑡) = 𝑝2 and 𝑝𝑠𝑠𝑣 (𝑛4) = 𝑝𝑠 (𝑠{𝑛4) ◦
𝑝𝑠 (𝑛4{𝑡) = 𝑝1. Overall, we have 𝑃NS-SSVP = {𝑝𝑠 , 𝑝1, 𝑝2}. Finally,
since |𝑃NS-SSVP | = 𝑘 , 𝑆𝑆𝑉𝑃 returns 𝑃NS-SSVP as the final result.

5.2 The 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 Algorithm
Our second heuristic algorithm builds upon the Iterative Penalty
Method (IPM) [18, 28]. Similar to IPM, our method consists of two

components: a function that computes shortest paths (but, extended

to check the near-shortest path constraint), and a mechanism that

penalizes edges on previously computed paths.

Designing an effective penalty mechanism is a challenging task.

On the one hand, a large penalty would typically achieve high path

dissimilarities but might prevent the computation of enough near-

shortest paths. On the other hand, a small penalty would allow

the computation of many near-shortest paths, but would also slow

down the query evaluation. In this work, similar to the common

practice, we adopt a multiplicative type of penalty. The penalized

weight of an edge 𝑒 is𝑤 ′(𝑒) = 𝑓 ·𝑤 (𝑒), where 𝑓 is the multiplicative

factor of the penalty. However, in contrast to previous works, the

value of 𝑓 is dynamically adjusted to assist the computation of at

least 𝑘 dissimilar near-shortest paths as fast as possible. Assuming

𝜖 ≤ 1, we define the following heuristic based on our tests:

𝑓 = 2 −𝑚 · 2 − (1 + 𝜖)
2

= 2 −𝑚 · 1 − 𝜖
2

(4)

where𝑚 ≥ 0 controls the penalty magnitude. Note that the penalty

is always applied on the original edge weights and so 𝑓 > 1 should

hold. Essentially, the semantics of our penalty mechanism are the

following. The value of 𝑚 is initially set to 0 but increases by 1

whenever our modified shortest path method fails to return a path.

Under this premise, 𝑓 is initialized to 2 (doubling the edge weights

is a common approach in bibliography [3]) but gradually decreases

to allow the computation of more near-shortest paths until 𝑓 ≤ 1.

Algorithm 2 illustrates the pseudocode of 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 . Initially,

the algorithm calls the GetNextNearShortestPath function to

compute shortest path 𝑝𝑠 (𝑠{𝑡). To this end, the function oper-

ates on the original non-penalized edge weights. Having computed

ALGORITHM 2: 𝑃𝐸𝑁𝐴𝐿𝑇𝑌

Inputs : road network𝐺 = (𝑁, 𝐸) , source node 𝑠 , target node 𝑡 ,
number of results 𝑘 , threshold 𝜖

Variables : set of near-shortest paths 𝑃NSP , maximum allowed path length

L𝑚𝑎𝑥 , multiplicative factor 𝑓 , magnitude factor𝑚, modified

weight 𝑤′ (𝑒) for an edge 𝑒

Output : set 𝑃𝑘MDNSP

1 𝑃𝑘MDNSP ← ∅, 𝑃NSP ← ∅, L𝑚𝑎𝑥 ←∞; ⊲ initialization

2 foreach edge 𝑒 ∈ 𝐸 do
3 𝑤′ (𝑒) ← 𝑤 (𝑒) ;
4 𝑝 ← GetNextNearShortestPath(𝐺, 𝑠, 𝑡, L𝑚𝑎𝑥) ; ⊲ 𝑝 = 𝑝𝑠 (𝑠{𝑡)
5 𝑃NSP ← 𝑃NSP

⋃{𝑝 };
6 L𝑚𝑎𝑥 ← (1 + 𝜖) · ℓ (𝑝)) ; ⊲ set length constraint

7 𝑚 ← 0, 𝑓 ← 2; ⊲ initialize penalty factor (Formula 4)

8 while 𝑓 > 1 do
9 foreach 𝑝′ ∈ 𝑃NSP do
10 foreach edge 𝑒 ∈ 𝑝′ do
11 𝑤′ (𝑒) ← 𝑤 (𝑒) · 𝑓 ; ⊲ recalculate penalties

12 𝑝 ← GetNextNearShortestPath(𝐺, 𝑠, 𝑡, L𝑚𝑎𝑥) ;
13 if 𝑝 ≠ 𝑛𝑢𝑙𝑙 and 𝑝 ∉ 𝑃NSP then
14 𝑃NSP ← 𝑃NSP

⋃{𝑝 };
15 compute 𝐷𝑖𝑠 (𝑝, 𝑝′) , ∀𝑝′ ∈ 𝑃NSP ; ⊲ 𝑝 dissimilarities

16 foreach 𝑃 ⊆ 𝑃NSP with 𝑝 ∈ 𝑃 and |𝑃 | = 𝑘 do
17 if 𝐷𝑖𝑣 (𝑃) > 𝐷𝑖𝑣 (𝑃𝑘MDNSP) then
18 𝑃𝑘MDNSP ← 𝑃 ; ⊲ update result set

19 else
20 𝑚 ←𝑚 + 1, update 𝑓 ; ⊲ decrease penalty factor

(Formula 4)

21 return 𝑃𝑘MDNSP ;

ℓ (𝑝𝑠), 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 sets the maximum allowed length L𝑚𝑎𝑥 of near-

shortest paths (Line 6). Furthermore in Line 7, the penalty factors

are initialized to𝑚 = 0 and 𝑓 = 2, according to Formula 4. Then, in

Lines 8–19, 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 iteratively examines its near-shortest paths.

At each iteration, the algorithm first applies the penalty (Lines 9–11)

and then calls GetNextNearShortestPath to construct a new near-

shortest path, using the penalized edge weights𝑤 ′. If the function
successfully returns a path 𝑝 (never constructed before), the path

is added to 𝑃NSP and 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 applies Algorithm 𝐹 to generate

candidate 𝑘-subsets 𝑃 that include 𝑝 , similar to 𝐸𝑋𝐴𝐶𝑇 and 𝑆𝑆𝑉𝑃

(Lines 13–17). The diversity of each subset 𝑃 is computed using the

original weights𝑤 . Otherwise, if GetNextNearShortestPath fails
to produce a new near-shortest path,𝑚 is increased by 1 and the

penalty factor 𝑓 is updated (decreased) before the next iteration

(Line 19). This iterative process terminates when 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 cannot

further decrease 𝑓 , i.e., when 𝑓 ≤ 1. At this point, a penalty can

no longer be enforced, and so, the algorithm terminates returning

current 𝑃𝑘MDNSP
as the result.

We now briefly discuss GetNextNearShortestPath. The func-
tion essentially extends a traditional shortest path method (e.g.,

Dijkstra’s algorithm) with two extra features. First, for each node 𝑛

in the network, two types of distances from source node 𝑠 are main-

tained (corresponding to ℓ (𝑝 (𝑠{𝑛))); the original distance and the

modified distance that is computed using the penalized weights.

GetNextNearShortestPath visits nodes by their modified distance

from 𝑠 , which enables the function to compute a path dissimilar to

the ones already computed. The original distance is used to check

the near-shortest path constraint. Intuitively, to guarantee that only

near-shortest paths are computed, only nodes withinL𝑚𝑎𝑥 original

distance from the source are visited.

Most Diverse Near-Shortest Paths SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

Example 5.2. We demonstrate 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 using our running

example and 𝑘MDNSP(𝐺, 𝑠, 𝑡, 𝑘 = 3, 𝜖 = 0.7). The first path con-

structed by GetNextNearShortestPath and added to 𝑃NSP is short-
est path 𝑝𝑠 = ⟨(𝑠, 𝑛2), (𝑛2, 𝑡)⟩. The edges in 𝑝𝑠 are penalized by

doubling their weight (𝑓 = 2), i.e., 𝑤 ′(𝑠, 𝑛2) = 2 · 𝑤 (𝑠, 𝑛2) = 30

and 𝑤 ′(𝑛2, 𝑡) = 2 ·𝑤 (𝑛2, 𝑡) = 40. After applying the above penal-

ties, GetNextNearShortestPath is called again returning 𝑝2 =

⟨(𝑠, 𝑛1), (𝑛1, 𝑛3), (𝑛3, 𝑡)⟩. Path 𝑝2 is added to 𝑃NSP and its edges

are penalized, again by doubling their weight, i.e., 𝑤 ′(𝑠, 𝑛1) =

20, 𝑤 ′(𝑛1, 𝑛3) = 12, 𝑤 ′(𝑛3, 𝑡) = 60. Afterwards, 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 calls

once again the GetNextNearShortestPath function which returns
𝑝1 = ⟨(𝑠, 𝑛2), (𝑛2, 𝑛4), (𝑛4, 𝑡)⟩. At this point, the tentative result is
𝑃𝑘MDNSP

= 𝑃NSP = {𝑝𝑠 , 𝑝2, 𝑝1}, with 𝐷𝑖𝑣 (𝑃𝑘MDNSP
) = 0.75. In the

next iteration, GetNextNearShortestPath fails to return a new

near-shortest path. As a result, 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 increases 𝑚 to 1 and

updates 𝑓 = 2 −𝑚 · 1−𝜖
2

= 1.85. GetNextNearShortestPath is

called and fails again. In fact, the function continues failing until

𝑚 = 7, which means that 𝑓 = 0.95 < 1. At this point, 𝑃𝐸𝑁𝐴𝐿𝑇𝑌

terminates and returns 𝑃𝑘MDNSP
= {𝑝𝑠 , 𝑝2, 𝑝1}.

5.3 The 𝐷𝐼𝑅𝐸𝐶𝑇 Algorithm
Despite operating on a smaller search space compared to both

𝐸𝑋𝐴𝐶𝑇 and 𝑆𝑆𝑉𝑃 , the 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 algorithm still resorts to Algo-

rithm 𝐹 in order to compute 𝑘-subsets of paths. Our last heuristic

algorithm called 𝐷𝐼𝑅𝐸𝐶𝑇 , takes on a different approach that is in-

spired by the method proposed in [17]. Intuitively, the 𝑃𝑘MDNSP

result set (initially containing the 𝑝𝑠 (𝑠{𝑡) shortest path) is built
incrementally in 𝑘 − 1 rounds. At each round, 𝑃𝑘MDNSP

is updated

by appending the near-shortest path with the highest dissimilarity

to the previously added paths. As such, 𝐷𝐼𝑅𝐸𝐶𝑇 eliminates the

need to generate candidate 𝑘-subsets.

Algorithm 3 illustrates the pseudocode of 𝐷𝐼𝑅𝐸𝐶𝑇 . The algo-

rithm maintains all constructed near-shortest paths inside set 𝑃NSP.

At each iteration of the while loop in Line 6, 𝐷𝐼𝑅𝐸𝐶𝑇 first uses

the last path added to 𝑃𝑘MDNSP
, denoted by 𝑝𝑙𝑎𝑠𝑡 (𝑠{𝑡), in order

to construct the set 𝑃𝑑𝑒𝑣 of deviating subpaths from source node 𝑠

(Lines 7–8). Each subpath 𝑝 (𝑠{𝑛) ∈ 𝑃𝑑𝑒𝑣 is then extended to reach

the target 𝑡 by the shortest path 𝑝𝑠 (𝑛{𝑡). To efficiently retrieve

the 𝑝𝑠 (𝑛{𝑡) paths, 𝐷𝐼𝑅𝐸𝐶𝑇 utilizes the shortest path tree 𝑇𝑁{𝑡

computed in Line 1. If the now extended 𝑝 is a simple path that

abides by the near-shortest path constraint (conditions in Line 12),

the path is appended to 𝑃NSP. As the last step, 𝑃𝑘MDNSP
is updated

in Lines 14–15 by appending the path 𝑝𝑟𝑒𝑠 ∈ 𝑃NSP \ 𝑃𝑘MDNSP
with

the maximum dissimilarity to the paths in 𝑃𝑘MDNSP
. 𝐷𝐼𝑅𝐸𝐶𝑇 ter-

minates after exactly 𝑘 near-shortest paths are added to 𝑃𝑘MDNSP
.

Last, we briefly discuss the construction of the deviating sub-

paths (Line 8). To this end, we iterate over all subpaths 𝑝 (𝑠{𝑛)
of 𝑝𝑙𝑎𝑠𝑡 . For each subpath, we consider all outgoing edges (𝑛, 𝑛′)
of node 𝑛 excluding the one in 𝑝𝑙𝑎𝑠𝑡 , and define every deviating

subpath 𝑝 (𝑠{𝑛′). We further enhance the diversity of the con-

structed paths by using the outgoing edges of each 𝑛′ node, i.e.,
edges (𝑛′, 𝑛′′), to produced deviating subpaths 𝑝 (𝑠{𝑛′′) as well.
This “double-deviation” strategy increases the cardinality of 𝑃𝑑𝑒𝑣
which helps 𝐷𝐼𝑅𝐸𝐶𝑇 to construct at least the requested number 𝑘

of recommended paths.

ALGORITHM 3: 𝐷𝐼𝑅𝐸𝐶𝑇
Inputs : road network𝐺 = (𝑁, 𝐸) , source node 𝑠 , target node 𝑡 ,

threshold 𝜖

Variables : shortest path tree𝑇𝑁{𝑡 from all nodes in 𝑁 to 𝑡 , maximum

allowed path length L𝑚𝑎𝑥

Output : set 𝑃𝑘MDNSP

1 𝑇𝑁{𝑡 ← ComputeShortestPathsRev(𝐺, 𝑡) ; ⊲ all sp’s to 𝑡

2 𝑝𝑠 (𝑠{𝑡) ← GetShortestPath(𝑇𝑁{𝑡 , 𝑠) ;
3 L𝑚𝑎𝑥 ← (1 + 𝜖) · ℓ (𝑝𝑠 (𝑠{𝑡)) ; ⊲ set length constraint

4 𝑃𝑘MDNSP ← {𝑝𝑠 (𝑠{𝑡) }; ⊲ initialize result set

5 𝑃NSP ← ∅;
6 while |𝑃𝑘MDNSP | < 𝑘 do
7 𝑝𝑙𝑎𝑠𝑡 ← the last path added to 𝑃𝑘MDNSP ;

8 𝑃𝑑𝑒𝑣 ← GetDeviatingSubPaths(𝐺, 𝑝𝑙𝑎𝑠𝑡) ;
9 foreach 𝑝 ∈ 𝑃𝑑𝑒𝑣 do
10 𝑛 ← last node in 𝑝 ;

11 𝑝 ← 𝑝 ◦ GetShortestPath(𝑇𝑁{𝑡 , 𝑛) ;
12 if 𝑝 is simple and ℓ (𝑝) ≤ L𝑚𝑎𝑥 then
13 𝑃NSP ← 𝑃NSP

⋃{𝑝 } ;
14 𝑝𝑟𝑒𝑠 ← argmax𝑝∈(𝑃

NSP
\𝑃𝑘MDNSP

),𝑝′∈𝑃𝑘MDNSP

𝐷𝑖𝑠 (𝑝, 𝑝′) ;
15 𝑃𝑘MDNSP ← 𝑃𝑘MDNSP

⋃{𝑝𝑟𝑒𝑠 }; ⊲ update result set

16 return 𝑃𝑘MDNSP ;

Example 5.3. We illustrate 𝐷𝐼𝑅𝐸𝐶𝑇 using our running example

in Figure 2 and 𝑘MDNSP(𝐺, 𝑠, 𝑡, 𝑘 = 3, 𝜖 = 0.7); recall that the near-
shortest path constraint is based on L𝑚𝑎𝑥 = 59. As the first step,

the shortest path 𝑝𝑠 = ⟨(𝑠, 𝑛2), (𝑛2, 𝑡)⟩ is added to the 𝑃𝑘MDNSP

result set. With 𝑝𝑠 as 𝑝𝑙𝑎𝑠𝑡 , the algorithm generates 𝑃𝑑𝑒𝑣 . First, sub-

path 𝑝 (𝑠{𝑛2) is considered. By examining the outgoing edges of

𝑛2, excluding (𝑛2, 𝑡) as it lies on 𝑝𝑙𝑎𝑠𝑡 , subpath ⟨(𝑠, 𝑛2), (𝑛2, 𝑛4)⟩
is constructed and added to 𝑃𝑑𝑒𝑣 . Next, we examine the outgoing

edges of𝑛4 resulting in the construction of subpath ⟨(𝑠, 𝑛2), (𝑛2, 𝑛4),
(𝑛4, 𝑡)⟩ = 𝑝1 that is also added to 𝑃𝑑𝑒𝑣 . Subsequently, we consider

subpath 𝑝 (𝑠{𝑠) of 𝑝𝑙𝑎𝑠𝑡 . The examination of the outgoing edges

of 𝑠 , excluding (𝑠, 𝑛2), and the outgoing edges of the neighbors of

𝑠 , excluding 𝑛2, results in the construction of (sub)paths ⟨(𝑠, 𝑛1)⟩,
⟨(𝑠, 𝑛1), (𝑛1, 𝑛2)⟩, ⟨(𝑠, 𝑛1), (𝑛1, 𝑛3)⟩ ⟨(𝑠, 𝑛3)⟩, ⟨(𝑠, 𝑛3), (𝑛3, 𝑛4)⟩ and
⟨(𝑠, 𝑛3), (𝑛3, 𝑡)⟩. The last two ⟨(𝑠, 𝑛3), (𝑛3, 𝑛4)⟩ and ⟨(𝑠, 𝑛3), (𝑛3, 𝑡)⟩
are pruned as their length exceed L𝑚𝑎𝑥 . All subpaths in 𝑃𝑑𝑒𝑣
are then extended to reach target 𝑡 (if necessary), resulting in

paths 𝑝2 = ⟨(𝑠, 𝑛1), (𝑛1, 𝑛3), (𝑛3, 𝑡)⟩, 𝑝4 = ⟨(𝑠, 𝑛1), (𝑛1, 𝑛2), (𝑛2, 𝑡)⟩,
⟨(𝑠, 𝑛1), (𝑛1, 𝑛3), (𝑛3, 𝑡)⟩, and ⟨(𝑠, 𝑛3), (𝑛3, 𝑡)⟩. At this point, all ex-
tended paths whose length exceeds L𝑚𝑎𝑥 are discarded. Hence,

𝑃NSP contains all distinct extended paths that abide by the near-

shortest path constraint, i.e., 𝑃NSP = {𝑝𝑠 , 𝑝2, 𝑝4, 𝑝1}. As𝐷𝑖𝑠 (𝑝𝑠 , 𝑝2) =
1 > 𝐷𝑖𝑠 (𝑝𝑠 , 𝑝1) = 0.82 > 𝐷𝑖𝑠 (𝑝𝑠 , 𝑝4) = 0.71, the algorithm adds 𝑝2
to the result set. 𝐷𝐼𝑅𝐸𝐶𝑇 continues in the same manner using

𝑝2 as 𝑝𝑙𝑎𝑠𝑡 to finally add 𝑝3 = ⟨(𝑠, 𝑛1), (𝑛1, 𝑛3), (𝑛3, 𝑛4), (𝑛4, 𝑡)⟩
to 𝑃𝑘MDNSP

. At this point, the algorithm terminates returning

𝑃𝑘MDNSP
= {𝑝𝑠 , 𝑝2, 𝑝3} with 𝐷𝑖𝑣 (𝑃𝑘MDNSP

) = 0.79.

6 EXTENSIONS
In the following, we also discuss possible extensions to 𝑘MDNSP.

Path (dis)similarity. Various measures have been proposed in the

literature to compute the similarity of two paths (cf. [24]). Choosing

the best fitting similarity measure heavily depends on the appli-

cation and hence is out of the scope of our work. Without loss

of generality in Section 3, we used the Jaccard coefficient, but all

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Christian Häcker, Panagiotis Bouros, Theodoros Chondrogiannis, and Ernst Althaus

Table 1: Road networks tested

road network # of nodes # of edges topology
Adlershof 349 979 City-center

Oldenburg 6,105 14,058 City-center

Porto Alegre 63,751 187,364 Grid-based

Milan 187,537 525,296 Ring-based

Chicago 386,533 1,121,620 Grid-based

Florida 1,070,376 2,712,798 State

the algorithms and techniques presented in Sections 4 and 5 will

operate under any arbitrary similarity measure.

Path set diversity. In Section 3, we defined the diversity 𝐷𝑖𝑣 (𝑃)
for a set of paths 𝑃 as the lowest pairwise dissimilarity among the

contained paths. Supporting other diversity definitions [31] is an

interesting direction for future work. Nevertheless, as a proof of the

generality of our analysis, we briefly discuss in the following, an

alternative definition to Formula 3 where the diversity is calculated

based on the collective dissimilarity of the contained paths:

𝐷𝑖𝑣 (𝑃) =
∑
∀𝑝,𝑝′∈𝑃

𝐷𝑖𝑠 (𝑝, 𝑝 ′) (5)

Our methods can be easily applied in this setup, with little (resp.

for 𝐸𝑋𝐴𝐶𝑇 , 𝑆𝑆𝑉𝑃 , 𝑃𝐸𝑁𝐴𝐿𝑇𝑌) to no change (resp. for 𝐷𝐼𝑅𝐸𝐶𝑇). In

practice, we only need to adjust the pruning technique in Section 4.3

used by Algorithm 𝐹 to discard unpromising subsets. Assume that

𝑃𝑘MDNSP
contains the current solution to the 𝑘MDNSP problem.

In contrast to the diversity definition in Formula 3, 𝐷𝑖𝑣 (𝑃) of a
subset 𝑃 under Formula 5 does not decrease after adding a new

path. However, Algorithm 𝐹 can still prune unpromising subsets by

computing an upper bound 𝐷𝑖𝑣 (𝑃) for their diversity; intuitively,
only subsets 𝑃 with 𝐷𝑖𝑣 (𝑃) > 𝐷𝑖𝑣 (𝑃𝑘MDNSP

) should be extended.

To clarify, consider 𝑘 = 3 and a subset with two paths, 𝑃 = {𝑝1, 𝑝2}.
The highest possible diversity for 𝑃 after adding a third path cannot

exceed 𝐷𝑖𝑣 (𝑃) = 𝐷𝑖𝑠 (𝑝1, 𝑝2) + 2, assuming the new path 𝑝3 is

disjoint to both 𝑝1 and 𝑝2, i.e., 𝐷𝑖𝑠 (𝑝1, 𝑝3) = 𝐷𝑖𝑠 (𝑝2, 𝑝3) = 1.

7 EXPERIMENTAL ANALYSIS
Our analysis was conducted on a machine with two AMD EPYC

7351 16-Core processors, 512GiB 2666Mhz DDR4 memory, running

GNU/Linux 5.4.0-66. All four presented algorithms were imple-

mented in C++, compiled using GNU G++ 9. We experimented with

six publicly available real-world road networks [5, 19]. We selected

networks with different characteristics and topologies. Table 1 sum-

marizes the characteristics of our tested datasets.

To assess the performance of the algorithms, we measured their

average runtime and the average number of near-shortest paths

they examine. For this purpose, we ran 1000 queries of randomly

selected source-target pairs, while varying the number 𝑘 of re-

quested paths in {2, 3, 4, 5} and the near-shortest path threshold 𝜖

in {0.01, 0.05, 0.1, 0.2, 0.3}. In each test, we varied one of the parame-

ters and set the other to its default value, i.e., 𝑘 = 3 and 𝜖 = 0.1. Note

that we enforced a 2 minute timeout for the methods. To assess the

quality of the results, we also report the diversity of the result sets,

excluding the queries where 𝐸𝑋𝐴𝐶𝑇 and 𝑆𝑆𝑉𝑃 timed out.
1

1
No timeouts occurred for 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 and 𝐷𝐼𝑅𝐸𝐶𝑇 .

Adlershof

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0.01 0.05 0.1 0.2 0.3

R
es

p
o
n
se

 t
im

e
[m

se
c]

EXACT

SSVP

PENALTY

DIRECT

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

2 3 4 5

R
es

p
o

n
se

 t
im

e
[m

se
c]

EXACT

SSVP

PENALTY

DIRECT

𝜖 𝑘

10
0

10
1

10
2

10
3

10
4

0.01 0.05 0.1 0.2 0.3

#
 n

ea
r-

sh
o
rt

es
t

p
at

h
s

10
0

10
1

10
2

10
3

10
4

2 3 4 5

#
 n

ea
r-

sh
o

rt
es

t
p

at
h

s

𝜖 𝑘

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.01 0.05 0.1 0.2 0.3

D
iv

(P
k
M

D
N

S
P
)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2 3 4 5

D
iv

(P
k
M

D
N

S
P
)

𝜖 𝑘

Figure 4: Comparison of all algorithms

7.1 Exact Computation
We first investigate how practical is the exact computation of

𝑘MDNSP using 𝐸𝑋𝐴𝐶𝑇 . For this purpose, we experimented with

the smallest network in Table 1, i.e., Adlershof. In Figure 4, we

observe that even for a network with only a few hundreds of nodes,

𝐸𝑋𝐴𝐶𝑇 is already several orders of magnitude slower than the

heuristic algorithms. In fact, 𝐸𝑋𝐴𝐶𝑇 timed out on 50% of the queries

on average; specifically for 𝜖 > 0.1 or 𝑘 > 3, the majority of the

queries timed out. The poor performance of 𝐸𝑋𝐴𝐶𝑇 is explained

by the large number of near-shortest paths it examines. As Figure 4

shows, 𝐸𝑋𝐴𝐶𝑇 considers significantly more paths (in the order of

thousands) compared to its heuristic competitors, which results

in high costs not only for computing and storing these paths in

memory, but also for generating the candidate 𝑘-subsets.

Figure 4 also reports the quality of the results produced by each

algorithm in Aldershof. As expected, 𝐸𝑋𝐴𝐶𝑇 is able to report the

best 𝑃𝑘MDNSP
set of alternative paths, i.e., the set with the highest

diversity 𝐷𝑖𝑣 (𝑃𝑘MDNSP
). Nevertheless, we also observe that the

result diversity produced by the 𝑆𝑆𝑉𝑃 heuristic method is only 10%

lower than 𝐸𝑋𝐴𝐶𝑇 on average, while taking at least two order of

magnitudes less time to answer a query. Overall, our experiments

in Adlershof show the limitations of 𝐸𝑋𝐴𝐶𝑇 . The computation of

𝑘MDNSP using 𝐸𝑋𝐴𝐶𝑇 is clearly impractical for real-world net-

works. As such, for the rest of our analysis we consider only the

heuristic algorithms presented in Section 5.

Most Diverse Near-Shortest Paths SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

Oldenburg Porto Alegre

10
0

10
1

10
2

10
3

10
4

10
5

0.01 0.05 0.1 0.2 0.3

R
es

p
o
n
se

 t
im

e
[m

se
c]

SSVP

PENALTY

DIRECT

10
2

10
3

10
4

10
5

10
6

0.01 0.05 0.1 0.2 0.3
R

es
p
o
n
se

 t
im

e
[m

se
c]

SSVP

PENALTY

DIRECT

𝜖 𝜖

10
0

10
1

10
2

10
3

10
4

10
5

2 3 4 5

R
es

p
o

n
se

 t
im

e
[m

se
c]

10
1

10
2

10
3

10
4

10
5

10
6

2 3 4 5

R
es

p
o

n
se

 t
im

e
[m

se
c]

𝑘 𝑘

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.01 0.05 0.1 0.2 0.3

D
iv

(P
k
M

D
N

S
P
)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.01 0.05 0.1 0.2 0.3

D
iv

(P
k
M

D
N

S
P
)

𝜖 𝜖

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 3 4 5

D
iv

(P
k
M

D
N

S
P
)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 3 4 5

D
iv

(P
k
M

D
N

S
P
)

𝑘 𝑘

Figure 5: Comparison of heuristics: the case of networks
with less than 100𝑘 nodes

7.2 Heuristics-based Computation
Figure 5 reports the results for two networks, i.e., Oldenburg and

PortoAlegre, with up to 100𝑘 nodes.We observe that both 𝑃𝐸𝑁𝐴𝐿𝑇𝑌

and 𝐷𝐼𝑅𝐸𝐶𝑇 always outperform 𝑆𝑆𝑉𝑃 by a wide margin (in some

cases, even by three orders of magnitude). The reasons for this per-

formance gap is that 𝑆𝑆𝑉𝑃 not only constructs more near-shortest

paths than 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 but also requires a large amount of calls to

Dijkstra’s algorithm (Function 2, Lines 16–17). Moreover, we ob-

serve that 𝑆𝑆𝑉𝑃 is also severely affected by 𝜖 due to the increase in

the number of near-shortest paths to be computed and examined.

Notice how its runtime rises by two orders of magnitude when

varying 𝜖 from 0.01 to 0.3.

While being the slowest algorithm, 𝑆𝑆𝑉𝑃 delivers the best set of

alternative paths, followed by 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 , while 𝐷𝐼𝑅𝐸𝐶𝑇 ranks last

in almost all cases. All three algorithms are strongly affected by both

𝜖 and 𝑘 . More specifically, as 𝜖 increases, more near-shortest paths

are computed enabling the methods to identify better combinations

(i.e., with higher diversity) as results. Notice that 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 benefits

the most from the increase in 𝜖 . This is because larger values of 𝜖

lead to larger decreases of themultiplicative factor 𝑓 (see Formula 4).

As a result, 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 is able to almost match the result diversity

achieved by 𝑆𝑆𝑉𝑃 , for 𝜖 ≥ 0.1. In contrast, the result quality drops

for all algorithms with an increasing 𝑘 . Essentially, the algorithms

do not compute enough near-shortest paths to both cover the extra

spots in 𝑃𝑘MDNSP
and maximise its diversity at the same time. Note

that for 𝑆𝑆𝑉𝑃 and 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 , the number of near-shortest paths

does not increase with 𝑘 , but only with 𝜖 . 𝐷𝐼𝑅𝐸𝐶𝑇 computes more

paths by executing more rounds (𝐷𝐼𝑅𝐸𝐶𝑇 constructs 𝑃𝑘MDNSP
in

exactly 𝑘 − 1 rounds) but this increase is not large enough.
Our results in Figure 5 unveil the limitations of 𝑆𝑆𝑉𝑃 . Essentially,

the algorithm scales poorly with both 𝜖 , 𝑘 , and the size of the

network. In fact for Porto Alegre, 𝑆𝑆𝑉𝑃 timed out in the majority

of the queries. As such, we exclude 𝑆𝑆𝑉𝑃 from our experiments on

the three largest road networks.

Finally, Figures 6 and 7 report the runtime and result quality of

𝐷𝐼𝑅𝐸𝐶𝑇 and 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 on Milan, Chicago, and Florida. First of all,

we observe that both algorithms are able to handle queries in large

networks as no timeouts occurred. However, it is also clear that

𝐷𝐼𝑅𝐸𝐶𝑇 is always the most efficient method. The key difference is

on how the algorithms scale with the test parameters. 𝑃𝐸𝑁𝐴𝐿𝑇𝑌

scales worse with 𝜖 because it has to compute significantly more

near-shortest paths as 𝜖 increases, while𝐷𝐼𝑅𝐸𝐶𝑇 scales worse with

𝑘 as it has to execute more rounds (i.e., 𝑘 − 1). With regard to the

quality of the results, 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 delivers in all cases significantly

more diverse alternative paths, as it examines a larger number of

near-shortest paths.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced a novel instance of alternative routing

termed the 𝑘MDNSP problem. The goal is to recommend the set of 𝑘

near-shortest paths (based on a user-defined length threshold) with

the highest diversity, defined as the lowest pairwise dissimilarity

among the recommended paths. Our tests showed that computing

𝑘MDNSP with the 𝐸𝑋𝐴𝐶𝑇 algorithm is impractical for real-world

networks, so we proposed three heuristic algorithms. Our iterative

heuristic and penalty-based methods are able to scale to large net-

works while offering different trade-offs between result quality and

performance. For the future, we plan to study 𝑘MDNSP under alter-

native definitions of path diversity and investigate other evaluation

approaches, e.g., using flow algorithms.

ACKNOWLEDGMENTS
This work is partially supported by Grant No. CH 2464/1-1 of the

Deutsche Forschungsgemeinschaft (DFG).

REFERENCES
[1] 2005. Choice Routing. Cambridge Vehicle Information Technology Ltd.. http:

//www.camvit.com

[2] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. 2013.

Alternative routes in road networks. ACM J. Exp. Algorithmics 18 (2013).
[3] Vedat Akgün, Erhan Erkut, and Rajan Batta. 2000. On finding dissimilar paths.

Eur. J. Oper. Res. 121, 2 (2000), 232–246.
[4] Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. 2011. Alter-

native Route Graphs in Road Networks. In ICST TAPAS. 21–32.
[5] Thomas Brinkhoff. 2002. A Framework for Generating Network-Based Moving

Objects. GeoInformatica 6, 2 (2002), 153–180.

http://www.camvit.com
http://www.camvit.com

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Christian Häcker, Panagiotis Bouros, Theodoros Chondrogiannis, and Ernst Althaus

Milan

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0.01 0.05 0.1 0.2 0.3

R
es

p
o

n
se

 t
im

e
[m

se
c]

PENALTY

DIRECT

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.01 0.05 0.1 0.2 0.3
D

iv
(P

k
M

D
N

S
P
)

PENALTY

DIRECT

𝜖 𝜖

Chicago

 0

 2000

 4000

 6000

 8000

 10000

 12000

0.01 0.05 0.1 0.2 0.3

R
es

p
o

n
se

 t
im

e
[m

se
c]

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.01 0.05 0.1 0.2 0.3

D
iv

(P
k
M

D
N

S
P
)

𝜖 𝜖

Florida

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0.01 0.05 0.1 0.2 0.3

R
es

p
o

n
se

 t
im

e
[m

se
c]

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.01 0.05 0.1 0.2 0.3

D
iv

(P
k
M

D
N

S
P
)

𝜖 𝜖

Figure 6: Large scale analysis: vary-𝜖

[6] Thomas H. Byers and Michael S. Waterman. 1984. Determining All Optimal

and Near-Optimal Solutions when Solving Shortest Path Problems by Dynamic

Programming. Oper. Res. 32, 6 (1984), 1381–1384.
[7] W. Matthew Carlyle and R. Kevin Wood. 2005. Near-shortest and K-shortest

simple paths. Networks 46, 2 (2005), 98–109.
[8] Dan Cheng, Olga Gkountouna, Andreas Züfle, Dieter Pfoser, and Carola Wenk.

2019. Shortest-Path Diversification through Network Penalization: AWashington

DC Area Case Study. In IWCTS@SIGSPATIAL. 10:1–10:10.
[9] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, and Ulf Leser.

2015. Alternative Routing: K-shortest Paths with Limited Overlap. In ACM
SIGSPATIAL GIS. 68:1–68:4.

[10] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, and Ulf Leser.

2017. Exact and Approximate Algorithms for Finding 𝑘-Shortest Paths with

Limited Overlap. In EDBT. 414–425.
[11] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, Ulf Leser, and

David B. Blumenthal. 2018. Finding k-dissimilar paths with minimum collective

length. In ACM SIGSPATIAL GIS. 404–407.
[12] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, Ulf Leser, and

David B. Blumenthal. 2020. Finding k-shortest paths with limited overlap. VLDB
J. 29, 5 (2020), 1023–1047.

[13] Daniel Delling and Dorothea Wagner. 2009. Pareto Paths with SHARC. In SEA.
125–136.

[14] E W Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. Numer.
Math. 1, 1 (1959), 269–271.

[15] Marina Drosou and Evaggelia Pitoura. 2012. DisC diversity: result diversification

based on dissimilarity and coverage. Proc. VLDB Endow. 6, 1 (2012), 13–24.
[16] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to

the Theory of NP-Completeness.
[17] Yeon-Jeong Jeong, Tschangho John Kim, Chang-Ho Park, and Dong-Kyu Kim.

2009. A Dissimilar Alternative Paths-search Algorithm for Navigation Services:

A Heuristic Approach. KSCE Journal of Civil Engineering 14, 1 (2009), 41–49.

[18] P E Johnson, D S Joy, D B Clarke, and J M Jacobi. 1993. HIGHWAY 3.1: An enhanced
HIGHWAY routing model: Program description, methodology, and revised user‘s
manual. Technical Report. U.S. Dept. of Energy, OSTI.

Milan

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 3 4 5

R
es

p
o

n
se

 t
im

e
[m

se
c]

PENALTY

DIRECT

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 3 4 5

D
iv

(P
k
M

D
N

S
P
)

PENALTY

DIRECT

𝑘 𝑘

Chicago

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2 3 4 5

R
es

p
o

n
se

 t
im

e
[m

se
c]

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 3 4 5

D
iv

(P
k
M

D
N

S
P
)

𝑘 𝑘

Florida

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

2 3 4 5

R
es

p
o

n
se

 t
im

e
[m

se
c]

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 3 4 5

D
iv

(P
k
M

D
N

S
P
)

𝑘 𝑘

Figure 7: Large scale analysis: vary-𝑘

[19] Alireza Karduni, Amirhassan Kermanshah, and Sybil Derrible. 2016. A Protocol

to Convert Spatial Polyline Data to Network Formats and Applications to World

Urban Road Networks. Scientific Data 3, 160046 (2016).
[20] Donald E. Knuth. 2005. The Art of Computer Programming, Volume 4, Fascicle 3:

Generating All Combinations and Partitions. Addison-Wesley Professional.

[21] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. 2010. Route skyline

queries: A multi-preference path planning approach. In IEEE ICDE. 261–272.
[22] Lingxiao Li, Muhammad Aamir Cheema, Mohammed Eunus Ali, Hua Lu, and

David Taniar. 2020. Continuously Monitoring Alternative Shortest Paths on Road

Networks. Proc. VLDB Endow. 13, 11 (2020), 2243–2255.
[23] Lingxiao Li, Muhammad Aamir Cheema, Hua Lu, Mohammed Eunus Ali, and

Adel Nadjaran Toosi. 2021. Comparing Alternative Route Planning Techniques: A

Comparative User Study on Melbourne, Dhaka and Copenhagen Road Networks.

IEEE TKDE preprint (2021).

[24] Huiping Liu, Cheqing Jin, Bin Yang, and Aoying Zhou. 2018. Finding Top-k

Shortest Paths with Diversity. IEEE TKDE 30, 3 (2018), 488–502.

[25] Dennis Luxen and Dennis Schieferdecker. 2014. Candidate Sets for Alternative

Routes in Road Networks. ACM J. Exp. Algorithmics 19, 1 (2014).
[26] Kyriakos Mouratidis, Yimin Lin, and Man lu Yiu. 2010. Preference Queries in

Large Multi-cost Transportation Networks. In IEEE ICDE. 533–544.
[27] You Peng, Xuemin Lin, Ying Zhang, Wenjie Zhang, Lu Qin, and Jingren Zhou.

2021. Efficient Hop-constrained st Simple Path Enumeration. The VLDB Journal
(2021), 1–25.

[28] Nagui M. Rouphail, S. Ranji Ranjithan, Wael El Dessouki, Timothy Smith, and

E. Downey Brill. 1995. A Decision Support System for Dynamic Pre-Trip Route

Planning. In AATTE. 325–329.
[29] Behnaz Saboonchi, Pierre Hansen, and Sylvain Perron. 2014. MaxMinMin p-

dispersion problem: A variable neighborhood search approach. Comput. Oper.
Res. 52 (2014), 251–259.

[30] Marcos R Vieira, Humberto L Razente, Maria CN Barioni, Marios Hadjieleftheriou,

Divesh Srivastava, Caetano Traina, and Vassilis J Tsotras. 2011. On query result

diversification. In IEEE ICDE. 1163–1174.
[31] Kaiping Zheng, Hongzhi Wang, Zhixin Qi, Jianzhong Li, and Hong Gao. 2017. A

survey of query result diversification. Knowl. Inf. Syst. 51, 1 (2017), 1–36.

Most Diverse Near-Shortest Paths SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

A PROOF OF THEOREM 3.2
We prove both parts of the theorem by reducing an NP-complete

problem to the problem of decidingwhether there are𝑘 disjoint path

of length at most 1+𝜖 times the shortest path, i.e. deciding whether

there is a set 𝑃 of 𝑘 path with 𝐷𝑖𝑠 (𝑃) = 1 for the constructed

instance.

For the first part, we make a reduction from the weakly NP-

complete Partition-Problem, i.e. we are given natural numbers

𝑎1, . . . , 𝑎𝑟 and ask whether there is a subset 𝐼 ⊆ {1, . . . , 𝑟 } such
that

∑
𝑖∈𝐼 𝑎𝑖 =

∑
𝑖∉𝐼 𝑎𝑖 . The hardness of the problem was already

shown in [16] and it is listed as problem [SP12].

Given an instance {𝑎1, . . . , 𝑎𝑟 } of the Partition-Problem, we con-

struct the graph 𝐺 = (𝑁, 𝐸) with 𝑁 = {𝑠, 𝑛0, 𝑛1, . . . , 𝑛𝑟 } and the

following edges:

• two edges 𝑒𝑖 and 𝑓𝑖 from 𝑛𝑖−1 to 𝑛𝑖 , the first of weight 0, the
second of weight 𝑎𝑖 and

• two edges 𝑒0 and 𝑓0 from 𝑠 to 𝑛0, both of weight 𝑊 :=∑
𝑖∈{1,...,𝑟 } 𝑎𝑖 .

Let furthermore 𝑡 = 𝑛𝑟 , 𝑘 = 2 and 𝜖 = 0.5. We show that this

instance has 𝑘 edge-disjoint near-shortest path, iff the Partition-

instance has a solution (see Figure 8 for an illustration).

Clearly, the construction can be done in polynomial time. The

shortest path has length𝑊 (one edge 𝑒0 or 𝑓0 of weight𝑊 and

then the edges 𝑒𝑖 , 𝑖 ≥ 1 of weight 0). Assume that there are two

disjoint path 𝑝1 and 𝑝2 of length at most 3𝑊 /2. Each of them has

the form (𝑠, 𝑛0, 𝑛1, . . . , 𝑛𝑟), i.e. for each 0 ≤ 𝑖 ≤ 𝑟 the paths 𝑝1 and

𝑝2 contain one of 𝑒𝑖 or 𝑓𝑖 . Hence, the paths have to use first an edge

of weight𝑊 and the weight of the remaining edges have to be at

most𝑊 /2. Let 𝐼 ⊆ {1, . . . , 𝑟 } be the set of indices 𝑖 such that 𝑝1
uses 𝑓𝑖 . Then 𝑤 (𝑝1) = 𝑊 + ∑𝑖∈𝐼 𝑤 (𝑓𝑖) = 𝑊 + ∑𝑖∈𝐼 𝑎𝑖 . Similarly,

𝑤 (𝑝2) =𝑊 +∑𝑖∉𝐼 𝑤 (𝑓𝑖) =𝑊 +∑𝑖∉𝐼 𝑎𝑖 . As𝑊 =
∑
𝑖∈{1,...,𝑟 } 𝑎𝑖 , we

have

∑
𝑖∈𝐼 𝑎𝑖 =𝑊 /2 = ∑

𝑖∉𝐼 𝑎𝑖 .

On the other hand, if 𝐼 solves the PARTITION-Problem, i.e.∑
𝑖∈𝐼 𝑎𝑖 = 𝑊 /2, we can easily construct the paths 𝑝1 using the

edges 𝑒0, 𝑓𝑖 for 𝑖 ∈ 𝐼 and 𝑒𝑖 for 𝑖 ∉ 𝐼 and 𝑝2 using 𝑓0, 𝑓𝑖 for 𝑖 ∉ 𝐼

and 𝑒𝑖 for 𝑖 ∈ 𝐼 . The paths are edge-disjoint and both have weight

3𝑊 /2.
For the second part, we make a reduction from the strongly NP-

hard Disjoint-Path-Problem, i.e. given a graph𝐺 = (𝑁, 𝐸) and pairs
(𝑠𝑖 , 𝑡𝑖) for 1 ≤ 𝑖 ≤ 𝑘 , find 𝑘 edge-disjoint path 𝑝1, . . . 𝑝𝑘 such that

𝑝𝑖 is a path from 𝑠𝑖 to 𝑡𝑖 . This problem is listed as [ND40] of the

NP-complete problems in [16].

Given an instance𝐺 = (𝑁, 𝐸) and (𝑠𝑖 , 𝑡𝑖)𝑖∈{1,...,𝑘 } of the Disjoint-
Path-Problem, we construct the graph𝐺 = (𝑁 ∪ {𝑠, 𝑡}, 𝐸 ∪ {(𝑠, 𝑠𝑖) |
1 ≤ 𝑖 ≤ 𝑘} ∪ {(𝑡𝑖 , 𝑡) | 1 ≤ 𝑖 ≤ 𝑘}. The edges in 𝐸 get weight 0,

the edges (𝑠, 𝑠𝑖) weight 𝑘 + 𝑖 and the edges (𝑡𝑖 , 𝑡) weight 2𝑘 − 𝑖 .

Let𝑊 be the weight of the shortest 𝑠 − 𝑡 path in this graph and

let 𝜖 = 3𝑘/𝑊 − 1. Hence, the length of the near-shortest path is

at most (1 + 𝜖) ·𝑊 = 3𝑘 . Clearly, the construction can be done

in polynomial time. We show that this instance has a solution,

iff the Disjoint-Path-instance that a solution (see Figure 9 for an

illustration).

Assume that there are edge-disjoint path 𝑝1, . . . , 𝑝𝑘 such that

ℓ (𝑝𝑖) ≤ 3𝑘 for all 𝑖 . Let 𝑝𝑖 be the path starting with (𝑠, 𝑠𝑖). As the
union of these path contain all 𝑘 edges leaving 𝑠 and all 𝑘 edges

entering 𝑡 , the total weight of the paths is
∑𝑘
𝑖=1𝑤 (𝑠, 𝑠𝑖) +𝑤 (𝑡𝑖 , 𝑡) =

𝑠 𝑛0 𝑛1 𝑛2 𝑛3

𝑊

𝑊

𝑎1

0

𝑎2

0

𝑎3

0

Figure 8: The graph that would be constructed for the in-
stance of Partition with the items of weights 𝑎1, 𝑎2 and 𝑎3.
The red path would correspond to choosing items 1 and 3

and has length𝑊 + 𝑎1 + 𝑎3.

𝑠

𝑠1

𝑠2

𝑠3

𝑡1

𝑡2

𝑡3

𝑡

𝐺

4

5

6

5

4

3

Figure 9: The graph constructed for an instance of the
Disjoint-Path-Problemwith three pairs of nodes. In order to
construct three edge-disjoint path in the constructed graph
of length at most 9, the path starting with (𝑠, 𝑠𝑖) has to end
with (𝑡𝑖 , 𝑡). Hence, we have to find disjoint path between the
pairs 𝑠𝑖 and 𝑡𝑖 .

∑𝑘
𝑖=1 𝑘 + 𝑖 + 2𝑘 − 𝑖 = 3𝑘2. As the average weight of the path is equal

to their maximal allowed weight, the weight of each path 𝑝𝑖 has to

be 3𝑘 . Hence, the path 𝑝𝑖 starting with (𝑠, 𝑠𝑖) has to end with (𝑡𝑖 , 𝑠).
If we remove the first and last edges from the paths 𝑝𝑖 , we obtain a

solution of the Disjoint-Path-instance.

On the other hand, if 𝑝1, . . . , 𝑝𝑘 is a solution of the Disjoint-Path-

instance, we can add (𝑠, 𝑠𝑖) and (𝑡𝑖 , 𝑠) to 𝑝𝑖 and get 𝑘 edge-disjoint

path between 𝑠 and 𝑡 , all of length 3𝑘 .

We want to mention that we can easily modify the construction

such that the edge lengths are different from 0 and satisfy the

triangle inequality. In the first case, we simply add𝑊 to each edge

length, increasing the shortest path length to (𝑟 + 1)𝑊 and the two

paths of a partition would have length (𝑟 + 3/2)𝑊 each. Hence, we

should chose 𝜖 = (𝑟 + 3/2)/(𝑟 + 1) − 1. For the second case, we

chose all edges of the given graph having length 1 and multiply |𝑁 |
to the weight of each edge added in the construction. In the choice

of 𝜖 , we have to take into account that a path can have between 1

and |𝑁 | − 1 edges of 𝐺 . As we multiplied the weights of the edges

adjacent to 𝑠 and 𝑡 by |𝑁 |, we ensured that the edges adjacent to 𝑠

and 𝑡 of a path dominate its total length.

	Abstract
	1 Introduction
	2 Related Work
	3 Notation and Problem Definition
	4 An Exact Approach
	4.1 The EXACT Algorithm
	4.2 Computing Near-Shortest Paths
	4.3 Generating Candidate k-Subsets
	4.4 Complexity Analysis

	5 Heuristic Approaches
	5.1 The SSVP Algorithm
	5.2 The PENALTY Algorithm
	5.3 The DIRECT Algorithm

	6 Extensions
	7 Experimental Analysis
	7.1 Exact Computation
	7.2 Heuristics-based Computation

	8 Conclusions and Future Work
	Acknowledgments
	References
	A Proof of Theorem 3.2

