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q OpenMP multi-threading
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① Partitioning phase
q Divide inputs into m equi-sized parts

q First pass: compute partitions size

q Allocate space in main memory
q Split logically every partition into m parts
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Table 1: Datasets used in the experiments
source dataset alias cardinality avg. x -extent avg. �-extent

Tiger 2015

AREAWATER T 2 2.3M 0.000007230 0.000022958
EDGES T 4 70M 0.000006103 0.00001982

LINEARWATER T 5 5.8M 0.000022243 0.000073195
ROADS T 8 20M 0.000012538 0.000040672

OSM

Buildings O3 115M 0.00000056 0.000000782
Lakes O5 8.4M 0.000021017 0.000028236
Parks O6 10M 0.000016544 0.000022294
Roads O9 72M 0.000010549 0.000016281

of |RT |, thread 2 to the next |R2T | positions, etc. After all threads
complete partitioning, we will have the entire set of rectangles
that fall in each tile continuously in memory.

Joining phase
(5) Construct two sorting tasks for each tile T (one for RT and one

for ST ). Assign the sorting tasks to them threads.
(6) Construct a join task for each tileT (one for RT and one for ST ).

Assign the join tasks to them threads.

Step 2 is applied to make proper memory allocation and prevent
expensive dynamic allocations. It also facilitates the output of par-
allel partitioning for each tileT to be continuous in memory during
Step 4. When the model of Section 2.3 is used, the histograms are
computed while loading input data (i.e., in either of Steps 2 and 4).

4 EXPERIMENTAL ANALYSIS
4.1 Setup
We experimented with Tiger 2015 and OpenStreetMap (OSM)
datasets from [6].1 For each dataset, we computed the MBRs of
the objects and came up with a corresponding collection of rectan-
gles. Table 1 details the datasets we used. Dataset cardinality ranges
from 2.3M to 115M objects and we tested joins having inputs from
the same collection, with similar or various scales. The last two
columns of the tables are the relative (over the entire space) average
length of the rectangle projections at each axis.

We implemented the spatial join algorithm (all di�erent versions)
in C++ and compiled it using gcc (v4.8.5). For multi-threading, we
used OpenMP. All experiments were run on amachine with 384 GBs
of RAM and a dual 10-core Intel(R) Xeon(R) CPU E5-2630 v4 clocked
at 2.20GHz running CentOS Linux 7.3.1611; with hyper-threading,
we were able to run up to 40 threads. The reported runtimes include
the costs of partitioning both datasets and then joining them. Due
to lack of space, our full set of experiments can be found in [10].

4.2 Selecting the Sweeping Axis
We �rst test the e�ect that the sweeping axis selection (either x
or �) has on the performance of the algorithm. For this purpose,
we chose not to partition the data, but ran the single-threaded
plane-sweep join from [4] in the entire dataspace (i.e., modeling
the case of a single tile). Table 2 reports the execution times per
query. We observe that sweeping along the wrong axis may even
double the cost of the join. The last column of the table reports
the result of running our model (Eq. 2). Our model was able to
accurately determine the proper sweeping axis in all cases. Note
that the cost of this decision-making process is negligible compared
to the partitioning and joining cost; even for the largest queries,
our model needs less than 10 milliseconds.
1http://spatialhadoop.cs.umn.edu/datasets.html

Table 2: Sweeping axis e�ect; queries ordered by runtime

query sweeping axis adaptive model
x � Ix I�

T 2 ./ T 5 8.94s 16.96s 8,376 19,232
T 2 ./ T 8 24.52s 40.72s 8,895 18,660
O5 ./ O6 24.92s 66.06s 2,692 12,279
O6 ./ O9 216.88s 444.19s 3,989 11,510
T 4 ./ T 8 674.50s 1,360.92s 8,135 19,406
O9 ./ O3 926.14s 1,681.30s 4,535 11,529

4.3 Evaluation of Partitioning
Next, we investigate the impact of partitioning to the performance
of the algorithm.We tune 1D and 2D-based PBSM and then compare
the two partitioning approaches to each other.

Tuning 1D Partitioning. Figure 2 reports the cost of two spatial
join queries while varying the number K of (uniform) 1D partitions.
We tested all combinations of partitioning and sweeping axes. For
example, x� denotes partitioning along the x axis (to vertical stripes)
and sweeping along the � axis. Note that if the sweeping axis is
the same as the partitioning axis (i.e., cases xx and ��), the join
cost does not drop when we increase the number of partitions K .
This is expected because, regardless the number of partitions, case
xx or �� is equivalent to having no partitions at all and sweeping
along the x or � axis in the entire space. When K is too large, the
costs of xx and �� increase because the partitions become very
narrow and replication becomes excessive. On the other hand, the
performance of cases x� and �x improves with K and, after some
point, i.e.,K = 2,000, they converge to the same (very low) cost. The
costs of both x� and �x start to increase again when K > 10,000,
at which point we start having signi�cant replication (observe the
average x- and �-extent statistics in Table 1). Figure 3 breaks down
the total cost to partitioning and joining for the x� case. The joining
cost includes the cost of sorting the partitions. As expected, the cost
of partitioning increases with K and the joining cost drops. After
K = 10,000 partitioning becomes very expensive without o�ering
improvement in the join. The lowest runtime is achieved when the
x-extent of the partitions (i.e., the narrow side of the stripes) is
about 10 times larger than the average x-extent of the rectangles.

Tuning 2DPartitioning.We vary the granularityK⇥K of the grid
and measure for each value of K the runtime cost of the algorithm,
when the sweeping axis is always set to x , always set to �, or when
our adaptive model is used to select the sweeping axis at each tile
(which could be di�erent at di�erent tiles). Figure 4 depicts the
performance of the three join variants. Similarly to 1D partitioning,
when the number of partitions is small K  20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500. Figure 5 shows
the cost breakdown for the partitioning and joining phases of the
2D spatial join, when our model is used for picking the sweeping
axis x . The observations are similar the corresponding ones for
1D partitioning. The best grid con�guration is around K = 2,000,
which is consistent with the best option in 1D partitioning.

1D vs. 2D Partitioning. There are two main �ndings from the
PBSM tuning experiments. First, the rule of the thumb is to select
K (in both 1D and 2D partitioning) such that the extents of the
resulting partitions are about one order ofmagnitude larger than the
extents of the rectangles (in one or both dimensions, respectively).

Selecting sweeping axis
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complete partitioning, we will have the entire set of rectangles
that fall in each tile continuously in memory.
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(5) Construct two sorting tasks for each tile T (one for RT and one

for ST ). Assign the sorting tasks to them threads.
(6) Construct a join task for each tileT (one for RT and one for ST ).
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the same collection, with similar or various scales. The last two
columns of the tables are the relative (over the entire space) average
length of the rectangle projections at each axis.

We implemented the spatial join algorithm (all di�erent versions)
in C++ and compiled it using gcc (v4.8.5). For multi-threading, we
used OpenMP. All experiments were run on amachine with 384 GBs
of RAM and a dual 10-core Intel(R) Xeon(R) CPU E5-2630 v4 clocked
at 2.20GHz running CentOS Linux 7.3.1611; with hyper-threading,
we were able to run up to 40 threads. The reported runtimes include
the costs of partitioning both datasets and then joining them. Due
to lack of space, our full set of experiments can be found in [10].

4.2 Selecting the Sweeping Axis
We �rst test the e�ect that the sweeping axis selection (either x
or �) has on the performance of the algorithm. For this purpose,
we chose not to partition the data, but ran the single-threaded
plane-sweep join from [4] in the entire dataspace (i.e., modeling
the case of a single tile). Table 2 reports the execution times per
query. We observe that sweeping along the wrong axis may even
double the cost of the join. The last column of the table reports
the result of running our model (Eq. 2). Our model was able to
accurately determine the proper sweeping axis in all cases. Note
that the cost of this decision-making process is negligible compared
to the partitioning and joining cost; even for the largest queries,
our model needs less than 10 milliseconds.
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4.3 Evaluation of Partitioning
Next, we investigate the impact of partitioning to the performance
of the algorithm.We tune 1D and 2D-based PBSM and then compare
the two partitioning approaches to each other.

Tuning 1D Partitioning. Figure 2 reports the cost of two spatial
join queries while varying the number K of (uniform) 1D partitions.
We tested all combinations of partitioning and sweeping axes. For
example, x� denotes partitioning along the x axis (to vertical stripes)
and sweeping along the � axis. Note that if the sweeping axis is
the same as the partitioning axis (i.e., cases xx and ��), the join
cost does not drop when we increase the number of partitions K .
This is expected because, regardless the number of partitions, case
xx or �� is equivalent to having no partitions at all and sweeping
along the x or � axis in the entire space. When K is too large, the
costs of xx and �� increase because the partitions become very
narrow and replication becomes excessive. On the other hand, the
performance of cases x� and �x improves with K and, after some
point, i.e.,K = 2,000, they converge to the same (very low) cost. The
costs of both x� and �x start to increase again when K > 10,000,
at which point we start having signi�cant replication (observe the
average x- and �-extent statistics in Table 1). Figure 3 breaks down
the total cost to partitioning and joining for the x� case. The joining
cost includes the cost of sorting the partitions. As expected, the cost
of partitioning increases with K and the joining cost drops. After
K = 10,000 partitioning becomes very expensive without o�ering
improvement in the join. The lowest runtime is achieved when the
x-extent of the partitions (i.e., the narrow side of the stripes) is
about 10 times larger than the average x-extent of the rectangles.

Tuning 2DPartitioning.We vary the granularityK⇥K of the grid
and measure for each value of K the runtime cost of the algorithm,
when the sweeping axis is always set to x , always set to �, or when
our adaptive model is used to select the sweeping axis at each tile
(which could be di�erent at di�erent tiles). Figure 4 depicts the
performance of the three join variants. Similarly to 1D partitioning,
when the number of partitions is small K  20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500. Figure 5 shows
the cost breakdown for the partitioning and joining phases of the
2D spatial join, when our model is used for picking the sweeping
axis x . The observations are similar the corresponding ones for
1D partitioning. The best grid con�guration is around K = 2,000,
which is consistent with the best option in 1D partitioning.

1D vs. 2D Partitioning. There are two main �ndings from the
PBSM tuning experiments. First, the rule of the thumb is to select
K (in both 1D and 2D partitioning) such that the extents of the
resulting partitions are about one order ofmagnitude larger than the
extents of the rectangles (in one or both dimensions, respectively).
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tiles). Again, we used the GDT approach for duplicate avoidance.
Figure 8 plots the performance of the three join variants. The obser-
vations regarding the choice of the sweeping axis and the number
of partitions are similar to the cases of 1D partitioning. Speci�cally,
when the number of partitions is small K  20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500 and there are no
signi�cant di�erences between them after this point.

Figure 9 shows the cost breakdown for the partitioning and
joining phases of the 2D spatial join, when our model is used for
picking the sweeping axis x . As in the case of 1D joins, we observe
that the cost of partitioning increases with K and becomes too
high when the tiles become too many and very small (i.e., when
K > 2,000). On the other hand, the join cost drops, but stabilizes
afterK > 2,000. After this point, the numberK⇥K of tiles (that have
to be managed) becomes extremely high and replication becomes
excessive. The joining phase does not bene�t; due to replication,
the join inputs at each tile do not reduce in size and the same join
results are computed in neighboring tiles.

The best grid con�guration is around K = 2,000, which is con-
sistent with the best option in 1D partitioning. Hence, the rule of
the thumb is to select K (in both 1D and 2D partitioning) such
that the extents of the resulting partitions are about one order of
magnitude larger than the extents of the rectangles (in one or both
dimensions, respectively). In the rest of the experiments, we use this
rule to select K as the default number of divisions in the splitting

dimension(s). Also, we always use our adaptive model to select the
sweeping axis.

4.5 Duplicate Avoidance
We now test the

4.6 Parallel Evaluation
++ compare join-only cost, assuming that data are already parti-
tioned as in a data management system (e.g. SpatialHadoop) which
uses the grid as an index for queries. See if mj could beat ditt in
this case.

5 CONCLUSIONS
In this paper, we have investigated directions towards tuning a
classic and popular partitioning-based spatial join algorithm, which
is typically used for in-memory and parallel/distributed join evalu-
ation. [nikos: to be completed]

Directions for future work include consideration of the re�ne-
ment step of the join, which can be signi�cantly more expensive
than the �lter step. In addition, we plan to adapt our techniques
and investigate their performance in a distributed environment and
for the case of NUMA architectures.
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tiles). Again, we used the GDT approach for duplicate avoidance.
Figure 8 plots the performance of the three join variants. The obser-
vations regarding the choice of the sweeping axis and the number
of partitions are similar to the cases of 1D partitioning. Speci�cally,
when the number of partitions is small K  20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500 and there are no
signi�cant di�erences between them after this point.

Figure 9 shows the cost breakdown for the partitioning and
joining phases of the 2D spatial join, when our model is used for
picking the sweeping axis x . As in the case of 1D joins, we observe
that the cost of partitioning increases with K and becomes too
high when the tiles become too many and very small (i.e., when
K > 2,000). On the other hand, the join cost drops, but stabilizes
afterK > 2,000. After this point, the numberK⇥K of tiles (that have
to be managed) becomes extremely high and replication becomes
excessive. The joining phase does not bene�t; due to replication,
the join inputs at each tile do not reduce in size and the same join
results are computed in neighboring tiles.

The best grid con�guration is around K = 2,000, which is con-
sistent with the best option in 1D partitioning. Hence, the rule of
the thumb is to select K (in both 1D and 2D partitioning) such
that the extents of the resulting partitions are about one order of
magnitude larger than the extents of the rectangles (in one or both
dimensions, respectively). In the rest of the experiments, we use this
rule to select K as the default number of divisions in the splitting

dimension(s). Also, we always use our adaptive model to select the
sweeping axis.

4.5 Duplicate Avoidance
We now test the

4.6 Parallel Evaluation
++ compare join-only cost, assuming that data are already parti-
tioned as in a data management system (e.g. SpatialHadoop) which
uses the grid as an index for queries. See if mj could beat ditt in
this case.

5 CONCLUSIONS
In this paper, we have investigated directions towards tuning a
classic and popular partitioning-based spatial join algorithm, which
is typically used for in-memory and parallel/distributed join evalu-
ation. [nikos: to be completed]

Directions for future work include consideration of the re�ne-
ment step of the join, which can be signi�cantly more expensive
than the �lter step. In addition, we plan to adapt our techniques
and investigate their performance in a distributed environment and
for the case of NUMA architectures.
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Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.
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Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.
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Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.
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Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.

ACKNOWLEDGEMENTS
Partially supported by the project “Moving from Big Data Manage-
ment to Data Science” (MIS 5002437/3) co-�nanced by Greece and
the European Union (European Regional Development Fund).

REFERENCES
[1] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial Data Ware-
housing System over MapReduce. PVLDB 6, 11 (2013), 1009–1020.

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570–581.

[3] Panagiotis Bouros and Nikos Mamoulis. 2019. Spatial Joins: What’s next? SIGSPA-
TIAL Special 11, 1 (2019), 13–21.

[4] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[5] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[7] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[8] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[9] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[10] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis.
2019. Parallel In-Memory Evaluation of Spatial Joins. (2019). arXiv:1908.11740

[11] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

Parallel processing (1D partitioning)

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA D. Tsitsigkos et al.

xx �� x� �x

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 2: Tuning 1D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 3: Tuning 1D partitioning: time breakdown

x � adaptive model

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 4: Tuning 2D partitioning: total execution time

partitioning joining

(a) T 2 ./ T 5 (b) O6 ./ O9

Figure 5: Tuning 2D partitioning: time breakdown

Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.
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Partition-Based Spatial join (PBMS) [1]

Advantages

ü Multi-assignment, single-join (MASJ)

ü One independent join task per partition

ü Suitable for dynamic data, no preprocessing

ü Simple, easy to implement

ü Adopted by all distributed spatial DMS

Challenges

q What’s next? [2]
q Type and number of partitions
q In-memory evaluation
q Parallel processing on multi-core CPUs
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2D Versus 1D partitioning
q Traditionally a 2D grid splits space into tiles
q 1D partitioning into stripes

Sweeping axis
q Compute histogram statistics
q Divide x- and y-projections into buckets
q Estimate intersections per axis
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Table 3: 1D vs. 2D partitioning: speedup

query 1D 2D
K speedup K ⇥ K speedup

T 2 ./ T 5 3000 9.6x 1000 ⇥ 1000 8.16x
T 2 ./ T 8 7000 10.67x 2000 ⇥ 2000 8.98x
O5 ./ O6 3000 8.62x 1000 ⇥ 1000 6.82x
O6 ./ O9 7000 16.56x 2000 ⇥ 2000 12.58x

Table 4: Parallel evaluation: runtime (1D partitioning)

# threads queries
O5 ./ O6 O6 ./ O9 T 4 ./ T 8 O9 ./ O3

1 2.98s 14.4s 20.1s 43.0s
5 0.75s 3.32s 4.34s 10.6s
10 0.46s 1.91s 2.47s 6.11s
15 0.38s 1.45s 1.85s 4.54s
20 0.32s 1.21s 1.64s 3.54s
25 0.29s 1.07s 1.42s 3.09s
30 0.28s 0.99s 1.36s 2.89s
35 0.27s 0.96s 1.27s 2.72s
40 0.27s 0.91s 1.21s 2.72s

Second, 1D partitioning achieves better performance compared to
2D partitioning, due to less replication and the fact that all tiles in
a row or a column can be swept by a single line (along the row or
column) with the same e�ect as processing all tiles independently
with sweeping along the same direction. Table 3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D
partitioning, compared to the best corresponding performance of
the plane sweep algorithm without partitioning. 1D partitioning is
up to 32% faster compared to 2D partitioning.

4.4 Parallel Evaluation
Last, we test the parallel version of the algorithm using 1D parti-
tioning. Table 4 summarizes, for the four join queries, the runtime

achieved by our parallel evaluation. The performance scales grace-
fully with the number of threads, until it stabilizes over 20 threads,
which equals the number of physical cores in our machine. As a
general conclusion, our parallel design takes full advantage of the
system resources to greatly reduce the join cost.
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