
Setup

q All data in main memory
q Plane-sweep join [4]
q OpenMP multi-threading
q Focus on filtering phase

PARALLEL IN-MEMORY EVALUATION OF SPATIAL JOINS
Dimitrios Tsitsigkos1,3, Panagiotis Bouros2, Nikos Mamoulis3 and Manolis Terrovitis1

1Athena RC, Greece     2Johannes Gutenberg University Mainz, Germany     3University of Ioannina, Greece
{dtsitsigkos,mter}@imis.athena-innovation.gr, bouros@uni-mainz.de, nikos@cs.uoi.gr

Tuning PBSM

27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL), Chicago, IL, USA, November 5-8, 2019

[1] J. M. Patel and D. J. DeWitt.. Partition Based Spatial-Merge Join. In ACM SIGMOD, 1996.
[2] P. Bouros and N. Mamoulis. Spatial Joins: What’s Next?. SIGSPATIAL Special 11(1), 2019. 

References

Duplicated results elimination

q Duplication test by reference point [3]

Datasets

Parallel Processing
Initiate m parallel threads

…

① Partitioning phase
q Divide inputs into m equi-sized parts

q First pass: compute partitions size

q Allocate space in main memory
q Split logically every partition into m parts
q Second pass: fill k partitions

② Joining phase

Parallel In-Memory Evaluation of Spatial Joins SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

Table 1: Datasets used in the experiments
source dataset alias cardinality avg. x -extent avg. �-extent

Tiger 2015

AREAWATER T 2 2.3M 0.000007230 0.000022958
EDGES T 4 70M 0.000006103 0.00001982

LINEARWATER T 5 5.8M 0.000022243 0.000073195
ROADS T 8 20M 0.000012538 0.000040672

OSM

Buildings O3 115M 0.00000056 0.000000782
Lakes O5 8.4M 0.000021017 0.000028236
Parks O6 10M 0.000016544 0.000022294
Roads O9 72M 0.000010549 0.000016281

of |RT |, thread 2 to the next |R2T | positions, etc. After all threads
complete partitioning, we will have the entire set of rectangles
that fall in each tile continuously in memory.

Joining phase
(5) Construct two sorting tasks for each tile T (one for RT and one

for ST ). Assign the sorting tasks to them threads.
(6) Construct a join task for each tileT (one for RT and one for ST ).

Assign the join tasks to them threads.

Step 2 is applied to make proper memory allocation and prevent
expensive dynamic allocations. It also facilitates the output of par-
allel partitioning for each tileT to be continuous in memory during
Step 4. When the model of Section 2.3 is used, the histograms are
computed while loading input data (i.e., in either of Steps 2 and 4).

4 EXPERIMENTAL ANALYSIS
4.1 Setup
We experimented with Tiger 2015 and OpenStreetMap (OSM)
datasets from [6].1 For each dataset, we computed the MBRs of
the objects and came up with a corresponding collection of rectan-
gles. Table 1 details the datasets we used. Dataset cardinality ranges
from 2.3M to 115M objects and we tested joins having inputs from
the same collection, with similar or various scales. The last two
columns of the tables are the relative (over the entire space) average
length of the rectangle projections at each axis.

We implemented the spatial join algorithm (all di�erent versions)
in C++ and compiled it using gcc (v4.8.5). For multi-threading, we
used OpenMP. All experiments were run on amachine with 384 GBs
of RAM and a dual 10-core Intel(R) Xeon(R) CPU E5-2630 v4 clocked
at 2.20GHz running CentOS Linux 7.3.1611; with hyper-threading,
we were able to run up to 40 threads. The reported runtimes include
the costs of partitioning both datasets and then joining them. Due
to lack of space, our full set of experiments can be found in [10].

4.2 Selecting the Sweeping Axis
We �rst test the e�ect that the sweeping axis selection (either x
or �) has on the performance of the algorithm. For this purpose,
we chose not to partition the data, but ran the single-threaded
plane-sweep join from [4] in the entire dataspace (i.e., modeling
the case of a single tile). Table 2 reports the execution times per
query. We observe that sweeping along the wrong axis may even
double the cost of the join. The last column of the table reports
the result of running our model (Eq. 2). Our model was able to
accurately determine the proper sweeping axis in all cases. Note
that the cost of this decision-making process is negligible compared
to the partitioning and joining cost; even for the largest queries,
our model needs less than 10 milliseconds.
1http://spatialhadoop.cs.umn.edu/datasets.html

Table 2: Sweeping axis e�ect; queries ordered by runtime

query sweeping axis adaptive model
x � Ix I�

T 2 ./ T 5 8.94s 16.96s 8,376 19,232
T 2 ./ T 8 24.52s 40.72s 8,895 18,660
O5 ./ O6 24.92s 66.06s 2,692 12,279
O6 ./ O9 216.88s 444.19s 3,989 11,510
T 4 ./ T 8 674.50s 1,360.92s 8,135 19,406
O9 ./ O3 926.14s 1,681.30s 4,535 11,529

4.3 Evaluation of Partitioning
Next, we investigate the impact of partitioning to the performance
of the algorithm.We tune 1D and 2D-based PBSM and then compare
the two partitioning approaches to each other.

Tuning 1D Partitioning. Figure 2 reports the cost of two spatial
join queries while varying the number K of (uniform) 1D partitions.
We tested all combinations of partitioning and sweeping axes. For
example, x� denotes partitioning along the x axis (to vertical stripes)
and sweeping along the � axis. Note that if the sweeping axis is
the same as the partitioning axis (i.e., cases xx and ��), the join
cost does not drop when we increase the number of partitions K .
This is expected because, regardless the number of partitions, case
xx or �� is equivalent to having no partitions at all and sweeping
along the x or � axis in the entire space. When K is too large, the
costs of xx and �� increase because the partitions become very
narrow and replication becomes excessive. On the other hand, the
performance of cases x� and �x improves with K and, after some
point, i.e.,K = 2,000, they converge to the same (very low) cost. The
costs of both x� and �x start to increase again when K > 10,000,
at which point we start having signi�cant replication (observe the
average x- and �-extent statistics in Table 1). Figure 3 breaks down
the total cost to partitioning and joining for the x� case. The joining
cost includes the cost of sorting the partitions. As expected, the cost
of partitioning increases with K and the joining cost drops. After
K = 10,000 partitioning becomes very expensive without o�ering
improvement in the join. The lowest runtime is achieved when the
x-extent of the partitions (i.e., the narrow side of the stripes) is
about 10 times larger than the average x-extent of the rectangles.

Tuning 2DPartitioning.We vary the granularityK⇥K of the grid
and measure for each value of K the runtime cost of the algorithm,
when the sweeping axis is always set to x , always set to �, or when
our adaptive model is used to select the sweeping axis at each tile
(which could be di�erent at di�erent tiles). Figure 4 depicts the
performance of the three join variants. Similarly to 1D partitioning,
when the number of partitions is small K  20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500. Figure 5 shows
the cost breakdown for the partitioning and joining phases of the
2D spatial join, when our model is used for picking the sweeping
axis x . The observations are similar the corresponding ones for
1D partitioning. The best grid con�guration is around K = 2,000,
which is consistent with the best option in 1D partitioning.

1D vs. 2D Partitioning. There are two main �ndings from the
PBSM tuning experiments. First, the rule of the thumb is to select
K (in both 1D and 2D partitioning) such that the extents of the
resulting partitions are about one order ofmagnitude larger than the
extents of the rectangles (in one or both dimensions, respectively).

Selecting sweeping axis

Parallel In-Memory Evaluation of Spatial Joins SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

Table 1: Datasets used in the experiments
source dataset alias cardinality avg. x -extent avg. �-extent

Tiger 2015

AREAWATER T 2 2.3M 0.000007230 0.000022958
EDGES T 4 70M 0.000006103 0.00001982

LINEARWATER T 5 5.8M 0.000022243 0.000073195
ROADS T 8 20M 0.000012538 0.000040672

OSM

Buildings O3 115M 0.00000056 0.000000782
Lakes O5 8.4M 0.000021017 0.000028236
Parks O6 10M 0.000016544 0.000022294
Roads O9 72M 0.000010549 0.000016281

of |RT |, thread 2 to the next |R2T | positions, etc. After all threads
complete partitioning, we will have the entire set of rectangles
that fall in each tile continuously in memory.

Joining phase
(5) Construct two sorting tasks for each tile T (one for RT and one

for ST ). Assign the sorting tasks to them threads.
(6) Construct a join task for each tileT (one for RT and one for ST ).

Assign the join tasks to them threads.

Step 2 is applied to make proper memory allocation and prevent
expensive dynamic allocations. It also facilitates the output of par-
allel partitioning for each tileT to be continuous in memory during
Step 4. When the model of Section 2.3 is used, the histograms are
computed while loading input data (i.e., in either of Steps 2 and 4).

4 EXPERIMENTAL ANALYSIS
4.1 Setup
We experimented with Tiger 2015 and OpenStreetMap (OSM)
datasets from [6].1 For each dataset, we computed the MBRs of
the objects and came up with a corresponding collection of rectan-
gles. Table 1 details the datasets we used. Dataset cardinality ranges
from 2.3M to 115M objects and we tested joins having inputs from
the same collection, with similar or various scales. The last two
columns of the tables are the relative (over the entire space) average
length of the rectangle projections at each axis.

We implemented the spatial join algorithm (all di�erent versions)
in C++ and compiled it using gcc (v4.8.5). For multi-threading, we
used OpenMP. All experiments were run on amachine with 384 GBs
of RAM and a dual 10-core Intel(R) Xeon(R) CPU E5-2630 v4 clocked
at 2.20GHz running CentOS Linux 7.3.1611; with hyper-threading,
we were able to run up to 40 threads. The reported runtimes include
the costs of partitioning both datasets and then joining them. Due
to lack of space, our full set of experiments can be found in [10].

4.2 Selecting the Sweeping Axis
We �rst test the e�ect that the sweeping axis selection (either x
or �) has on the performance of the algorithm. For this purpose,
we chose not to partition the data, but ran the single-threaded
plane-sweep join from [4] in the entire dataspace (i.e., modeling
the case of a single tile). Table 2 reports the execution times per
query. We observe that sweeping along the wrong axis may even
double the cost of the join. The last column of the table reports
the result of running our model (Eq. 2). Our model was able to
accurately determine the proper sweeping axis in all cases. Note
that the cost of this decision-making process is negligible compared
to the partitioning and joining cost; even for the largest queries,
our model needs less than 10 milliseconds.
1http://spatialhadoop.cs.umn.edu/datasets.html

Table 2: Sweeping axis e�ect; queries ordered by runtime

query sweeping axis adaptive model
x � Ix I�

T 2 ./ T 5 8.94s 16.96s 8,376 19,232
T 2 ./ T 8 24.52s 40.72s 8,895 18,660
O5 ./ O6 24.92s 66.06s 2,692 12,279
O6 ./ O9 216.88s 444.19s 3,989 11,510
T 4 ./ T 8 674.50s 1,360.92s 8,135 19,406
O9 ./ O3 926.14s 1,681.30s 4,535 11,529

4.3 Evaluation of Partitioning
Next, we investigate the impact of partitioning to the performance
of the algorithm.We tune 1D and 2D-based PBSM and then compare
the two partitioning approaches to each other.

Tuning 1D Partitioning. Figure 2 reports the cost of two spatial
join queries while varying the number K of (uniform) 1D partitions.
We tested all combinations of partitioning and sweeping axes. For
example, x� denotes partitioning along the x axis (to vertical stripes)
and sweeping along the � axis. Note that if the sweeping axis is
the same as the partitioning axis (i.e., cases xx and ��), the join
cost does not drop when we increase the number of partitions K .
This is expected because, regardless the number of partitions, case
xx or �� is equivalent to having no partitions at all and sweeping
along the x or � axis in the entire space. When K is too large, the
costs of xx and �� increase because the partitions become very
narrow and replication becomes excessive. On the other hand, the
performance of cases x� and �x improves with K and, after some
point, i.e.,K = 2,000, they converge to the same (very low) cost. The
costs of both x� and �x start to increase again when K > 10,000,
at which point we start having signi�cant replication (observe the
average x- and �-extent statistics in Table 1). Figure 3 breaks down
the total cost to partitioning and joining for the x� case. The joining
cost includes the cost of sorting the partitions. As expected, the cost
of partitioning increases with K and the joining cost drops. After
K = 10,000 partitioning becomes very expensive without o�ering
improvement in the join. The lowest runtime is achieved when the
x-extent of the partitions (i.e., the narrow side of the stripes) is
about 10 times larger than the average x-extent of the rectangles.

Tuning 2DPartitioning.We vary the granularityK⇥K of the grid
and measure for each value of K the runtime cost of the algorithm,
when the sweeping axis is always set to x , always set to �, or when
our adaptive model is used to select the sweeping axis at each tile
(which could be di�erent at di�erent tiles). Figure 4 depicts the
performance of the three join variants. Similarly to 1D partitioning,
when the number of partitions is small K  20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500. Figure 5 shows
the cost breakdown for the partitioning and joining phases of the
2D spatial join, when our model is used for picking the sweeping
axis x . The observations are similar the corresponding ones for
1D partitioning. The best grid con�guration is around K = 2,000,
which is consistent with the best option in 1D partitioning.

1D vs. 2D Partitioning. There are two main �ndings from the
PBSM tuning experiments. First, the rule of the thumb is to select
K (in both 1D and 2D partitioning) such that the extents of the
resulting partitions are about one order ofmagnitude larger than the
extents of the rectangles (in one or both dimensions, respectively).

Tuning 1D partitioning

 0

 5

 10

 15

 20

 25

5 10 50 10
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n

 t
im

e 
[s

ec
s]

# partitions K

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e 
[s

ec
s]

# partitions K

[3]  J.-P. Dittrich and B. Seeger. Data Redundancy and Duplicate Detection in Spatial Join 
Processing. IEEE ICDE, 2000.

[4] T. Brinkhoff, H.-P. Kriegel and B. Seeger. Efficient Processing of Spatial Joins Using R-tree. In 
ACM SIGMOD, 1993. 

 0
 100
 200
 300
 400
 500
 600
 700

5 10 5010
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x

ec
u

ti
o

n
 t

im
e 

[s
ec

s]

# partitions K

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e 
[s

ec
s]

# partitions K

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA D. Tsitsigkos et al.

xx

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e 
[s

ec
s]

# partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

��

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e 
[s

ec
s]

# partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

x�

 0

 5

 10

 15

 20

 25

5 10 50 10
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K

y-y
x-x
x-y
y-x
x-a
y-a

 0

 10

 20

 30

 40

 50

 60

5 10 50 10
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

5 10 5010
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K

 0
 100
 200
 300
 400
 500
 600
 700

5 10 5010
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 6: Tuning 1D partitioning: total execution time

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e 
[s

ec
s]

# partitions K

 0

 0.5

 1

 1.5

 2

 2.5

 3

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e 
[s

ec
s]

# partitions K

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e 
[s

ec
s]

# partitions K

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e 
[s

ec
s]

# partitions K

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 7: Tuning 1D partitioning: time breakdown

tiles). Again, we used the GDT approach for duplicate avoidance.
Figure 8 plots the performance of the three join variants. The obser-
vations regarding the choice of the sweeping axis and the number
of partitions are similar to the cases of 1D partitioning. Speci�cally,
when the number of partitions is small K  20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500 and there are no
signi�cant di�erences between them after this point.

Figure 9 shows the cost breakdown for the partitioning and
joining phases of the 2D spatial join, when our model is used for
picking the sweeping axis x . As in the case of 1D joins, we observe
that the cost of partitioning increases with K and becomes too
high when the tiles become too many and very small (i.e., when
K > 2,000). On the other hand, the join cost drops, but stabilizes
afterK > 2,000. After this point, the numberK⇥K of tiles (that have
to be managed) becomes extremely high and replication becomes
excessive. The joining phase does not bene�t; due to replication,
the join inputs at each tile do not reduce in size and the same join
results are computed in neighboring tiles.

The best grid con�guration is around K = 2,000, which is con-
sistent with the best option in 1D partitioning. Hence, the rule of
the thumb is to select K (in both 1D and 2D partitioning) such
that the extents of the resulting partitions are about one order of
magnitude larger than the extents of the rectangles (in one or both
dimensions, respectively). In the rest of the experiments, we use this
rule to select K as the default number of divisions in the splitting

dimension(s). Also, we always use our adaptive model to select the
sweeping axis.

4.5 Duplicate Avoidance
We now test the

4.6 Parallel Evaluation
++ compare join-only cost, assuming that data are already parti-
tioned as in a data management system (e.g. SpatialHadoop) which
uses the grid as an index for queries. See if mj could beat ditt in
this case.

5 CONCLUSIONS
In this paper, we have investigated directions towards tuning a
classic and popular partitioning-based spatial join algorithm, which
is typically used for in-memory and parallel/distributed join evalu-
ation. [nikos: to be completed]

Directions for future work include consideration of the re�ne-
ment step of the join, which can be signi�cantly more expensive
than the �lter step. In addition, we plan to adapt our techniques
and investigate their performance in a distributed environment and
for the case of NUMA architectures.

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

�x

 0

 5

 10

 15

 20

 25

5 10 50 10
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K

y-y
x-y
y-x
x-a
y-a

 0

 10

 20

 30

 40

 50

 60

5 10 50 10
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

5 10 5010
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K

 0
 100
 200
 300
 400
 500
 600
 700

5 10 5010
0

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 6: Tuning 1D partitioning: total execution time

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e 
[s

ec
s]

# partitions K

 0

 0.5

 1

 1.5

 2

 2.5

 3

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e 
[s

ec
s]

# partitions K

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e 
[s

ec
s]

# partitions K

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0

T
im

e 
[s

ec
s]

# partitions K

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 7: Tuning 1D partitioning: time breakdown

tiles). Again, we used the GDT approach for duplicate avoidance.
Figure 8 plots the performance of the three join variants. The obser-
vations regarding the choice of the sweeping axis and the number
of partitions are similar to the cases of 1D partitioning. Speci�cally,
when the number of partitions is small K  20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500 and there are no
signi�cant di�erences between them after this point.

Figure 9 shows the cost breakdown for the partitioning and
joining phases of the 2D spatial join, when our model is used for
picking the sweeping axis x . As in the case of 1D joins, we observe
that the cost of partitioning increases with K and becomes too
high when the tiles become too many and very small (i.e., when
K > 2,000). On the other hand, the join cost drops, but stabilizes
afterK > 2,000. After this point, the numberK⇥K of tiles (that have
to be managed) becomes extremely high and replication becomes
excessive. The joining phase does not bene�t; due to replication,
the join inputs at each tile do not reduce in size and the same join
results are computed in neighboring tiles.

The best grid con�guration is around K = 2,000, which is con-
sistent with the best option in 1D partitioning. Hence, the rule of
the thumb is to select K (in both 1D and 2D partitioning) such
that the extents of the resulting partitions are about one order of
magnitude larger than the extents of the rectangles (in one or both
dimensions, respectively). In the rest of the experiments, we use this
rule to select K as the default number of divisions in the splitting

dimension(s). Also, we always use our adaptive model to select the
sweeping axis.

4.5 Duplicate Avoidance
We now test the

4.6 Parallel Evaluation
++ compare join-only cost, assuming that data are already parti-
tioned as in a data management system (e.g. SpatialHadoop) which
uses the grid as an index for queries. See if mj could beat ditt in
this case.

5 CONCLUSIONS
In this paper, we have investigated directions towards tuning a
classic and popular partitioning-based spatial join algorithm, which
is typically used for in-memory and parallel/distributed join evalu-
ation. [nikos: to be completed]

Directions for future work include consideration of the re�ne-
ment step of the join, which can be signi�cantly more expensive
than the �lter step. In addition, we plan to adapt our techniques
and investigate their performance in a distributed environment and
for the case of NUMA architectures.

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 2: Tuning 1D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 3: Tuning 1D partitioning: time breakdown

x � adaptive model

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 4: Tuning 2D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 5: Tuning 2D partitioning: time breakdown

Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.

ACKNOWLEDGEMENTS
Partially supported by the project “Moving from Big Data Manage-
ment to Data Science” (MIS 5002437/3) co-�nanced by Greece and
the European Union (European Regional Development Fund).

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

[3] Panagiotis Bouros and Nikos Mamoulis. 2019. Spatial Joins: What’s next? SIGSPA-
TIAL Special 11, 1 (2019), 13–21.

[4] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[5] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[7] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[8] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[9] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[10] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis.
2019. Parallel In-Memory Evaluation of Spatial Joins. (2019). arXiv:1908.11740

[11] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA D. Tsitsigkos et al.

xx �� x� �x

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 2: Tuning 1D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 3: Tuning 1D partitioning: time breakdown

x � adaptive model

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 4: Tuning 2D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 5: Tuning 2D partitioning: time breakdown

Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.

ACKNOWLEDGEMENTS
Partially supported by the project “Moving from Big Data Manage-
ment to Data Science” (MIS 5002437/3) co-�nanced by Greece and
the European Union (European Regional Development Fund).

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

[3] Panagiotis Bouros and Nikos Mamoulis. 2019. Spatial Joins: What’s next? SIGSPA-
TIAL Special 11, 1 (2019), 13–21.

[4] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[5] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[7] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[8] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[9] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[10] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis.
2019. Parallel In-Memory Evaluation of Spatial Joins. (2019). arXiv:1908.11740

[11] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

Tuning 2D partitioning

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA D. Tsitsigkos et al.

xx �� x� �x

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 2: Tuning 1D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 3: Tuning 1D partitioning: time breakdown

x � adaptive model

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 4: Tuning 2D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 5: Tuning 2D partitioning: time breakdown

Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.

ACKNOWLEDGEMENTS
Partially supported by the project “Moving from Big Data Manage-
ment to Data Science” (MIS 5002437/3) co-�nanced by Greece and
the European Union (European Regional Development Fund).

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

[3] Panagiotis Bouros and Nikos Mamoulis. 2019. Spatial Joins: What’s next? SIGSPA-
TIAL Special 11, 1 (2019), 13–21.

[4] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[5] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[7] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[8] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[9] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[10] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis.
2019. Parallel In-Memory Evaluation of Spatial Joins. (2019). arXiv:1908.11740

[11] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x

ec
u

ti
o

n
 t

im
e 

[s
ec

s]

# partitions K per dimension

T2 ./ T5
<latexit sha1_base64="YpJ5LzLRx/X4YhFw47W/pxWEDBE=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9mtih6LXjxW6Bd0l5JNs21oNlmSrFKW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMvTDjTxnW/ncLa+sbmVnG7tLO7t39QPjxqa5kqQltEcqm6IdaUM0FbhhlOu4miOA457YTju5nfeaRKMymaZpLQIMZDwSJGsLGS36z5oXwyjKLmVb9ccavuHGiVeDmpQI5Gv/zlDyRJYyoM4VjrnucmJsiwMoxwOi35qaYJJmM8pD1LBY6pDrL5zVN0ZpUBiqSyJQyaq78nMhxrPYlD2xljM9LL3kz8z+ulJroJMiaS1FBBFouilCMj0SwANGCKEsMnlmCimL0VkRFWmBgbU8mG4C2/vEratap3Ua09XFbqt3kcRTiBUzgHD66hDvfQgBYQSOAZXuHNSZ0X5935WLQWnHzmGP7A+fwBD4eRCw==</latexit>

O6 ./ O9
<latexit sha1_base64="PNIAd+7cxGuz5LfOpbuWuk0bbik=">AAAB83icbVDJSgNBEO2JW4xb1KOXxiB4CjNRXG5BL94SwSyQGUJPpyZp0tM9dPcoYchvePGgiFd/xpt/Y2c5aOKDgsd7VVTVCxPOtHHdbye3srq2vpHfLGxt7+zuFfcPmlqmikKDSi5VOyQaOBPQMMxwaCcKSBxyaIXD24nfegSlmRQPZpRAEJO+YBGjxFjJr134oXwyDHDtulssuWV3CrxMvDkpoTnq3eKX35M0jUEYyonWHc9NTJARZRjlMC74qYaE0CHpQ8dSQWLQQTa9eYxPrNLDkVS2hMFT9fdERmKtR3FoO2NiBnrRm4j/eZ3URFdBxkSSGhB0tihKOTYSTwLAPaaAGj6yhFDF7K2YDogi1NiYCjYEb/HlZdKslL2zcuX+vFS9mceRR0foGJ0iD12iKrpDddRAFCXoGb2iNyd1Xpx352PWmnPmM4foD5zPHwxrkQk=</latexit>

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e 
[s

ec
s]

# partitions K per dimension

O6 ./ O9
<latexit sha1_base64="PNIAd+7cxGuz5LfOpbuWuk0bbik=">AAAB83icbVDJSgNBEO2JW4xb1KOXxiB4CjNRXG5BL94SwSyQGUJPpyZp0tM9dPcoYchvePGgiFd/xpt/Y2c5aOKDgsd7VVTVCxPOtHHdbye3srq2vpHfLGxt7+zuFfcPmlqmikKDSi5VOyQaOBPQMMxwaCcKSBxyaIXD24nfegSlmRQPZpRAEJO+YBGjxFjJr134oXwyDHDtulssuWV3CrxMvDkpoTnq3eKX35M0jUEYyonWHc9NTJARZRjlMC74qYaE0CHpQ8dSQWLQQTa9eYxPrNLDkVS2hMFT9fdERmKtR3FoO2NiBnrRm4j/eZ3URFdBxkSSGhB0tihKOTYSTwLAPaaAGj6yhFDF7K2YDogi1NiYCjYEb/HlZdKslL2zcuX+vFS9mceRR0foGJ0iD12iKrpDddRAFCXoGb2iNyd1Xpx352PWmnPmM4foD5zPHwxrkQk=</latexit>

T2 ./ T5
<latexit sha1_base64="YpJ5LzLRx/X4YhFw47W/pxWEDBE=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9mtih6LXjxW6Bd0l5JNs21oNlmSrFKW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMvTDjTxnW/ncLa+sbmVnG7tLO7t39QPjxqa5kqQltEcqm6IdaUM0FbhhlOu4miOA457YTju5nfeaRKMymaZpLQIMZDwSJGsLGS36z5oXwyjKLmVb9ccavuHGiVeDmpQI5Gv/zlDyRJYyoM4VjrnucmJsiwMoxwOi35qaYJJmM8pD1LBY6pDrL5zVN0ZpUBiqSyJQyaq78nMhxrPYlD2xljM9LL3kz8z+ulJroJMiaS1FBBFouilCMj0SwANGCKEsMnlmCimL0VkRFWmBgbU8mG4C2/vEratap3Ua09XFbqt3kcRTiBUzgHD66hDvfQgBYQSOAZXuHNSZ0X5935WLQWnHzmGP7A+fwBD4eRCw==</latexit>

1D Vs 2D partitioning

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA D. Tsitsigkos et al.

xx �� x� �x

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 2: Tuning 1D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 3: Tuning 1D partitioning: time breakdown

x � adaptive model

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 4: Tuning 2D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 5: Tuning 2D partitioning: time breakdown

Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.

ACKNOWLEDGEMENTS
Partially supported by the project “Moving from Big Data Manage-
ment to Data Science” (MIS 5002437/3) co-�nanced by Greece and
the European Union (European Regional Development Fund).

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

[3] Panagiotis Bouros and Nikos Mamoulis. 2019. Spatial Joins: What’s next? SIGSPA-
TIAL Special 11, 1 (2019), 13–21.

[4] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[5] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[7] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[8] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[9] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[10] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis.
2019. Parallel In-Memory Evaluation of Spatial Joins. (2019). arXiv:1908.11740

[11] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

Parallel processing (1D partitioning)

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA D. Tsitsigkos et al.

xx �� x� �x

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 2: Tuning 1D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 3: Tuning 1D partitioning: time breakdown

x � adaptive model

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 4: Tuning 2D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 5: Tuning 2D partitioning: time breakdown

Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.

ACKNOWLEDGEMENTS
Partially supported by the project “Moving from Big Data Manage-
ment to Data Science” (MIS 5002437/3) co-�nanced by Greece and
the European Union (European Regional Development Fund).

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

[3] Panagiotis Bouros and Nikos Mamoulis. 2019. Spatial Joins: What’s next? SIGSPA-
TIAL Special 11, 1 (2019), 13–21.

[4] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[5] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[7] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[8] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[9] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[10] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis.
2019. Parallel In-Memory Evaluation of Spatial Joins. (2019). arXiv:1908.11740

[11] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

Partition-Based Spatial join (PBMS) [1]

Advantages

ü Multi-assignment, single-join (MASJ)

ü One independent join task per partition

ü Suitable for dynamic data, no preprocessing

ü Simple, easy to implement

ü Adopted by all distributed spatial DMS

Challenges

q What’s next? [2]
q Type and number of partitions
q In-memory evaluation
q Parallel processing on multi-core CPUs

s3

R1 R2

S1

S2

T1 T2

(a) multi-assignment, single-join (MASJ)

(b) single-assignment, multi-join (SAMJ) 

r1

r2

r3
r4

r5

r6

r1

r2

r3
r4

r5

r6

s1

s2
s4

s5

s6

s1

s2

s3

s4

s5

s6
r1 r2

r3
r4 r5

r6 r7

s1
s2

s3
s4

s5 s6

0

1

2

0 1 2
r1 r2

r3
r4 r5

r6 r7

s1
s2

s3
s4

s5 s6

0 1 2 3

r1 r2

r3
r4 r5

r6 r7

s1
s2

s3
s4

s5 s6

0

1

2

0 1 2
r1 r2

r3
r4 r5

r6 r7

s1
s2

s3
s4

s5 s6

0 1 2 3

2D 1DVs

2D Versus 1D partitioning
q Traditionally a 2D grid splits space into tiles
q 1D partitioning into stripes

Sweeping axis
q Compute histogram statistics
q Divide x- and y-projections into buckets
q Estimate intersections per axis

…

…

R

R

…R

…

…

R1

Rk

Experiments

sorting
tasks

joining
tasks

q Consume tasks in 
round-robin mannerI

x
T =

kX

i=0

{Hx
R[i] ·Hx

S [i]}
<latexit sha1_base64="1p+oz+jWToXhG1zjhALQvj3pVps=">AAACGHicbVC7TsMwFHV4lvIKMLJYVEhMJSlIsFSqYClbgb6kJI0cx2mtOg/ZDmoV5TNY+BUWBhBi7cbfkLQdoOVIVzo+51753uNEjAqpad/Kyura+sZmYau4vbO7t68eHLZFGHNMWjhkIe86SBBGA9KSVDLSjThBvsNIxxne5n7niXBBw6ApxxGxfNQPqEcxkplkq+d3vZHdrJoi9u2EVrW0lwxTM6nbD72RQS0Tu6GEdftx9kqLtlrSytoUcJnoc1ICczRsdWK6IY59EkjMkBCGrkXSShCXFDOSFs1YkAjhIeoTI6MB8omwkulhKTzNFBd6Ic8qkHCq/p5IkC/E2HeyTh/JgVj0cvE/z4ild20lNIhiSQI8+8iLGZQhzFOCLuUESzbOCMKcZrtCPEAcYZllmYegL568TNqVsn5Rrtxflmo38zgK4BicgDOggytQA3XQAC2AwTN4Be/gQ3lR3pRP5WvWuqLMZ47AHyiTH1y4n/Q=</latexit>

I
y
T =

kX

i=0

{Hy
R[i] ·H

y
S [i]}

<latexit sha1_base64="S3ge9g9pGx1jFIbhC9Jd73xLFDs=">AAACGHicbVDLSsNAFJ34rPUVdelmsAiualIF3RSKbuqual+QpGEymbZDJw9mJkII+Qw3/oobF4q47c6/MWmz0NYDF86ccy9z73FCRoXUtG9lZXVtfWOztFXe3tnd21cPDrsiiDgmHRywgPcdJAijPulIKhnph5wgz2Gk50xuc7/3RLiggd+WcUgsD418OqQYyUyy1fO7QWy366aIPDuhdS0dJJPUTJr2wyA2qGViN5CwaT/OX2nZVitaVZsBLhO9IBVQoGWrU9MNcOQRX2KGhDB0LZRWgrikmJG0bEaChAhP0IgYGfWRR4SVzA5L4WmmuHAY8Kx8CWfq74kEeULEnpN1ekiOxaKXi/95RiSH11ZC/TCSxMfzj4YRgzKAeUrQpZxgyeKMIMxptivEY8QRllmWeQj64snLpFur6hfV2v1lpXFTxFECx+AEnAEdXIEGaIIW6AAMnsEreAcfyovypnwqX/PWFaWYOQJ/oEx/AGGKn/c=</latexit>

r

s

P28

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA D. Tsitsigkos et al.

xx �� x� �x

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 2: Tuning 1D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 3: Tuning 1D partitioning: time breakdown

x

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300
5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e 
[s

ec
s]

# partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

�

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e 
[s

ec
s]

# partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

adaptive model

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
xe

cu
ti

on
 ti

m
e 

[s
ec

s]

# partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e 
[s

ec
s]

# partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 4: Tuning 2D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 5: Tuning 2D partitioning: time breakdown

Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.

ACKNOWLEDGEMENTS
Partially supported by the project “Moving from Big Data Manage-
ment to Data Science” (MIS 5002437/3) co-�nanced by Greece and
the European Union (European Regional Development Fund).

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

[3] Panagiotis Bouros and Nikos Mamoulis. 2019. Spatial Joins: What’s next? SIGSPA-
TIAL Special 11, 1 (2019), 13–21.

[4] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[5] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[7] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[8] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[9] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[10] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis.
2019. Parallel In-Memory Evaluation of Spatial Joins. (2019). arXiv:1908.11740

[11] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.


