¹Faculty of Computer Science Free University of Bozen-Bolzano, Italy {tchond,gamper}@inf.unibz.it

Motivation

Finding multiple short yet different routes between two locations in a road network is a problem with various real-world applications:

- ✓ Commercial Route Planners
- Evacuation planning
- ✓ Humanitarian aid

Related Work

- Finding k dissimilar alternative paths
- Candidate sets
- Alternative graphs
- Edge penalties
- Multi-criteria optimization

Alternative Paths

Path Similarity

The similarity of a path p to another path p' is determined by their overlap ratio:

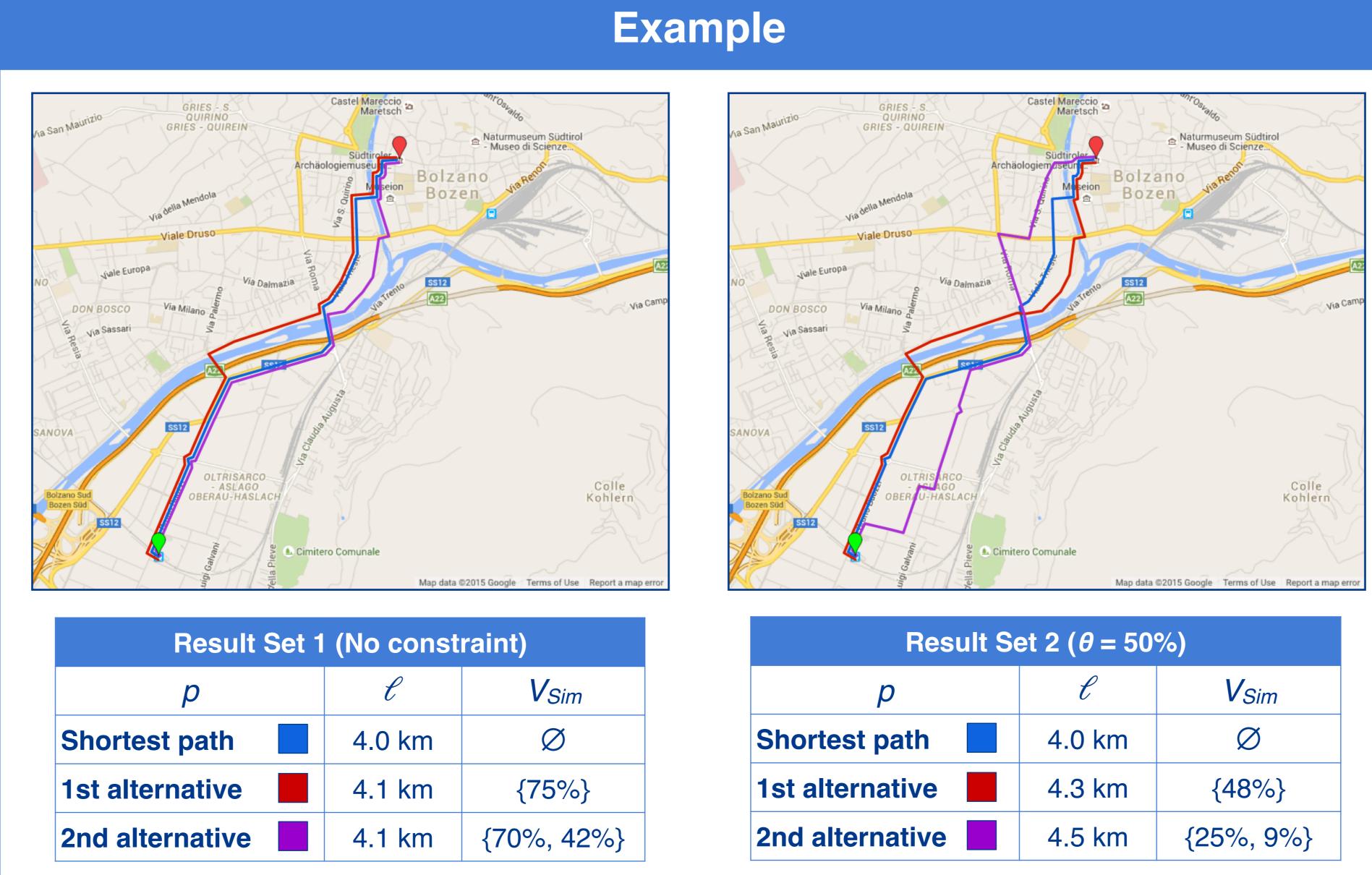
$$Sim(p,p') = \frac{\sum_{(n_x,n_y)\in p\cap p'} w_{xy}}{\ell(p')}$$

Alternative Path

Given a set of paths P from s to t and a similarity threshold θ , a path $p(s \rightarrow t)$ is alternative to P if $\forall p_i \in P$: $Sim(p,p_i) \leq \theta$.

Alternative Routing: k-Shortest Paths with Limited Overlap

Theodoros Chondrogiannis¹


Panagiotis Bouros^{2,3}

² Department of Computer Science Aarhus University, Denmark pbour@cs.au.dk

k-Shortest Paths with Limited Overlap

Given a source s and a target t, the k-SPwLO is a set of k paths from s to t, sorted by length in increasing order, such that:

- (a) the set includes the shortest path $p_0(s \rightarrow t)$,
- (b) every path is dissimilar to its predecessors w.r.t. a similarity threshold θ ,
- (c) all *k* paths are as short as possible.

A Baseline Algorithm

ALGORITHM BSL (G, s, t, k, θ) initialize empty set P_{LO} while $|P_{LO}| < k$ and p_c is not null do $p_c \leftarrow NextSP(G, s, t)$ *compute* V_{Sim} for p_c if $V_{Sim} \leq \theta$ then add p_c to P_{LO} return P_{LO}

Johann Gamper¹

Ulf Leser³

³ Department of Computer Science Hunboldt-Universität zu Berlin, Germany leser@informatik.hu-berlin.de

Result Set 2 (θ = 50%)					
p	l	VSim			
ortest path	4.0 km	Ø			
alternative	4.3 km	{48%}			
alternative	4.5 km	{25%, 9%}			

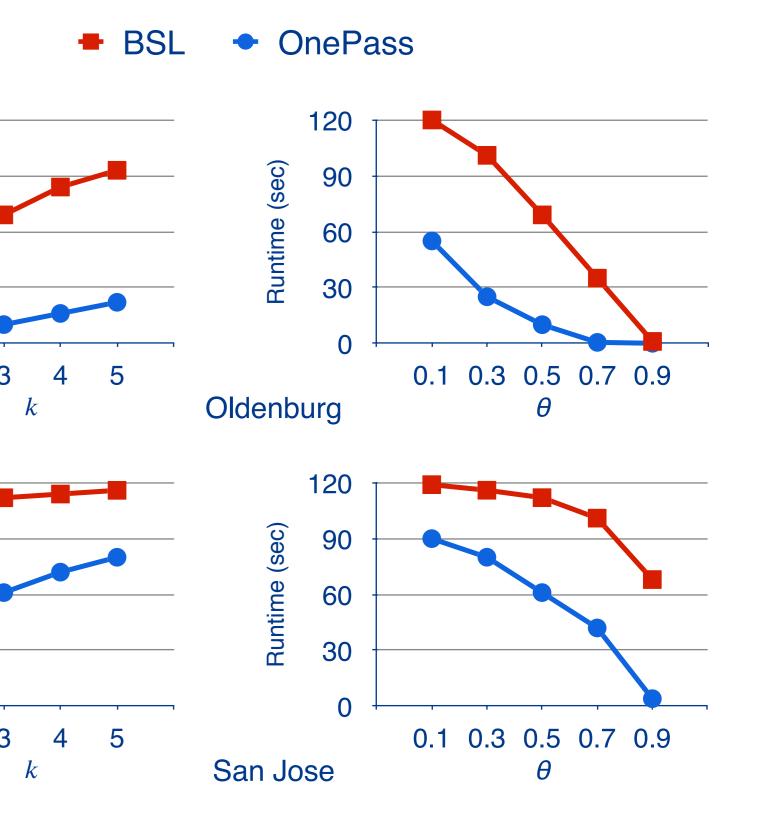
- Employs Yen's algorithm to create new paths
- Applies no pruning; all possible paths have to be considered

) 			
in w	if <i>l</i>	ize , <i>V</i> , <i>V</i> , <i>V</i> , <i>V</i>	P_L P_LOI d_n $d_$.0 < - 0 c e
F	lesp	Sa	Da der an J	nb Io
Runtime (sec)	120 90 60 30 0		2	3
Runtime (sec)	120 90 60 30 0		2	, 3

OnePass Algorithm

TION: If p is an alternative to P_{LO} i.e. hen $V_{Sim} \leq \theta$ holds for every subpath of p.

IM OnePass (G, s, t, k, θ) $_{O}$ and priority queue Q with $p_{O}(s,t)$ < k and Q is not empty **do** extract label with min \mathcal{C} from Q; $ode(p_c) == t$ then to P_{LO}


 V_{Sim} for all labels in Q

d p_c and create new paths ute V_{Sim} for the new paths eue every new path where $V_{Sim} \leq \theta$

Experiments

tasets	Nodes	Edges
burg	6,105	14,058
ose	18,263	47,594

time varying k and θ :

