PARALLEL IN-MEMORY EVALUATION OF SPATIAL JOINS

Dimitrios Tsitsigkos^{1,3}, Panagiotis Bouros², Nikos Mamoulis³ and Manolis Terrovitis¹

¹Athena RC, Greece ²Johannes Gutenberg University Mainz, Germany ³University of Ioannina, Greece {dtsitsigkos,mter}@imis.athena-innovation.gr, bouros@uni-mainz.de, nikos@cs.uoi.gr

Tun	Parallel Processing	
Partition-Based Spatial join (PBMS) [1]	2D Versus 1D partitioning	Initiate <i>m</i> parallel threads
T_1 T_2 S_5	Traditionally a 2D grid splits space into tiles 1D partitioning into stripes	
r_2 s_4 r_5 s_6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	① Partitioning phase Divide inputs into m equi-sized parts

Advantages

- Multi-assignment, single-join (MASJ) \checkmark
- One independent join task per partition \checkmark
- Suitable for dynamic data, no preprocessing
- Simple, easy to implement \checkmark
- Adopted by all distributed spatial DMS \checkmark

Challenges

- □ What's next? [2]
- **Type and number of partitions**
- □ In-memory evaluation
- Parallel processing on multi-core CPUs

Duplicated results elimination

Duplication test by *reference point* [3]

Sweeping axis

- **Compute histogram statistics**
- Divide x- and y-projections into buckets
- *Estimate* intersections per axis

$$I_T^x = \sum_{i=0}^{\kappa} \{H_R^x[i] \cdot H_S^x[i]\} \quad I_T^y = \sum_{i=0}^{\kappa} \{H_R^y[i] \cdot H_S^y[i]\}$$

Experiments

Setup

Datasets

- All data in main memory Plane-sweep join [4]
- OpenMP multi-threading
- **G** Focus on filtering phase

source	dataset	alias	cardinality	avg. <i>x</i> -extent	avg. y-extent
Tiger 2015	AREAWATER	<i>T</i> 2	2.3M	0.000007230	0.000022958
	EDGES	T4	70M	0.000006103	0.00001982
	LINEARWATER	T5	5.8M	0.000022243	0.000073195
	ROADS	T8	20M	0.000012538	0.000040672
OSM	Buildings	<i>O</i> 3	115M	0.0000056	0.00000782
	Lakes	<i>O</i> 5	8.4M	0.000021017	0.000028236
	Parks	<i>O</i> 6	10M	0.000016544	0.000022294
	Roads	<i>O</i> 9	72M	0.000010549	0.000016281

Selecting sweeping axis

query	sweep	ing axis	adaptive model	
	X	y	$I^{\boldsymbol{X}}$	I^{y}
$T2 \bowtie T5$	8.94s	16.96s	8,376	19,232
$T2 \bowtie T8$	24.52s	40.72s	8,895	18,660
<i>O</i> 5 ⋈ <i>O</i> 6	24.92s	66.06s	2,692	12,279
<i>O</i> 6 ⋈ <i>O</i> 9	216.88s	444.19s	3,989	11,510
$T4 \bowtie T8$	674.50s	1,360.92s	8,135	19,406
<i>O</i> 9 ⋈ <i>O</i> 3	926.14s	1,681.30s	4,535	11,529

Tuning 1D partitioning

Tuning 2D partitioning

1D Vs 2D partitioning

query	1D		2D	
	K	speedup	$K \times K$	speedup
$T2 \bowtie T5$	3000	9.6x	1000×1000	8.16x
$T2 \bowtie T8$	7000	10.67x	2000×2000	8.98x
05 № 06	3000	8.62x	1000×1000	6.82x
06 № 09	7000	16.56x	2000×2000	12.58x

27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL), Chicago, IL, USA, November 5-8, 2019