
Fast Indexing for Temporal Information Retrieval
Christian Rauch

Institute of Computer Science
Johannes Gutenberg University Mainz

Mainz, Germany
crauch@uni-mainz.de

Panagiotis Bouros
Institute of Computer Science

Johannes Gutenberg University Mainz
Mainz, Germany

bouros@uni-mainz.de

Abstract
Temporal aspects have received tons of interest in Information
Retrieval (IR) and related fields, including database search. The
focus of temporal IR is on improving the effectiveness of search by
exploiting temporal information in objects and queries. In this work,
we study efficient indexing for the fundamental time-travel IR query.
Given such a query 𝑞 with a time interval of interest and a set of
descriptive elements (e.g., keywords), the goal is to retrieve all data
objects (e.g., documents) whose time interval overlaps with query’s
and their description contains the elements in 𝑞. Existing methods
extend the inverted index to answer time-travel IR queries, with
simple but ineffective temporal indexing. We propose new methods
which capitalize on the state-of-the-art interval index HINT in two
ways; either by extending again the inverted index or adopting the
time-first irHINT approach which directly builds on HINT. Our
experiments showed that irHINT outperforms all IR-first methods,
while exhibiting good indexing and updating costs.

CCS Concepts
• Information systems→ Information retrieval query pro-
cessing; Temporal data; Database query processing.

Keywords
Temporal data, interval data, information retrieval, query process-
ing, indexing
ACM Reference Format:
Christian Rauch and Panagiotis Bouros. 2026. Fast Indexing for Temporal
Information Retrieval. In Proceedings of Proceedings of the 2026 International
Conference on Management of Data (SIGMOD ’26). ACM, New York, NY,
USA, 15 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Information Retrieval (IR) focuses on retrieving the most relevant
objects from an existing collection; these objects are typically un-
structured or semi-structured documents, e.g., web pages, but a
similar process also applies for text-search in database systems
and multimedia search, e.g., for images. Object relevance is defined
in comparison to a user-defined query object, e.g., a set of key-
words (most popular format), a document or a query image. To

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’26, Bengaluru, India
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

incorporate temporal dynamics, temporal IR has emerged as an
interesting subfield of research. Prior work in temporal IR includes
topics such as query analysis to understand the intent behind user
search, e.g., [39, 40, 46, 50, 57, 63], indexing and query processing,
e.g., [3, 4, 7, 53, 62], ranking e.g., [6, 12, 17, 27, 37, 42, 58] and clus-
tering e.g., [1, 2, 10, 65]. An extensive overview of the temporal IR
can be found in [11, 24, 41] and its Wikipedia article.1

Our focus is on the indexing and query processing challenge. We
study the problem of efficiently processing time-travel IR contain-
ment queries which are among themost fundamental and important
instances of temporal IR search. 2 We assume that every data object
𝑜 (e.g., a document version in a archive) is associated with a time in-
terval [𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑] which models its lifespan (e.g., the time period
during which the version was valid), and a set of descriptive ele-
ments 𝑜.𝑑 (e.g., the terms included in the version). Given a collection
of such objects and a query object 𝑞, a time-travel IR query retrieves
all data objects whose time interval overlaps with the [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑]
query interval and their description contains the elements from
𝑞.𝑑 . Such a query finds application in several scenarios. In archive
search, a temporal IR query could retrieve all versions (or revisions)
of articles in Wikipedia from January 1, 1980 until December 31,
2000, relevant to the US elections; in this example, the query con-
tains the “US”, “elections” keywords and time interval [1980-01-01,
2000-12-31]. As an another example consider the field of Music IR
and the collection of streaming user sessions maintained by Spotify
[9]; each session spans a specific time period and its description
holds the 𝑖𝑑s of all streamed tracks. A time-travel IR query could
request the sessions where users listened to Beethoven’s “Ode to
Joy” and “Für Elise” from January 1 until January 31, 2024. Time-
travel IR queries can be also used in market analysis where basket
data contain the products bought by customers within a specific
time period, i.e., their visit to the store. For instance, we might
be interested in finding all last month sessions where a copy of
the “Shining”, the “It” and the “Misery” novels on Amazon were
purchased.

A straightforward approach for time-travel IR queries is to di-
rectly utilize an IR index; the most dominant is the inverted index
[67], which associates every element 𝑒 with a postings list I[𝑒]
of the objects that contain 𝑒 . To incorporate the time dimension,
state-of-the-art methods extend the classic inverted index so that
every posting also includes the time interval of the corresponding
object. Despite its simplicity, this approach fails to filter out can-
didates based on their time intervals as no temporal indexing is
in place. For this purpose, Berberich at al. [7] proposed a vertical
partitioning of every postings list by first dividing the time domain

1https://en.wikipedia.org/wiki/Temporal_information_retrieval
2Containment and relevance ranking queries are the most fundamental types of IR
search; in the future, we plan to also study relevance-based temporal IR search.

1

https://orcid.org/0009-0002-7121-5247
https://orcid.org/0000-0002-8846-4330
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://en.wikipedia.org/wiki/Temporal_information_retrieval

SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India Christian Rauch and Panagiotis Bouros

into disjoint slices. Later, Anand et al. [4] presented a horizontal
partitioning, where the contents of each postings list are grouped
into shards according to their 𝑜.𝑡𝑠𝑡 timestamp.
Motivation. Although slicing and sharding do accelerate temporal
IR search, they share two key weaknesses. First, they both fail to
capitalize on efficient temporal indexing. Indexing intervals has
been extensively studied in the past for temporal indexing, amongst
other scenarios. Proposed structures include the segment [22] and
the interval tree [26], 1D partitioning such a 1D-grid, the period
index [5] and its follow-up RD-index [13, 14], the timeline index
[43] and HINT [19, 20]. The slicing technique essentially builds
upon the 1D-grid partitioning. However, we focus on HINT as the
two independent studies in [19, 20] and [13, 14] showed this is the
state-of-the-art for indexing intervals outperforming by at least one
order of magnitude, all competitive indices, including a 1D-grid.

As their second weakness, both slicing and sharding follow an IR-
first approach, i.e., they primarily index the description of an object
and secondarily, its valid time. This approach will be efficient unless
the query elements appear frequently in the collection, in which
case, a large number of comparisons are required to determine the
temporally qualifying objects. Such a scenario is in fact common as
in many cases, the probability of an element to appear in an query
follows the element frequency distribution in the collection.

Surprisingly, no previous indexing method in temporal IR has in-
vestigated the option to build on top of interval (temporal) indexing
instead of the inverted index; such an approach will be able to filter
out candidates first by time. Under this premise, our study shares
common ground with spatio-textual querying; see [16] for the most
recent survey. However, there are two differences; (1) the majority
of these works consider objects without extent, i.e., points in space,
and (2) their spatial/multi-dimensional indexing is not suitable for
intervals. For instance, the authors in [21] showed that HINT out-
performs an off-the-shelf spatial index [22, 31], after mapping the
interval timestamps to a (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) 2D space [48, 62].
Contributions. In view of the above weaknesses, we investigate
how to enhance the computation of time-travel IR queries by uti-
lizing the state-of-the-art HINT to index the object’s time interval.
For this purpose, we explore two directions designing solutions
that adopt the IR-first approach and a completely novel time-first.
Specifically, the key contributions of this paper are as follows:

• We devise an IR-first method in two variants which build upon
the temporal inverted index, similar to [4, 7]. But, instead of
slicing or sharding the postings lists, we organize every list as
a HINT. Such design takes advantage of HINT’s efficiency in
determining the objects that qualify temporally. Also, it can
lower the storage requirements compared to slicing as HINT is
more space efficient than the 1D-grid.
• We also design a hybrid that pairs the advantages of HINT with
slicing. By employing a dual-copy for each postings list, this
method combines HINT’s fast range (time-travel) queries on
intervals with the efficiency of slicing for the list intersections.
• We propose a novel time-first indexing scheme called irHINT
which directly builds upon the temporal indexing of HINT.
The irHINT injects every partition of HINT’s hierarchy with
inverted indexing. We present two variants of irHINT; the first

Table 1: Notation summary
notation description
𝑖 = [𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑] time interval
𝑒 ∈ D descriptive element from global dictionary D
𝑜 ∈ O data object in collection O
⟨𝑜.𝑖𝑑 , [𝑜.𝑡𝑠𝑡 , 𝑜.𝑡𝑒𝑛𝑑], 𝑜 .𝑑 ⟩ object’s id, time interval and description
I (temporal) inverted index
I[𝑒] postings list for element 𝑒
H HINT index
H[𝑒] postings HINT for element 𝑒
𝑃ℓ,𝑗 𝑗 -th partition at level ℓ of HINT
𝑃ℓ,𝑓 (𝑃ℓ,𝑙) first (last) relevant partition at level ℓ
𝑃𝑂
ℓ,𝑗

(𝑃𝑅
ℓ,𝑗

) division of 𝑃ℓ,𝑗 with originals (replicas)
I𝑂
ℓ,𝑗

(I𝑅
ℓ,𝑗

) inverted index for original (replicas) division of 𝑃ℓ,𝑗
𝑞 = ⟨ [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑], 𝑞.𝑑 ⟩ time-travel IR query

focuses on enhancing the query performance, while the second,
on reducing the index size.
• We compare our methods against the temporal inverted index
with slicing or sharding. The tests show that our IR-first meth-
ods are competitive to the state-of-the-art; sometimes even
faster. More importantly though, the tests showed the advan-
tage of time-first indexing; performance irHINT can be up to 2
times faster than the fastest IR-first competitor with lower space
requirements; the size variant is also faster than the competition
while having the lowest index size.

Outline. The rest of the paper is as follows. Section 2 formally
defines time-travel IR queries and provides the necessary back-
ground on indexing. Section 3 presents our IR-first solutions, while
Section 4 details irHINT. Section 5 reports our experiments. Last,
Section 6 discusses related work and Section 7 concludes our study.

2 Preliminaries
We introduce notation and formally define the problem of temporal
IR search. Then, we briefly describe the state-of-the-art indices for
time-travel IR queries and also revisit the state-of-the-art interval
index. Table 1 summarizes the notation used throughout the text.

2.1 Notation and problem definition
A time interval or simply an interval in the context of this paper,
is defined by its starting and ending point in the time domain.
Formally, an interval 𝑖 = [𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑] with 𝑡𝑠𝑡 ≤ 𝑡𝑒𝑛𝑑 includes all time
points 𝑡 with 𝑡𝑠𝑡 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑 . We say that two intervals 𝑖1, 𝑖2 overlap
if they share at least one time point; formally:

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑖1, 𝑖2) =

TRUE, if 𝑖2 .𝑡𝑠𝑡 ≤ 𝑖1 .𝑡𝑠𝑡 ≤ 𝑖2 .𝑡𝑒𝑛𝑑 or

𝑖1 .𝑡𝑠𝑡 ≤ 𝑖2 .𝑡𝑠𝑡 ≤ 𝑖1 .𝑡𝑒𝑛𝑑
FALSE, otherwise

Wemodel a data object𝑜 as an ⟨𝑖𝑑, [𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑], 𝑑⟩ triple, where𝑜.𝑖𝑑
is the object’s identifier (used to access other types of information
potentially attached to the object), [𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑] is the time interval
associated with 𝑜 representing its lifespan, and 𝑑 is a set of elements
drawn from a global dictionary D which describe the object. 3 For
example, if 𝑜 is a document (or a version of a document) then set 𝑑
includes the terms contained in 𝑜 .

3For now, we only assume set semantics for 𝑜.𝑑 ; bag semantics and language models,
where 𝑜.𝑑 can contain an element 𝑒 multiple times are left for future work.

2

Fast Indexing for Temporal Information Retrieval SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India

q.d = {a,c}

o1

o2

o6

o3

o4

o5

o7

time

o8

o1.d = {a,b,c}
o2.d = {a,c}
o3.d = {b}
o4.d = {a,b,c}
o5.d = {b,c}
o6.d = {c}
o7.d = {a,c}
o8.d = {c}

Figure 1: Our running example

ALGORITHM 1: Time-travel IR query on tIF
Input : tIF index I, query 𝑞 = ⟨ [𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑], 𝑑 ⟩
Output : set of object ids

1 C ← ∅; ⊲ initialize result set

2 sort 𝑞.𝑑 by element frequency; ⊲ in increasing order

3 𝑒∗ ← least frequent element in 𝑞.𝑑 ;
4 foreach entry ⟨𝑜.𝑖𝑑, [𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑] ⟩ ∈ I[𝑒∗] do
5 if 𝑞.𝑡𝑠𝑡 ≤ 𝑜.𝑡𝑒𝑛𝑑 and 𝑜.𝑡𝑠𝑡 ≤ 𝑞.𝑡𝑒𝑛𝑑 then ⊲ check temporal predicate
6 C ← C⋃{𝑜.𝑖𝑑 }; ⊲ update candidates

7 foreach element 𝑒 ∈ 𝑞.𝑑 \ {𝑒∗ } do
8 C ← C⋂ I[𝑒]; ⊲ update candidates via list intersection

9 return C;

Given a collection of objectsO, we next define temporal IR search,
which blends its classic containment search counterpart with time-
travel search; the latter is defined as a range query on intervals.

Definition 2.1 (Time-travel IR query). Let [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑] be a query
time interval and 𝑞.𝑑 be a set of query elements, a time-travel
IR query returns all objects in O whose interval overlaps with
[𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑] and their description contains all elements in 𝑞.𝑑 ;
formally, every object 𝑜 with:

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ([𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑], [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑]) = 𝑇𝑅𝑈𝐸, and 𝑜.𝑑 ⊇ 𝑞.𝑑

Note that if O contains e.g., document versions in an archive, our
goal is to find the versions, not the distinct documents, that contain
the query elements (terms); a similar assumption was made in [4].

Example 2.2. Figure 1 introduces our running example of 8 ob-
jects {𝑜1, . . . , 𝑜8}. The descriptive elements for the objects are drawn
from the D = {a,b,c} dictionary. Consider the time-travel IR query
𝑞 with its time interval corresponding to the red shaded area and
𝑞.𝑑 = {a,c}. The answer to 𝑞 consists of objects 𝑜2, 𝑜4 and 𝑜7 whose
time intervals overlap with the shared area and their descriptions
contain both user-given elements.

2.2 Temporal IR indexing
As explained in the introduction, state-of-the-art temporal IR in-
dexing builds on top of the inverted index. Therefore, we start our
discussion with the base temporal inverted index which we denote
by tIF.4 The index associates every element 𝑒 in the global dictio-
nary D with a time-aware postings list I[𝑒] of the objects that
contain 𝑒 . Every ⟨𝑜.𝑖𝑑, [𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑]⟩ entry of such list includes the
identifier and the [𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑] time interval of the correspond-
ing object 𝑜 .5 For instance, the I[a] list in our running example
contains the ⟨𝑜1, [. . .]⟩, ⟨𝑜2, [. . .]⟩, ⟨𝑜4, [. . .]⟩ and ⟨𝑜7, [. . .]⟩ entries.

4We use the IF abbreviation originating from the term inverted file index.
5Compression techniques used to reduce the space requirements in IR systems, e.g.,
those proposed in [56]. are orthogonal to the above scheme.

c

b

a

o1
o2

o4 o6

o1

o1

o2

o3

o4

o5

time

o4

o7

o5

Slice 1 Slice 2 Slice 3 Slice 4
o8

o7

q.d = {a,c}

directory I[a]

I[b]

I[c]

Figure 2: tIF+Slicing for the running example

Given a tIF index for a collection of objects, to answer a time-
travel IR query𝑞 = ⟨[𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑], 𝑑⟩ it suffices to intersect the postings
lists of all elements 𝑒 ∈ 𝑞.𝑑 , omitting the entries for the objects
whose time interval does not overlap the [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑] query in-
terval. For typical IR containment search, a common practice is to
maintain the entries inside a postings list ordered by their object id.
Such sorting allows us to efficiently compute list intersections in a
merge-sort fashion. Moreover, the elements in 𝑞.𝑑 are considered
by their frequency in the global dictionary, in increasing order. This
way we can reduce the size of the intermediate lists which contain
candidate results, and accelerate the subsequent intersections. To
further enhance the evaluation process, before computing the first
list intersection, we can exclude from the postings list of the least
frequent element in 𝑞.𝑑 , the objects that do not qualify the tempo-
ral overlap predicate. Under this, we avoid checking objects that
are guaranteed not to be results, during the next list intersections.
Algorithm 1 provides a high-level pseudocode for computing time-
travel IR queries. For our running example, we first access I[a] as
element a is less frequent than c. We then filter out object 𝑜1 and
intersect candidates 𝐶 = {𝑜2, 𝑜4, 𝑜7} with I[c].
Slicing. To accelerate the temporal overlap predicate of the query,
Berberich et al. [7] adopted a breakdown of the time domain into
a sequence of non-overlapping slices. Under this slicing, every
postings list I[𝑒] of the inverted index is divided into smaller
sub-lists, each representing a slice of the time domain. The rele-
vant domain slices for an I[𝑒] are essentially those overlapping
the [I[𝑒] .𝑡𝑠𝑡 ,I[𝑒] .𝑡𝑒𝑛𝑑] time interval which represents the tem-
poral span of the entire list, with I[𝑒] .𝑡𝑠𝑡 = min𝑜∈I[𝑒] {𝑜.𝑡𝑠𝑡 } and
I[𝑒] .𝑡𝑒𝑛𝑑 = max𝑜∈I[𝑒] {𝑜.𝑡𝑒𝑛𝑑 }. An entry ⟨𝑜.𝑖𝑑, [𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑]⟩ in
the original I[𝑒] list, is replicated to all slices (and their sub-lists) it
overlaps. Figure 2 shows the tIF index with Slicing for our running
example where each postings list is divided into 4 sub-lists, using
the depicted slices. Object 𝑜4 whose interval overlaps all 4 slices, is
replicated to every sub-list of I[a], I[b] and I[c].

This replication is necessary to ensure the correctness of query
processing but may also lead to duplicate results.6 Duplicates can be
discarded by hashing or more efficiently, using the reference value
method from [25], which was originally proposed for rectangles
but can be applied to intervals as well. Given a time-travel IR query
𝑞, the evaluation process in the base tIF is adapted so that for each

6Note that Berberich at al. [7] only consider stabbing queries in time, which define
a single timestamp 𝑞.𝑡 , instead of an interval [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑]. Yet, the work can be
extended in our setting as long as we deal with duplicate results.

3

SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India Christian Rauch and Panagiotis Bouros

c

b

a

o1

o2

o4

o1

o1

o2

o3

o4

o5

o4

o7

o5

Shard 1

Shard 2

Shard 1

Shard 2

Shard 1

Shard 2

Shard 3

o7
o8

directory
I[a]

I[b]

I[c]
o6

q.d = {a,c}

Figure 3: tIF+Sharding for the running example

element 𝑒 ∈ 𝑞.𝑑 , only the sub-lists of I[𝑒] whose slices overlap
[𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑] are considered. For instance, in our running example,
we access only the sub-lists for the first three slices in I[a], I[c].

The authors in [7] also investigated how to set the number of
slices in the time domain. They modeled this tuning task as an opti-
mization problem. Given a user-defined upper bound on the tolera-
ble index-size increase (due to replicating object entries) compared
to the original temporal inverted index, the goal is to determine the
best slicing that satisfies the above constraint while minimizing the
expected query processing cost. This query cost is defined as the
expected number of index entries read.
Sharding. Instead of dividing the time domain to partition the
postings lists, Anand et al. [4] proposed to group the contained
⟨𝑜.𝑖𝑑, [𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑]⟩ entries according to their 𝑜.𝑡𝑠𝑡 , completely
avoiding the need for replication and thus, for result de-duplication.
These groups are called shards. The contents of a shard are or-
dered by 𝑡𝑠𝑡 and ideally, satisfy the staircase property; for every
two entries ⟨𝑜1 .𝑖𝑑, [𝑜1 .𝑡𝑠𝑡 , 𝑜1 .𝑡𝑒𝑛𝑑]⟩, ⟨𝑜2 .𝑖𝑑, [𝑜2 .𝑡𝑠𝑡 , 𝑜2 .𝑡𝑒𝑛𝑑]⟩ with
𝑜1 .𝑡𝑠𝑡 ≤ 𝑜2 .𝑡𝑠𝑡 in the shard, 𝑜1 .𝑡𝑒𝑛𝑑 ≤ 𝑜2 .𝑡𝑒𝑛𝑑 also holds. Figure 3
depicts the tIF index with Sharding for our running example. Every
postings list is horizontally divided into shards that satisfy the stair-
case property. For instance, the I[a] list is split into two shards,
the first containing the entries for 𝑜4, 𝑜2 and the second, for 𝑜7, 𝑜1.

When evaluating a temporal IR query, a shard is scanned until
the first entry that starts after the [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑] intervals is found.
The remaining entries in the shard are guaranteed not to overlap
the query. To accelerate the shard scanning, the authors designed
an auxiliary structure called the impact list which maintains pairs
of 𝑡𝑠𝑡 points and offsets to the shard contents. Upon querying, the
impact list is first probed to determine the offset position from
which the shard should be scanned according to the query interval.

In practice, the number of ideal shards per postings list can be
overwhelmingly large, which may affect the query performance.
To deal with this issue, the authors in [4] proposed a cost-aware
merging approach of ideal shards, which intuitively relaxes the
staircase property requirement.

2.3 Indexing intervals with HINT
HINT [19, 20] hierarchically and uniformly divides the domain into
2ℓ partitions for ℓ = 0 to 𝑚, defining 𝑚 + 1 levels, as shown in
Figure 4. Partitions at level ℓ are denoted by 𝑃ℓ,0 to 𝑃ℓ,2ℓ−1. Each

P3,1 P3,7P3,3

P2,0

P3,7P3,6P3,5P3,2

P2,1

q

i

P0,0

P1,1

P2,3

P1,0

P3,4P3,0

P2,2

Figure 4: HINT example

interval 𝑖 is normalized, discretized in the [0, 2𝑚−1] domain, and
assigned to the smallest set of partitions from all levels that cover 𝑖
(at most 2 partitions per level). For example, in Figure 4, the interval
𝑖 is assigned to partitions 𝑃3,1, 𝑃2,1, and 𝑃3,4. The intervals in each
partition 𝑃 are split into two divisions (sub-partitions): those that
start inside 𝑃 (called originals), denoted by 𝑃𝑂 , and those that start
before 𝑃 (called replicas), denoted by 𝑃𝑅 . Hence, interval 𝑖 is stored
inside 𝑃𝑂3,1 division which stores originals in 𝑃3,1, while in 𝑃2,1 and
𝑃3,4, inside the 𝑃𝑅2,1 and 𝑃

𝑅
3,4 replica divisions, respectively.

Given a (selection) range query 𝑞 = [𝑞.𝑠𝑡, 𝑞.𝑒𝑛𝑑], at each index
level ℓ only the sequence of partitions 𝑃ℓ, 𝑗 that intersect 𝑞 are
accessed; we call these, relevant partitions. For query 𝑞 in Figure 4,
only partitions 𝑃3,4 − 𝑃3,7, 𝑃2,2, 𝑃2,3, 𝑃1,1 and 𝑃0,0 will be accessed.
To avoid producing duplicated results, originals are accessed for
all relevant partitions at each level ℓ while replicas, only for the
first relevant partition. Finally, the endpoints of an interval 𝑖 are
compared to query 𝑞 only for the first and the last relevant partition
at a level; for every (original) interval 𝑖 inside the rest (intermediate)
partitions 𝑞.𝑠𝑡 < 𝑖 .𝑠𝑡 < 𝑞.𝑒𝑛𝑑 holds by construction of the index.
Bottom-up traversal. The number of partitions where compar-
isons are required can be further reduced by traversing HINT in
a bottom-up fashion, instead of a conventional top-down. Under
this, comparisons are necessary only in 4 partitions. Consider again
Figure 4. For query 𝑞, no comparisons are needed in partition 𝑃2,3,
because all intervals assigned to 𝑃2,3 should overlap with 𝑃3,6 and
the extent of 𝑃3,6 is covered by 𝑞. Hence, the start of all intervals in
𝑃2,3 is guaranteed to be before 𝑞.𝑒𝑛𝑑 (which is inside 𝑃3,7).

Algorithm 2 illustrates range queries on HINT. The algorithm
uses the 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 , 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 auxiliary flags to mark if comparisons
are necessary at the current level (and all levels above it), for the
first and the last relevant partition, respectively, At each level ℓ ,
the sequence of relevant partitions to the query is identified in
Lines 5–6, based on the ℓ-prefixes of 𝑞.𝑠𝑡 and 𝑞.𝑒𝑛𝑑 , denoted by 𝑓

and 𝑙 , respectively. Every relevant partition 𝑃ℓ, 𝑗 is then processed
in Lines 7–22. For the first, 𝑃ℓ,𝑓 both originals 𝑃𝑂

ℓ,𝑓
and replicas 𝑃𝑅

ℓ,𝑓

are accessed. If 𝑓 = 𝑙 (i.e., the first and the last relevant partitions
coincide) and both 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 , 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 are set, then comparisons
are needed for both 𝑃𝑂

ℓ,𝑓
and 𝑃𝑅

ℓ,𝑓
. Otherwise, if only 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 is

set, the algorithm safely skips the 𝑞.𝑠𝑡 ≤ 𝑖 .𝑒𝑛𝑑 comparisons, while
if only 𝑐𝑜𝑚𝑝𝑓 𝑖𝑠𝑡 is set, regardless whether 𝑓 = 𝑙 , we only perform
𝑞.𝑠𝑡 ≤ 𝑖 .𝑒𝑛𝑑 comparisons to both 𝑃𝑂

ℓ,𝑓
and 𝑃𝑅

ℓ,𝑓
. If neither flag is set,

then all intervals in the first relevant partition are simply reported as
results. When the last partition 𝑃ℓ,𝑙 is examined and 𝑙 > 𝑓 (Line 19)
Algorithm 2 considers 𝑃𝑂

ℓ,𝑙
and applies only the 𝑖 .𝑠𝑡 ≤ 𝑞.𝑒𝑛𝑑 test for

each interval there. Finally, for every partition in-between the first
and the last relevant ones, all original intervals are simply reported.

4

Fast Indexing for Temporal Information Retrieval SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India

ALGORITHM 2: Range query on HINT
Input :HINT index H, query 𝑞 = [𝑠𝑡, 𝑒𝑛𝑑]
Output : set of all intervals that overlap 𝑞

1 R ← ∅; ⊲ initialize result set

2 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 ← TRUE;
3 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 ← TRUE;
4 foreach level ℓ =𝑚 to 0 do ⊲ bottom-up fashion
5 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡) ; ⊲ first relevant partition

6 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑) ; ⊲ last relevant partition

7 foreach partition 𝑗 = 𝑓 to 𝑙 do
8 if 𝑗 = 𝑓 then
9 if 𝑝 = 𝑙 and 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then
10 R ← R⋃{𝑖 .𝑖𝑑 |𝑖 ∈ 𝑃𝑂

ℓ,𝑗
, 𝑞.𝑠𝑡 ≤ 𝑖 .𝑒𝑛𝑑 ∧ 𝑖 .𝑠𝑡 ≤ 𝑞.𝑒𝑛𝑑 };

11 R ← R⋃{𝑖 .𝑖𝑑 |𝑖 ∈ 𝑃𝑅
ℓ,𝑗
, 𝑞.𝑠𝑡 ≤ 𝑖 .𝑒𝑛𝑑 };

12 else if 𝑖 = 𝑙 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then
13 R ← R⋃{𝑖 .𝑖𝑑 |𝑖 ∈ 𝑃𝑂

ℓ,𝑗
, 𝑖 .𝑠𝑡 ≤ 𝑞.𝑒𝑛𝑑 };

14 R ← R⋃{𝑖 .𝑖𝑑 |𝑖 ∈ 𝑃𝑅
ℓ,𝑗
};

15 else if 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 then
16 R ← R⋃{𝑖 .𝑖𝑑 |𝑖 ∈ 𝑃𝑂

ℓ,𝑗

⋃
𝑃𝑅
ℓ,𝑗
, 𝑞.𝑠𝑡 ≤ 𝑖 .𝑒𝑛𝑑 };

17 else
18 R ← R⋃{𝑖 .𝑖𝑑 |𝑖 ∈ 𝑃𝑂

ℓ,𝑗

⋃
𝑃𝑅
ℓ,𝑗
};

19 else if 𝑗 = 𝑙 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then ⊲ 𝑙 > 𝑓

20 R ← R⋃{𝑖 .𝑖𝑑 |𝑖 ∈ 𝑃𝑂
ℓ,𝑗
, 𝑖 .𝑠𝑡 ≤ 𝑞.𝑒𝑛𝑑 };

21 else ⊲ in-between or last (𝑙 > 𝑓), no comparisons
22 R ← R⋃{𝑖 .𝑖𝑑 |𝑖 ∈ 𝑃𝑂

ℓ,𝑗
};

23 if 𝑓 mod 2 = 0 then ⊲ last bit of 𝑓 is 0
24 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 ← FALSE;

25 if 𝑙 mod 2 = 1 then ⊲ last bit of 𝑙 is 1
26 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 ← FALSE;

27 return R;

Optimizations. First, the number of performed comparisons are
reduced by further dividing 𝑃𝑂 and 𝑃𝑅 of a partition 𝑃 . Specif-
ically, 𝑃𝑂 is split into subdivisions 𝑃𝑂𝑖𝑛 and 𝑃𝑂𝑎𝑓 𝑡 , so that 𝑃𝑂𝑖𝑛

(𝑃𝑂𝑎𝑓 𝑡) holds the intervals from 𝑃𝑂 that end inside (resp. after)
𝑃 . Similarly, each 𝑃𝑅 is divided into 𝑃𝑅𝑖𝑛 and 𝑃𝑅𝑎𝑓 𝑡 . Second, the
storage optimization reduces the index size. So far, each interval 𝑖 is
stored as a ⟨𝑖 .𝑖𝑑, 𝑖 .𝑠𝑡, 𝑖 .𝑒𝑛𝑑⟩ triple. But, only the 𝑃𝑂𝑖𝑛 subdivisions
require both endpoints. For 𝑃𝑂𝑎𝑓 𝑡 and 𝑃𝑅𝑖𝑛 , 𝑖 .𝑠𝑡 and 𝑖 .𝑒𝑛𝑑 are only
needed, respectively, while for 𝑃𝑅𝑎𝑓 𝑡 , none of the endpoints matter,
as no comparisons are performed. Another optimization to save on
comparisons is to keep the subdivisions sorted; each using its own
beneficial sorting. Due to data skewness & sparsity, many partitions
may be empty, especially at the lowest levels. To deal with this,
HINT merges the contents of all 𝑃𝑂 divisions at the same level ℓ
into a single table𝑇𝑂

ℓ
and builds an auxiliary index which is used to

access non-empty divisions upon querying. The last optimization
deals with potential cache misses while traversing the index. As no
comparisons are needed at most of the levels, HINT stores the 𝑖𝑑
and the endpoints of an interval separately. When no comparisons
are needed, the index directly reports results from the 𝑖𝑑 array.

3 Novel IR-first Indexing
We next study how to further enhance the performance of tIF by
capitalizing on the state-of-the-art index for intervals HINT.

q.d = {a,c}

c

b

a

o4

o2

o2

o7

o7

o1

o4

o5

o1 o3

o4

o5

o2

o2

o7

o7o6

o5

o8

o6

o1
o6

directory

H[a]

H[b]

H[c]P2,1

P3,1

P0,0

P2,2

Figure 5: tIF+HINT for the running example

3.1 The tIF+HINT index
As discussed in the introduction, the slicing extension to tIF dis-
cussed in Section 2.2, organizes every postings list using an 1D grid.
In view of the findings in [19, 20], we present a novel extension
to the temporal inverted index, which organizes every postings
list using a HINT instead. We denote this novel composite index
by tIF+HINT. For simplicity, we will describe tIF+HINT in what
follows, utilizing the unoptimized version of HINT but the optimiza-
tions discussed in Section 2.3 are orthogonal to our discussion and
hence can be applied; an exception arises for the beneficial/temporal
sorting, which we will clarify in the next paragraphs.

To build a tIF+HINT index, we combine the construction process
of base tIF with the construction of HINT. Consider the ⟨𝑜.𝑖𝑑, [𝑜.𝑡𝑠𝑡 ,
𝑜 .𝑡𝑒𝑛𝑑]⟩ entry in postings list I[𝑒]. The [𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑] interval is
first rescaled to the [0, 2𝑚−1] domain and then stored in the cor-
responding HINT for element 𝑒 , denoted byH[𝑒], inside at most
2 relevant (overlapping) partitions per level, as explained in Sec-
tion 2.3.7 Updates can be also implemented combining the updating
process of tIF with the updating process of HINT. To accommodate
updates that grow the time domain, we can take advantage of the
time-expanding extension to HINT presented in [21]. Figure 5 de-
picts the tIF+HINT index for our running example. Observe how
every postings list I[𝑒] is replaced by theH[𝑒] HINT; for simplic-
ity, assume that all postings HINTs contain 4 levels, i.e.,𝑚 = 3. To
distinguish between the originals 𝑂 and the replicas 𝑅 divisions
inside each HINT partition, we color replicas by a lighter shade of
blue. Take for instance object 𝑜6 inH[c]; the object is stored as an
original in 𝑃𝑂3,1 and as a replica in 𝑃𝑅2,1 and 𝑃

𝑅
2,2.

We nowdiscuss how to evaluate a time-travel IR query. A straight-
forward approach is to directly employ HINT’s querying process to
quickly determine candidate results which qualify the temporal con-
dition of the query. Specifically, we first execute the [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑]
range query on the HINT for the least frequent element 𝑒∗, which
determines the initial set of candidates C, i.e., the objects that con-
tain element 𝑒∗ andwhose time interval overlaps with [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑].
Then, in order to produce the final answer to the time-travel IR
query, we need to remove all candidates from C whose description

7One option to set𝑚 parameter is to use the cost model proposed in [19, 20] indepen-
dently for each postings list. We elaborate on the alternative in Section 5.2.

5

SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India Christian Rauch and Panagiotis Bouros

ALGORITHM 3: Time-travel IR query on tIF+HINT (using
binary search for intersections)
Input : tIF+HINT index, query 𝑞 = ⟨ [𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑], 𝑑 ⟩
Output : set of object ids

1 sort 𝑞.𝑑 by element frequency; ⊲ in increasing order

2 𝑒∗ ← first element in 𝑞.𝑑 ; ⊲ least frequent element

3 C ← RangeQuery(H[𝑒∗], [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑]) ; ⊲ determine candidates using

Algorithm 2

4 foreach element 𝑒 ∈ 𝑞.𝑑 \ {𝑒∗ } do
5 sort C; ⊲ by object id

6 R ← ∅; ⊲ initialize temporary result set

7 foreach level ℓ =𝑚 to 0 in the H[e] HINT do ⊲ bottom-up
8 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑡𝑠𝑡) ; ⊲ first relevant partition

9 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑡𝑒𝑛𝑑) ; ⊲ last relevant partition

10 foreach partition 𝑖 = 𝑓 to 𝑙 do
11 if 𝑖 = 𝑓 then
12 if 𝑝 = 𝑙 and 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then
13 R ← R⋃{𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂

ℓ,𝑗
, 𝑞.𝑡𝑠𝑡 ≤ 𝑜.𝑡𝑒𝑛𝑑 ∧ 𝑜.𝑡𝑠𝑡 ≤

𝑞.𝑡𝑒𝑛𝑑 ∧ 𝑜.𝑖𝑑 ∈ C};
14 R ← R⋃{𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑅

ℓ,𝑗
, 𝑞.𝑡𝑠𝑡 ≤ 𝑜.𝑡𝑒𝑛𝑑 ∧ 𝑜.𝑖𝑑 ∈ C};

15 else if 𝑖 = 𝑙 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then
16 R ← R⋃{𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂

ℓ,𝑗
, 𝑜 .𝑡𝑠𝑡 ≤ 𝑞.𝑡𝑒𝑛𝑑 ∧ 𝑜.𝑖𝑑 ∈ C};

17 R ← R⋃{𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑅
ℓ,𝑗
∧ 𝑜.𝑖𝑑 ∈ C};

18 else if 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 then
19 R ← R⋃{𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂

ℓ,𝑗

⋃
𝑃𝑅
ℓ,𝑗

, 𝑞.𝑡𝑠𝑡 ≤
𝑜.𝑡𝑒𝑛𝑑 ∧ 𝑜.𝑖𝑑 ∈ C};

20 else
21 R ← R⋃{𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂

ℓ,𝑗

⋃
𝑃𝑅
ℓ,𝑗
∧ 𝑜.𝑖𝑑 ∈ C};

22 else if 𝑖 = 𝑙 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then ⊲ 𝑙 > 𝑓

23 R ← R⋃{𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂
ℓ,𝑗

, 𝑜 .𝑡𝑠𝑡 ≤ 𝑞.𝑡𝑒𝑛𝑑 ∧ 𝑜.𝑖𝑑 ∈ C};

24 else ⊲ in-between or last (𝑙 > 𝑓), no comparisons

25 R ← R⋃{𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂
ℓ,𝑗
∧ 𝑜.𝑖𝑑 ∈ C};

26 if 𝑓 mod 2 = 0 then ⊲ last bit of 𝑓 is 0
27 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 ← FALSE;

28 if 𝑙 mod 2 = 1 then ⊲ last bit of 𝑙 is 1
29 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 ← FALSE;

30 C ← R; ⊲ update candidates

31 return C;

does not contain the remaining elements in 𝑞.𝑑 . To this end, we
traverse theH[𝑒] HINT hierarchy for each element 𝑒 ∈ 𝑞.𝑑 \ {𝑒∗},
and intersect set C with the contents of the 𝑃𝑂 or 𝑃𝑅 divisions
from all relevant partitions to determine the final results.

The unoptimized HINT does not store the contents of divisions
ordered by any attribute, but even when the sorting optimization
(see Section 2.3) is activated, each division has its own beneficial
sorting. Under this, the intersections with candidates C cannot be
computed in a typical, efficient merge-sort fashion. Nevertheless,
to fastly compute these intersections, we maintain set C sorted by
object 𝑖𝑑 , which allows us to compute every intersection as a series
of binary searches on C. Algorithm 3 illustrates the pseudocode of
this query evaluation method for tIF+HINT. After computing the
initial set of candidates C in Lines 1–3, the algorithm employs the
bottom-up strategy in Lines 4–30 to traverse theH[𝑒] HINT for
each element 𝑒 ∈ 𝑞.𝑑 \ {𝑒∗} and intersect set C with the divisions of
the relevant partitions. For this purpose, the candidates set C is first
sorted in Line 5. The Lines 7–29where eachH[𝑒] HINT is traversed,
are almost identical to the Lines 4–26 in Algorithm 2; note that the
notation is adapted to the temporal IR search setting (see Table 1).
The only meaningful difference is that for every object 𝑜 in a 𝑃𝑂
or 𝑃𝑅 division whose time interval overlaps [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑], we also

ALGORITHM 4: Time-travel IR query on tIF+HINT (using
merge-sort for intersections)
Input : tIF+HINT index, query 𝑞 = ⟨ [𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑], 𝑑 ⟩
Output : set of object ids

1 sort 𝑞.𝑑 by element frequency; ⊲ in increasing order

2 𝑒∗ ← least frequent element in 𝑞.𝑑 ;
3 C ← RangeQuery(H[𝑒∗], [𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑]) ; ⊲ determine candidates using

Algorithm 2

4 foreach element 𝑒 ∈ 𝑞.𝑑 \ {𝑒∗ } do
5 sort C; ⊲ by object id

6 foreach level ℓ =𝑚 to 0 in the H[e] HINT do
7 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑡𝑠𝑡) ; ⊲ first relevant partition

8 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑡𝑒𝑛𝑑) ; ⊲ last relevant partition

9 C ← C⋂𝑃𝑅
ℓ,𝑓

; ⊲ update candidates

10 foreach partition 𝑖 = 𝑓 to 𝑙 do
11 C ← C⋂𝑃𝑂

ℓ,𝑗
; ⊲ update candidates

12 return C;

check if its 𝑜.𝑖𝑑 is contained in the candidates set 𝐶 using binary
search. Finally, in Line 30, set C is updated to include only the 𝑖𝑑s
of the objects that contain all examined so far elements, before
continuing with the HINT for the next element in 𝑞.𝑑 . Consider
again our running example. We first evaluate the typical range
(time-travel) query in H[a], which defines the initial candidates
set C = {𝑜7, 𝑜2, 𝑜4}. We then sort C by object 𝑖𝑑 and juxtapose it
against every relevant division inH[c], using binary search. Take
for instance 𝑃𝑂3,1 = {⟨𝑜6, [. . .]⟩, ⟨𝑜7, [. . .]⟩, ⟨𝑜8, [. . .]⟩}. The time
interval of all contained objects overlaps with the query interval but
we output only 𝑜7 which is included in C. The algorithm continues
in a similar fashion, outputting 𝑜2 from 𝑃𝑂2,1 and 𝑜4 from 𝑃𝑂0,0.

Although the initial set of candidates C already contains only the
objects whose time interval overlaps the query one, we observe that
Algorithm 3 still conducts the temporal comparisons in Lines 13, 14,
16, 19 and 23 when traversing theH[𝑒] HINT for an element 𝑒 . The
reason for this practice is to avoid performing the potentially costly
binary search of the 𝑜.𝑖𝑑 ∈ C condition for all objects contained in
a division. In view of this tradeoff, we next revisit the merge-sort as
a viable option for the intersections between C and the divisions.

Specifically, we consider a modified version of HINT which or-
ders the contents of each division by the object 𝑖𝑑 .8 Algorithm 4
illustrates the pseudocode of the new query evaluation method for
tIF+HINT which now utilizes merge-sort to intersect candidates
C with HINT divisions. Similar to Algorithm 3, we initialize again
the set of candidates C using the H[𝑒∗] from the least frequent
element 𝑒∗. Then, for the remaining elements in 𝑞.𝑑 , it suffices to
traverse their HINT and directly intersect current set C with the
𝑃𝑂 or 𝑃𝑅 divisions of the relevant partitions in Lines 6–11. Observe
that the 𝑃𝑅 divisions are considered only for the first overlapping
partition 𝑓 at each level, while 𝑃𝑂 , for all relevant partitions, as
discussed in Section 2.3. In addition, also notice that the compfirst
and complast flags from Algorithm 2 are no longer used, simplifying
the traversing of the hierarchy; intuitively, there is no difference
in traversing HINT in a bottom-up or a top-down fashion. This

8Naturally, this sorting is incompatible with the beneficial/temporal sorting optimiza-
tion (by 𝑡𝑠𝑡 or 𝑡𝑒𝑛𝑑), discussed in Section 2.3. Intuitively, we expect this modification to
slow down the traditional range queries on HINT but drastically accelerate the intersec-
tions. On the other hand, we can still utilize the subdivisions, the storage optimization
and the optimizations for handling skewness & sparsity and cache misses.

6

Fast Indexing for Temporal Information Retrieval SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India

P3,5

P3,2

P2,1

P3,1

q.d = {a,c}

o3

o4

o5

o2

o2

o7

o7o6

o5

o8

o6

o1o6

P0,0

P1,1

P2,3

P3,7

P1,0

P3,3

P2,0 P2,2

P3,6P3,4P3,0

Figure 6: irHINT for the running example: partitioning

is because the algorithm does not perform any temporal compar-
isons; the correctness of the result is guaranteed as the initial set C
contains temporally qualifying objects.

3.2 A Hybrid Index
Despite employing merge-sort to efficiently intersect the candidates
set C, Algorithm 4 exhibits a critical shortcoming. Intuitively, the
algorithm is able to take full advantage of the HINT infrastructure
only for the first element in 𝑞.𝑑 (i.e., the least frequent element 𝑒∗)
when determining the initial candidates set C. In the subsequent
intersections, all optimizations proposed for HINT (e.g., the bottom-
up traversal) are never used with the exception of how to determine
the temporally relevant partitions per level. Hence, the querying
process of tIF+HINT in Algorithm 4 overall intersects exactly the
same candidates sets as for tIF+Slicing, but with a larger number
of partitions (or divisions). This fragmentation of the intersecting
process will slow down the queries as the number of elements
contained in 𝑞.𝑑 increases beyond one.

In view of the above, we devise a hybrid index denoted by
tIF+HINT+Slicing, which pairs the advantages of tIF+HINT with
those of tIF+Slicing. This hybrid IR-first index adopts a dual-structure
design. Specifically, the postings list for each term 𝑒 is stored twice:
the first copy inside a HINT H[𝑒] whose divisions are sorted by
object id, similar to the tIF+HINT variant in Algorithm 4; the sec-
ond copy, divided into sub-lists following a breakdown of its time
domain into slices, similar to tIF+Slicing. Under this design, given a
𝑞 = ⟨[𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑], 𝑑⟩ time-travel IR query, we rely on the range query-
ing onH[𝑒∗] to quickly determine the initial candidates set from
the least frequent element 𝑒∗, and then, execute the subsequent
intersections using the relevant partitions/slices in I[𝑒], which are
typically fewer than the relevant divisions inH[𝑒], avoiding this
way the fragmentation of the intersection process.

For query processing, we expect tIF+HINT+Slicing to outperform
or at least to be competitive to the best method among tIF+Slicing
and the other two tIF+HINT variants; Section 5 tests this claim.
However, we also expect to occupy more space than these methods
due to its dual-structure and copies design. The key to reduce
the space requirements of tIF+HINT+Slicing is the observation
that after determining the initial candidates set, the subsequent
intersections no longer need to check the temporal condition; the
same idea is employed in Algorithm 4 as well. A straightforward
way to build upon this observation is to completely omit the time
interval [𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑] inside the slice sub-lists for each element 𝑒 ,
storing only object’s 𝑜.𝑖𝑑 . But, in this case, we need to apply hashing
or sorting to deal with duplicates. Instead, we store a ⟨𝑜.𝑖𝑑, 𝑜 .𝑡𝑠𝑡 ⟩
pair which allows us to employ the more efficient reference value
[25] technique, as discussed in Section 2.2 for tIF+Slicing.

4 The irHINT Index
We next embark on a different indexing direction to boost tempo-
ral IR search. We propose a novel composite index termed irHINT
which directly builds upon the state-of-the-art HINT index for
intervals. The key idea of irHINT is to use a single HINT to hierar-
chically index the time domain but inject its structure with inverted
indices. Under this premise, time-travel IR queries can benefit from
HINT’s efficiency to quickly determine the divisions which may
contain temporally qualifying objects, and from the inverted in-
dexing to efficiently determine the final results. In what follows,
we present two variants of irHINT, elaborating on their strong and
weak points; later in Section 5, we experimentally compare these
variants for different query workloads and datasets.

4.1 Focus on performance
The first variant primarily focuses on high query performance. The
irHINT index comprises a HINT hierarchy for which the contents
of every 𝑃𝑂 and 𝑃𝑅 division are maintained inside a base temporal
inverted index as described in Section 2. The construction and the
maintenance process are driven by the HINT component; e.g., for
inserting a new object 𝑜 , we first determine which partitions (and
their divisions) should store𝑜 and then invoke the temporal inverted
index building process to include an entry for 𝑜 in these divisions.
A growing time-domain can again be handled as discussed in [21].
Figure 6 illustrates the partitioning of the domain applied by HINT
with𝑚 = 3, for our running example; similar to Figure 5, we color
replicas by a lighter shade of blue. For every non-empty division, we
construct the I𝑂 , I𝑅 temporal inverted indices, shown in Table 2.

Given a time-travel IR query, the evaluation process is also driven
by the HINT component. Specifically, the hierarchy is traversed
following the bottom-up approach (similar to Algorithm 2) and for
each relevant 𝑃𝑂 or 𝑃𝑅 division, a time-travel IR query is issued to
the corresponding tIF to collect results. The duplicate avoidance
principle of HINT which mandates 𝑃𝑅 divisions to be checked only
for the first relevant partition per level, guarantees that there is
no overlap among the outputs of the inverted index searches, and
therefore, no need for a de-duplication step. On the other hand,
thanks to the 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 flags, it is possible to fur-
ther accelerate the inverted index search in each division. Contrary
to Line 5 in Algorithm 1, we no longer have to check both the
𝑞.𝑡𝑠𝑡 ≤ 𝑜.𝑡𝑒𝑛𝑑 and 𝑜.𝑡𝑠𝑡 ≤ 𝑞.𝑡𝑒𝑛𝑑 conditions for all divisions, unless
both 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 flags are set. Algorithm 5 illustrates
the query evaluation process of the first irHINT variant, highlight-
ing the necessary changes in the bottom-up approach employed
by Algorithm 2; for simplicity, we only include the modified lines.
We denote by I𝑂

ℓ,𝑗
and I𝑅

ℓ,𝑗
the tIF indices of the 𝑃𝑂

ℓ,𝑗
and 𝑃𝑂

ℓ,𝑗
divi-

sions for the 𝑗-th relevant partition 𝑃ℓ, 𝑗 in level ℓ , respectively. In
each case (determined by the values of the 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡

flags, and the nature of current partition 𝑗), the algorithm extends
the current result set R with the output ofQueryTemporalIF which
computes the time-travel IR query on a division’s temporal inverted
index. For this purpose,QueryTemporalIF employs a slightly modi-
fied Algorithm 1 which alters Line 5 according to which temporal
conditions need to be checked; the comment over each line in Al-
gorithm 5 specifies the temporal conditions checked in each case.

7

SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India Christian Rauch and Panagiotis Bouros

Table 2: irHINT for the running example: division tIFs

element I𝑂0,0 I𝑅1,1 I𝑂2,1 I𝑅2,1 I𝑅2,2 I𝑂3,1 I𝑂3,3 I𝑂3,5 I𝑅3,6 I𝑂3,7
a ⟨𝑜4, [. . .] ⟩ ⟨𝑜2, [. . .] ⟩ ⟨𝑜2, [. . .] ⟩ ⟨𝑜7, [. . .] ⟩ - ⟨𝑜7, [. . .] ⟩ - ⟨𝑜1, [. . .] ⟩ ⟨𝑜1, [. . .] ⟩ ⟨𝑜7, [. . .] ⟩
b ⟨𝑜4, [. . .] ⟩ ⟨𝑜5, [. . .] ⟩ - - - - ⟨𝑜5, [. . .] ⟩ ⟨𝑜1, [. . .] ⟩ ⟨𝑜1, [. . .] ⟩ -
c ⟨𝑜4, [. . .] ⟩ ⟨𝑜2, [. . .] ⟩,⟨𝑜5, [. . .] ⟩ ⟨𝑜2, [. . .] ⟩ ⟨𝑜6, [. . .] ⟩,⟨𝑜7, [. . .] ⟩ ⟨𝑜6, [. . .] ⟩ ⟨𝑜6, [. . .] ⟩,⟨𝑜7, [. . .] ⟩,⟨𝑜8, [. . .] ⟩ ⟨𝑜5, [. . .] ⟩ ⟨𝑜1, [. . .] ⟩ ⟨𝑜1, [. . .] ⟩ ⟨𝑜7, [. . .] ⟩

ALGORITHM 5: Time-travel IR query on irHINT (focus
on performance variant)
Input : irHINT index H, query 𝑞 = ⟨ [𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑], 𝑑 ⟩
Output : set of object ids R

⊲ Modified lines from Algorithm 2

⊲ for each object 𝑜 ∈𝑃𝑂
ℓ,𝑗

, check 𝑞.𝑠𝑡 ≤ 𝑜.𝑒𝑛𝑑 ∧ 𝑜.𝑠𝑡 ≤ 𝑞.𝑒𝑛𝑑

10 R ← R⋃
QueryTemporalIF(I𝑂

ℓ,𝑗
, 𝑞) ;

⊲ for each object 𝑜 ∈ 𝑃𝑅
ℓ,𝑗

, check 𝑞.𝑠𝑡 ≤ 𝑜.𝑒𝑛𝑑

11 R ← R⋃
QueryTemporalIF(I𝑅

ℓ,𝑗
, 𝑞) ;

⊲ for each object 𝑜 ∈ 𝑃𝑂
ℓ,𝑗

, check 𝑜.𝑡𝑠𝑡 ≤ 𝑞.𝑡𝑒𝑛𝑑

13 R ← R⋃
QueryTemporalIF(I𝑂

ℓ,𝑗
, 𝑞) ;

⊲ no temporal checks needed

14 R ← R⋃
QueryTemporalIF(I𝑅

ℓ,𝑗
, 𝑞) ;

⊲ for each object 𝑜 ∈ 𝑃𝑂
ℓ,𝑗

⋃
𝑃𝑅
ℓ,𝑗

, check 𝑞.𝑠𝑡 ≤ 𝑜.𝑒𝑛𝑑

16 R ← R⋃
QueryTemporalIF(I𝑂

ℓ,𝑗
, 𝑞)⋃QueryTemporalIF(I𝑅

ℓ,𝑗
, 𝑞) ;

⊲ no temporal checks needed

18 R ← R⋃
QueryTemporalIF(I𝑂

ℓ,𝑗
, 𝑞)⋃QueryTemporalIF(I𝑅

ℓ,𝑗
, 𝑞) ;

⊲ for each object 𝑜 ∈ 𝑃𝑂
ℓ,𝑗

, check 𝑜.𝑡𝑠𝑡 ≤ 𝑞.𝑡𝑒𝑛𝑑

20 R ← R⋃
QueryTemporalIF(I𝑂

ℓ,𝑗
, 𝑞) ;

⊲ no temporal checks needed

22 R ← R⋃
QueryTemporalIF(I𝑂

ℓ,𝑗
, 𝑞) ;

Regarding the HINT optimizations from Section 2.3, the first
irHINT variant can directly adopt the subdivisions (with a tIF per
subdivision) and storage ones. The optimizations that deal with
skewness & sparsity and cache misses are also still valid but less
meaningful while their integration is more complicated. In contrast,
the sorting optimization is incompatible since the postings lists of
tIF are sorted by object 𝑖𝑑 to accelerate the IR search.

4.2 Focus on index size
Apart from a high query throughput, we also expect the first irHINT
variant to have a large size. To better understand this issue, assume
that the 𝑜.𝑑 description of every object 𝑜 contains 𝑛 elements on
average. Also, consider the 𝑃𝑂 originals division of a partition 𝑃 in
the hierarchy. The temporal inverted index I𝑂 for 𝑃𝑂 will contain
𝑛 entries on average, for every object assigned to the division; each
of these entries includes both the 𝑖𝑑 of the object and its associated
time interval. In contrast, the original HINT index would store a
single copy of this information per every object assigned to 𝑃𝑂 . To
make matters worse, the time intervals are in fact used only once,
when processing a division; i.e., in Lines 4–6 of Algorithm 1 when
scanning the postings list of the least frequent element in 𝑞.𝑑 . The
followup list intersections in Lines 7–8 consider only the object 𝑖𝑑s.

In view of the above, we devise a second variant of irHINTwhich
trades query performance for index size. To this end, irHINT now
employs two data structures for each division in the hierarchy, es-
sentially decoupling and seperately indexing the two attributes of
the objects (besides their 𝑖𝑑). The first structure indexes solely the

time intervals identically to the original HINT; i.e., for an unopti-
mized version of the index, we store ⟨𝑜.𝑖𝑑, [𝑜.𝑡𝑠𝑡 , 𝑜 .𝑡𝑒𝑛𝑑]⟩ entries.
The second structure is a traditional inverted index that indexes
only the description attribute 𝑜.𝑑 ; i.e., a postings list associates ev-
ery element 𝑒 in the global dictionary D to the ids of the objects
inside the division that include 𝑒 in their description. Back to our
running example, the size irHINT variant utilizes the same par-
titioning of the domain as in Figure 6. The I𝑂 and I𝑅 inverted
indices constructed for the non-empty divisions are indentical to
Table 2, storing however only the object 𝑖𝑑s.

The benefits of this dual-structure approach are multifold. First,
the temporal interval of each division object is stored only once
which reduces the size of the index. As a consequence (second
benefit), this will also reduce the number of cache misses when
traversing the irHINT to answer time-travel IR queries. Third, we
can take full advantage of all HINT optimizations discussed in
Section 2.3. In particular, we can now apply the beneficial sorting
which accelerates the scanning of a division (or subdivision) because
the sorting by object 𝑖𝑑 occurs only in the inverted index; essentially,
the two structures for each (sub)division employ different sortings.

Given a time-travel IR query 𝑞 = ⟨[𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑], 𝑑⟩, the answer-
ing process follows once again the bottom-up approach of HINT
but the processing of each relevant division consists of two steps.
The first step determines the objects whose time interval overlaps
[𝑞.𝑡𝑠𝑡 , 𝑞.𝑡𝑒𝑛𝑑], i.e., we execute Lines 8–22 in Algorithm 2 using the
structure that maintains the temporal information of the objects.
The determined objects define an initial set of candidates for the
results that will come out from the current relevant division. Then,
we progressively intersect this candidates set with the postings list
of each element in 𝑞.𝑑 in the division inverted index. To efficiently
compute the necessary intersections in a merge-sort fashion, the ini-
tial set of the candidates (determined by the range query) is sorted
by object 𝑖𝑑 before the first intersection. Algorithm 6 provides a
pseudocode of time-travel IR search on the second irHINT variant.
The algorithm replaces Lines 10, 11, 13, 16 and 20 in Algorithm 2
where overlapping intervals are identified, with a sequence of three
statements. The first statement (Lines 10, 13, 17, 20, 24, 28, 32, 36)
executes a typical range query on intervals to determine a set of
candidates C, the second (Lines 11, 14, 18, 21, 25, 29, 33, 37) sorts C
and the third statement (Lines 12, 15, 19, 22, 26, 30, 34, 38) intersects
C with the inverted lists in the division to update the results R. The
latter invokes QueryIF to execute a typical containment IR search.

5 Experimental Analysis
We implemented all indices in C++, compiled using gcc (v4.8.5)
with flags -O3, -mavx and -march=native. 9 Our tests ran on an
Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz with 512GBs of RAM,
running AlmaLinux 8.5. All data, i.e., inputs and indices, reside in
main memory. We did not utilize any inverted file compression to

9Source code available in https://github.com/chrauch/irhint.

8

https://github.com/chrauch/irhint

Fast Indexing for Temporal Information Retrieval SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India

ALGORITHM 6: Time-travel IR query on irHINT (focus
on index size variant)
Input : irHINT index H, query 𝑞 = ⟨ [𝑡𝑠𝑡 , 𝑡𝑒𝑛𝑑], 𝑑 ⟩
Output : set of object ids R

1 R ← ∅; ⊲ initialize result set

2 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 ← TRUE;
3 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 ← TRUE;
4 foreach level ℓ =𝑚 to 0 do ⊲ bottom-up fashion
5 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑡𝑠𝑡) ; ⊲ first relevant partition

6 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑡𝑒𝑛𝑑) ; ⊲ last relevant partition

7 foreach partition 𝑗 = 𝑓 to 𝑙 do
8 if 𝑗 = 𝑓 then
9 if 𝑝 = 𝑙 and 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then
10 C ← {𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂

ℓ,𝑗
, 𝑞.𝑡𝑠𝑡 ≤ 𝑜.𝑡𝑒𝑛𝑑 ∧ 𝑜.𝑡𝑠𝑡 ≤ 𝑞.𝑡𝑒𝑛𝑑 };

11 sort C; ⊲ by object 𝑖𝑑

12 R ← R⋃
QueryIF(I𝑂

ℓ,𝑗
, C, 𝑞.𝑑) ;

13 C ← {𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑅
ℓ,𝑗

, 𝑞.𝑡𝑠𝑡 ≤ 𝑜.𝑡𝑒𝑛𝑑 };
14 sort C; ⊲ by object 𝑖𝑑

15 R ← R⋃
QueryIF(I𝑅

ℓ,𝑗
, C, 𝑞.𝑑) ;

16 else if 𝑖 = 𝑙 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then
17 C ← {𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂

ℓ,𝑗
, 𝑜 .𝑡𝑠𝑡 ≤ 𝑞.𝑡𝑒𝑛𝑑} ;

18 sort C; ⊲ by object 𝑖𝑑

19 R ← R⋃
QueryIF(I𝑂

ℓ,𝑗
, C, 𝑞.𝑑) ;

20 C ← {𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑅
ℓ,𝑗
};

21 sort C; ⊲ by object 𝑖𝑑

22 R ← R⋃
QueryIF(I𝑅

ℓ,𝑗
, C, 𝑞.𝑑) ;

23 else if 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 then
24 C ← {𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂

ℓ,𝑗

⋃
𝑃𝑅
ℓ,𝑗

, 𝑞.𝑡𝑠𝑡 ≤ 𝑜.𝑡𝑒𝑛𝑑 };
25 sort C; ⊲ by object 𝑖𝑑

26 R←R⋃QueryIF(I𝑂
ℓ,𝑗

, C, 𝑞.𝑑)⋃QueryIF(I𝑅
ℓ,𝑗

, C, 𝑞.𝑑) ;

27 else
28 C ← {𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂

ℓ,𝑗

⋃
𝑃𝑅
ℓ,𝑗
};

29 sort C; ⊲ by object 𝑖𝑑

30 R←R⋃QueryIF(I𝑂
ℓ,𝑗

, C, 𝑞.𝑑)⋃QueryIF(I𝑅
ℓ,𝑗

, C, 𝑞.𝑑) ;

31 else if 𝑗 = 𝑙 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 then ⊲ 𝑙 > 𝑓

32 C ← {𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂
ℓ,𝑗

, 𝑜 .𝑡𝑠𝑡 ≤ 𝑞.𝑡𝑒𝑛𝑑 };
33 sort C; ⊲ by object 𝑖𝑑

34 R ← R⋃
QueryIF(I𝑂

ℓ,𝑗
, C, 𝑞.𝑑) ;

35 else ⊲ in-between or last (𝑙 > 𝑓), no comparisons

36 C ← {𝑜.𝑖𝑑 |𝑜 ∈ 𝑃𝑂
ℓ,𝑗
};

37 sort C; ⊲ by object 𝑖𝑑

38 R ← R⋃
QueryIF(I𝑂

ℓ,𝑗
, C, 𝑞.𝑑) ;

39 if 𝑓 mod 2 = 0 then ⊲ last bit of 𝑓 is 0
40 𝑐𝑜𝑚𝑝𝑓 𝑖𝑟𝑠𝑡 ← FALSE;

41 if 𝑙 mod 2 = 1 then ⊲ last bit of 𝑙 is 1
42 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 ← FALSE;

43 return R;

reduce the storage requirements; such techniques are orthogonal
to our focus on query efficiency and so, left out as future work.

5.1 Setup
For the indices built on HINT [19, 20], we used the source code
provided by the authors; specifically the subs+sort version, which
employs the subdivisions and sorting (whenever applicable) opti-
mizations (see Section 2.3). We activated the cache misses optimiza-
tion, but not the skewness & sparsity for a more update-friendly
indexing; see [19]. Also, we dropped the storage optimization in line
with [20]. As no code was available, we re-implemented both tIF-
Slicing and tIF+Sharding according to [7] and [4], respectively. Note
that HINT’s cache misses optimization cannot be paired with the

Figure 7: Stats of
real datasets

Table 3: Characteristics of real datasets
ECLOG WIKIPEDIA

Cardinality 300311 1672662
Size [MBs] 171 4715
Time domain [secs] 15807599 126230391
Min. interval duration [secs] 1 1
Max. interval duration [secs] 15802098 126169456
Avg. interval duration [secs] 1325118 6587819
Avg. interval duration [%] 8.4 5.2
Dictionary size [# elements] 178478 927283
Min. description size [# elems] 1 1
Max. description size [# elems] 14399 6982
Avg. description size [# elems] 72 367
Min. element frequency 1 1
Max. element frequency 140423 1671696
Avg. element frequency 122 675
Avg. element frequency [%] 0.04 0.05

Table 4: Parameters of synthetic datasets
parameter values (defaults in bold)
cardinality 100K, 500K, 1M, 5M, 10M
time domain size 32M, 64M, 128M, 256M, 512M
𝛼 (interval duration) 1.01, 1.1, 1.2, 1.4, 1.8
𝜎 (interval position) 10K, 100K, 1M, 5M, 10M
dictionary size 10K, 50K, 100K, 500K, 1M
|𝑑 | (description size) 5, 10, 50, 100, 500
𝜁 (element frequency) 1.0 1.25, 1.5, 1.75, 2.0

tIF+Slicing and tIF+Sharding competitors. Maintaining object ids
separately makes sense only when results can be directly produced
with no comparisons. However, in tIF+Slicing, we always need 𝑜.𝑡𝑠𝑡
along with 𝑜.𝑖𝑑 to apply the reference point de-duplication test,
while in tIF+Sharding, we scan the shards and compare the object
interval endpoints to the query for outputting results.

We experimented with 2 real-world datasets; Table 3 summarizes
their characteristics and Figure 7 shows the distribution of interval
duration and the frequency distribution for their elements. ECLOG
[18] was derived from e-commerce data on HTTP requests, from
December 1, 2019, to May 31, 2020. The requests were grouped
by session; every session defined an object 𝑜 with 𝑜.𝑡𝑠𝑡 and 𝑜.𝑡𝑒𝑛𝑑
determined from the timestamps of the first and last requests within
each session, while 𝑜.𝑑 was constructed based on the requested
URIs. For WIKIPEDIA, we randomly selected 100K articles using
the official API10 and downloaded all their versions (or revisions)
from 2020 until 2024. Each version provided an object 𝑜 with 𝑜.𝑡𝑠𝑡
equal to its creation timestamp and𝑜.𝑡𝑒𝑛𝑑 , to the creation timestamp
of the next version. The terms in each version were used for 𝑜.𝑑 .

We also generated synthetic datasets by extending the approach
from [19] to include object descriptions. Table 4 summarizes the
construction parameters and their default values. The datasets car-
dinality ranges from 100K to 1M, while their time domain from 32M
to 512M units and their dictionary size from 100K to 1M elements.
The duration of each object interval follows a zipfian distribution,
controlled by parameter 𝛼 . A small value of 𝛼 makes most intervals
relatively long, while with a large value, the majority of intervals
have length 1. The element frequency in the global dictionary also
follows a zipfian distribution, controlled by the parameter 𝜁 . The
middle point of every interval is positioned according to a normal
distribution centered at the middle point of the time domain. We
control this position using the deviation parameter 𝜎 ; the greater
the value of 𝜎 , the more spread the intervals are in the domain. Last,
the size of every object description |𝑑 | ranges from 5 to 500.
10https://www.mediawiki.org/wiki/API:Main_page

9

https://www.mediawiki.org/wiki/API:Main_page

SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India Christian Rauch and Panagiotis Bouros

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 50 100 150 200 250

ECLOG
WIKIPEDIA

In
d
ex

in
g
 t

im
e

[s
ec

s]

slices

 0

 10

 20

 30

 40

 50

 60

 70

 1 50 100 150 200 250
In

d
e
x
 s

iz
e
 [

G
B

s]
slices

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

 1 50 100 150 200 250

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

slices

Figure 8: Tuning tIF+Slicing
ECLOG

10
0

10
1

10
2

10
3

10
4

10
5

 1 5 10 15 20

using binary search
using merge-sort
with Slicing

In
d
ex

in
g
 t

im
e

[s
ec

s]

m

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 1 5 10 15 20

In
d
e
x
 s

iz
e
 [

M
B

s]

m

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 5 10 15 20
T

h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

m

WIKIPEDIA

10
0

10
1

10
2

10
3

10
4

10
5

 1 5 10 15 20

using binary search
using merge-sort
with Slicing

In
d
ex

in
g
 t

im
e

[s
ec

s]

m

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 1 5 10 15 20

In
d
e
x
 s

iz
e
 [

M
B

s]

m

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 1 5 10 15 20

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

m

Figure 9: Tuning tIF+HINT variants

To assess the efficiency of the indexing methods, we measure
their throughput (as the number of evaluated queries per second)11,
while varying the following four experimental parameters: (1) the
extent of the query interval as a percentage of the entire domain in-
side {0.01%, 0.05%, 0.1%, 0.5%, 1%, 5%, 10%, 50%, 100%}, which allows
to monitor the performance from small to large extents, including
the 100% extreme case when the query is no longer a time-travel IR
one but a typical IR containment query, (2) the number of elements
in the query description |𝑞.𝑑 | inside the {1, 2, 3, 4, 5} value set, (3)
the frequency of the query elements drawn from the [∗ − 0.1%],
(0.1%−1%], (1%−10%], (10%−∗] bins; for instance, in the (0.1%−1%]
bin, we generate queries using elements which appear in 0.1% to
1% of the dataset objects, and (4) the selectivity of the query as a
percentage of the input cardinality, drawn from the percentage bins
0%, (0% − 0.001%], (0.001% − 0.01%], (0.01% − 0.1%], (0.1% − 1%],
and (1% − 10%].12 In each test, we ran 10K random time-travel IR
queries with a non-empty result set; an exception is the 0% bin for
(4), where the result is empty. When testing (1) and (2), we vary one
of the parameters while fixing the other to its default value, i.e., 0.1%
for the query interval extent and 3, for the query description. For
(3), we set the query interval extent and the query description to
the above default values. Lastly for (4), we never fix the parameter
values. Mixed queries allow us to cover different cases.; e.g., zero
results occur either because of a very short query interval extent
or of many query elements, or due to very infrequent elements.

5.2 Tuning
We first investigate the best parameter setting for tIF+Slicing and
the tIF+HINT variants. In contrast, tIF+Sharding is tuned using
the cost-aware merging approach of ideal shards which relaxes

11Our focus is on applications that manage large volumes of data, offering a search
interface to multiple users simultaneously (e.g., public archives). Under this, we expect
systems to receive large numbers of short and fast time-travel IR queries and so,
reporting query throughput instead of the average time per query is more appropriate.
12Note that the query interval extent, the number of query elements and the element
frequency parameters indirectly control the query selectivity.

using binary search

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Relr Relrs Relrq

UB (U)
UB (I)

LB (U)
LB (I)

A
v
g
 a

b
so

lu
te

 e
rr

o
r

using merge-sort

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Relr Relrs Relrq

UB (U)
UB (I)

LB (U)
LB (I)

A
v
g
 a

b
so

lu
te

 e
rr

o
r with Slicing

 0

 20000

 40000

 60000

 80000

 100000

0.01 0.05 0.1 0.5 1

using binary search
using merge-sort
with Slicing

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

query interval extent [%]

ECLOG

 0

 2000

 4000

 6000

 8000

 10000

 12000

0.01 0.05 0.1 0.5 1

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

query interval extent [%]

10
3

10
4

10
5

10
6

1 2 3 4 5

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

|q.d|

10
2

10
3

10
4

10
5

10
6

[*-0.1] [0.1-1] [1-10] [10-*]

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

element frequency [%]

WIKIPEDIA

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

0.01 0.05 0.1 0.5 1

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

query interval extent [%]

10
3

10
4

10
5

10
6

1 2 3 4 5

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

|q.d|

10
2

10
3

10
4

10
5

10
6

[*-0.1] [0.1-1] [1-10] [10-*]

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

element frequency [%]

Figure 10: Comparing the throughput for tIF+HINT variants

the staircase property requirement in [4]. Figure 8 reports on de-
termining the best number of domain slices for tIF+Slicing. As
expected the index initially benefits from increasing the number of
slices/partitions because the query processing algorithm can more
efficiently determine the temporally qualifying objects but the cre-
ation of too many sub-lists will eventually impact the execution
time due to the higher fragmentation of the intersecting process.
Naturally, as the number of slices increases, the index occupies
more space and its construction time rises. Hence, for the rest of
our analysis, we set the number of slices to 50, the smallest value
in the range where the highest query throughput is observed.

We now turn our focus to the tIF+HINT variants. For the
tIF+HINT+Slicing hybrid, we set the number of slices according to
Figure 8. To set the number of bits𝑚 for the postings HINTs, one
option is to directly use the cost model from [19]. We do not expect
this approach to be effective since this model was designed for
interval data and range queries, without an additional attribute (i.e.,
description 𝑑 in our case) involved in the query. As an alternative,
we monitor the indexing costs and the query performance while in-
creasing𝑚, and then select the lowest𝑚 value which guarantees the
highest performance or in its vicinity. Figure 9 reports on these tests.
The indexing costs naturally rise as the postings HINTs contain
more levels (larger𝑚 value). However, in a typical trade-off style,
the query efficiency initially improves but then drops. Especially,
for the variants that use merge-sort, the performance deteriorates
because the subdivisions in the postings HINTs contain increas-
ingly fewer entries which renders computing list intersections via
merge-sort inefficient. Under this, the best setting for the tIF+HINT
variant that uses merge-sort and tIF+HINT+Slicing is with𝑚 = 5,
while for the variant that uses binary search, with 𝑚 = 10. In
contrast, if we use the cost model from [19], the index costs are
significantly higher, similar to 𝑚 = 16 case for both datasets. In
regards to querying, we observe no performance improvement for
the tIF+HINT that uses binary search, while for tIF+HINT that uses
merge-sort and the tIF+HINTwith Slicing hybrid, we saw a 45% and
15% slowdown, respectively. Hence, in the rest of our analysis, we
set the value of𝑚 for the tIF+HINT variants according to Figure 9.

10

Fast Indexing for Temporal Information Retrieval SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India

Table 5: Indexing costs (no compression used)

index time [secs] size [MBs]
ECLOG WIKIPEDIA ECLOG WIKIPEDIA

tIF+Slicing 5.83 86.8 3124 19150
tIF+Sharding 8.57 288 295 7180

tI
F+

H
IN

T using binary search 74.7 529 1215 21221
using merge-sort 7.18 103 583 9740

with Slicing 12.2 143 2667 22507

irH
IN

T for performance 26.9 580 1218 18022
for size 22.9 594 415 7124

5.3 Comparing tIF+HINT variants
We next compare the three variants of tIF+HINT in terms of their
indexing costs and query performance. Table 5 and Figure 10 report
our findings. The results completely align with our discussions
and intuitions in Section 3. First, regarding the query performance,
we observe that employing merge-sort to compute the necessary
intersections of the candidates sets with HINT’s subdivisions, leads
to a higher throughput. The variant that uses binary search is
efficient only when queries contain a single element (see the second
column of Figure 10), where no intersections are performed and
the initial set of candidates is output. This variant fully benefits
from all HINT optimizations to fast answer the range query used to
define the candidate set from the only element 𝑒 in 𝑞.𝑑 . In contrast,
recall that the variant that uses merge-sort does not traverse the
H[𝑒] HINT in a bottom-up fashion and in addition does not utilize
any temporal sorting in the subdivisions (see Section 2.3). Last, the
tIF+HINT+Slicing hybrid exhibits the best performance, excluding
again the single-element queries, as it successfully combines the
advantages of HINT with merge-sort and of Slicing for organizing
the postings lists (more on Slicing in the next paragraphs).

In regards to the indexing costs, there exist two key takeaways.
The merge-sort variant has the lowest construction time since no
sorting occurs; the subdivisions are implicitly sorted by adding the
objects in the order of their 𝑖𝑑 . Naturally, the tIF+HINT+Slicing
hybrid exhibits the highest indexing time as two structures are built
for each postings list. In a similar fashion, tIF+HINT+Slicing occu-
pies the most space compared to the other two variants, second by
the variant that uses binary search. The reason why the non-hybrid
variants have different space requirements (contrary to Figure 9
plots) although they use the same structures, is because we set𝑚
differently to achieve the highest possible performance; the binary
search variant typically requires a larger𝑚. In view of the above,
we consider only the tIF+HINT+Slicing variant for the rest of our
analysis since our focus is primarily on query efficiency.

5.4 tIF+HINT and irHINT against competition
The next set of experiments compares our tIF+HINT+Slicing and
our two irHINT variants against competition, i.e., tIF+Slicing [7]
and tIF+Sharding [4]. For irHINT, out tests showed that the cost
model in [19] effectively determines the best𝑚 value because of the
HINT-first design, in contrast to the tIF+HINT variants which are
IR-first. Figure 11 reports the throughput of each indexing method
on time-travel IR queries and Table 5 report theirs indexing costs.

We start off with our best IR-first method. We observe that
tIF+HINT+Slicing exhibits a similar overall performance to the
best competitor tIF+Slicing. Specifically, tIF+HINT+Slicing is faster

for single-element queries due to benefiting from HINT’s fast range
(time-travel) querying, but for queries with 2 or more elements, the
fragmentation of the intersecting process impacts its relative perfor-
mance. Nevertheless, tIF+HINT+Slicing outperforms tIF+Slicing for
ECLOG in most tests, because the time intervals of the contained
objects are longer compared to WIKIPEDIA (see Table 3), making
temporal indexing with HINT more effective.

On the other hand, the performance irHINT variant is overall
the fastest indexing method for time-travel IR queries. It signifi-
cantly outperforms the best IR-first methods, i.e., tIF+Slicing and
our tIF+HINT+Slicing hybrid, on both datasets. Essentially, an IR-
first method can outperform the performance irHINT variant only
on single-element queries for ECLOG, or on queries that include
very rare elements (typically the first two bins, in the third column
of Figure 11). The size irHINT variant outperforms the IR-first com-
petition but compared to the performance variant, it is typically
slower, as expected. Due to its dual-structure design, probing both
structures to answer each query impacts the performance.

In relation to how the experimental parameters affect the per-
formance, the throughput of all indexing methods naturally goes
down when the queries become less selective. Specifically, as we in-
crease the extent of the query interval, more objects are temporally
relevant and as we increase the frequency of the query elements,
the postings lists become longer, rendering the intersection with
the candidates list more expensive. The same effect is observed
also when we directly reduce the selectivity of the queries in the
fourth column of Figure 11. At the same time, we also observe that
in all three tests, the advantage of the irHINT variants over the
competition rises, as the queries become less selective; the IR-first
indices are competitive only when the queries are highly selec-
tive, notice for instance the case of zero results. On the other hand,
when the number of elements in a query increases (second column),
the throughput improves; this is due to the following trade-off.
As the value of |𝑞.𝑑 | increases, the methods do need to consider
more postings lists but the queries become more selective which
renders intermediate candidate lists shorter and their intersection
with the index partitions, faster. This behavior is better observed
for WIKIPEDIA where average length of a postings list is higher
compared to ECLOG (see the “Avg. element frequency” in Table 3).

Regarding the index size, both irHINT variants occupy less
space than the query-efficient IR-first methods tIF+Slicing and
tIF+HINT+Slicing, due to their HINT-first design. This advantage
is of course more pronounced in case of the size irHINT variant, by
design. Strictly speaking, the most space efficient indexing method
is tIF+Sharding because no replication takes place at the expense
however to a significantly lower throughput than the irHINT vari-
ants, especially the performance one. Finally, in regards to the
indexing time, the construction of both irHINT indices takes more
time than the others with the size irHINT variant being the most
time-consuming due to constructing two structures per subdivision.

Figure 12 reports on the synthetic datasets; we tuned indices sim-
ilar to Section 5.2. The plots unveil an identical trend to Figure 11.
The performance irHINT variant is the most efficient method, fol-
lowed by the size variant. The dataset cardinality, the domain size,
the object description size and the skewness of the element fre-
quency all impact the index efficiency. For instance, increasing the

11

SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India Christian Rauch and Panagiotis Bouros

tIF+Slicing

10
2

10
3

10
4

10
5

stab 0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

query extent [%]

ua
aa

uma
ama

umg
amg tIF+Sharding

10
2

10
3

10
4

10
5

10
6

0.01 0.05 0.1 0.5 1

no bounds
lower bounds
upper bounds
both bounds

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

query extent [%]

tIF+HINT+Slicing

 0

 20000

 40000

 60000

 80000

 100000

0.01 0.05 0.1 0.5 1

using binary search
using merge-sort
with Slicing

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

query interval extent [%]

irHINT for performance irHINT for size

ECLOG

10
1

10
2

10
3

10
4

10
5

0.01 0.05 0.1 0.5 1 5 10 50 100

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

query interval extent [%]

10
2

10
3

10
4

10
5

10
6

1 2 3 4 5

|q.d|

10
2

10
3

10
4

10
5

10
6

[*-0.1] [0.1-1] [1-10] [10-*]

element frequency [%]

10
2

10
3

10
4

10
5

10
6

0 (0,10
-3

](10
-3

-10
-2

](10
-2

-10
-1

](10
-1

-1] (1-10]

results [%]

WIKIPEDIA

10
1

10
2

10
3

10
4

10
5

0.01 0.05 0.1 0.5 1 5 10 50 100

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

query interval extent [%]

10
2

10
3

10
4

10
5

1 2 3 4 5

|q.d|

10
2

10
3

10
4

10
5

10
6

[*-0.1] [0.1-1] [1-10] [10-*]

element frequency [%]

10
2

10
3

10
4

10
5

10
6

0 (0,10
-3

](10
-3

-10
-2

](10
-2

-10
-1

](10
-1

-1] (1-10]

results [%]

Figure 11: Comparing the throughput for tIF+HINT+Slicing and irHINT variants against competition on real datasets

10
1

10
2

10
3

10
4

10
5

100K 500K 1M 5M 10M

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

dataset cardinality

10
1

10
2

10
3

10
4

32M 54M 128M 256M 512M

time domain size

10
1

10
2

10
3

10
4

10
5

1.01 1.1 1.2 1.4 1.8

α (interval duration)

10
2

10
3

10
4

10K 50K 100K 500K 1M

dictionary size

10
2

10
3

10
4

5 10 50 100 500

description size

10
1

10
2

10
3

10
4

10
5

1.0 1.25 1.5 1.75 2.0

element frequency skewness ζ

10
1

10
2

10
3

10
4

10K 100K 1M 5M 10M

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

σ (interval position)

10
0

10
1

10
2

10
3

10
4

0.01 0.05 0.1 0.5 1 5 10 50 100

query interval extent [%]

10
1

10
2

10
3

10
4

10
5

1 2 3 4 5

|q.d|

10
3

10
4

10
5

10
6

[*-0.1] [0.1-1] [1-10] [10-*]

element frequency [%]

10
1

10
2

10
3

10
4

10
5

0 (0,10
-3

](10
-3

-10
-2

](10
-2

-10
-1

](10
-1

-1] (1-10]

results [%]

Figure 12: Comparing the throughput for tIF+HINT+Slicing and irHINT variants against competition on synthetic datasets

Table 6: Update time [secs] for insertions

index ECLOG WIKIPEDIA
1% 5% 10% 1% 5% 10%

tIF+Slicing 0.17 0.95 1.98 1.16 6.10 11.8
tIF+Sharding 0.13 0.61 1.18 2.68 16.0 32.0

tI
F+

H
IN

T using binary search 1.23 1.81 3.69 7.23 38.5 76.2
using merge-sort 0.12 0.62 1.60 1.85 9.97 19.7

with Slicing 0.31 3.28 3.51 3.23 16.8 33.4

irH
IN

T for performance 0.16 0.87 1.79 3.41 17.8 34.1
for size 0.22 1.13 2.31 5.31 28.0 54.0

domain size under a fixed query interval extent, affects the per-
formance similar to increasing the query extent, i.e., the queries
become longer and less temporally selective. In contrast, when 𝛼

grows, object intervals become shorter, so the performance of all
indices improves. Also, when increasing 𝜎 the intervals are more
widespread, making the temporal predicate is more selective.

5.5 Updates
Finally, we study the efficiency of all implemented indices in up-
dates. We start off with insertions of new objects. For this purpose,
we first index offline 90% of the objects for each dataset and then
measure the cost of updating the indexing structure with a batch of
1%, 5% or 10% of the remaining objects. Table 6 reports the insertion

Table 7: Update time [secs] for deletions

index ECLOG WIKIPEDIA
1% 5% 10% 1% 5% 10%

tIF+Slicing 0.44 2.02 3.95 6.43 32.5 65.9
tIF+Sharding 4.74 21.4 42.3 338 1707 3364

tI
F+

H
IN

T using binary search 0.16 0.78 1.58 6.62 33.8 67.7
using merge-sort 0.15 0.75 1.48 4.77 24.2 48.3

with Slicing 0.58 2.83 5.59 11.6 58.3 118

irH
IN

T for performance 0.30 1.44 2.91 9.22 46.4 96.3
for size 0.46 2.22 4.38 15.9 78.4 156

times for every batch size and dataset. In most of the cases, the
simpler tested IR-first methods, i.e., tIF+Slicing and tIF+Sharding,
exhibit the lowest update times, but the performance irHINT variant
is always competitive. The size irHINT is as expected the slowest
irHINT variant due to its dual-structure design and the need to
maintain the temporal sorting in HINT subdivisions. Similar issues
impact the hybrid tIF+HINT+Slicing variant (the dual-structure
design) and the variant that uses binary search (maintaining tempo-
ral sorting). Observe how the merge-sort tIF+HINT variant which
utilizes only HINT and no temporal sorting outperforms both the
other two tIF+HINT variants. Note that the sorting by object 𝑖𝑑
feature employed by tIF+Slicing, the merge-sort tIF+HINT variant

12

Fast Indexing for Temporal Information Retrieval SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India

and the performance irHINT variant is automatically maintained
as the new objects carry larger 𝑖𝑑s than the already indexed ones.

For the deletion updates, we first index offline each real dataset
and then measure the cost of removing 1%, 5%, 10% of the indexed
objects. In line with previous works, e.g., [19, 30, 47, 54], these ob-
jects are not actually deleted; instead, we place tombstones for a
logical deletion. Table 7 reports the deletion times. Handling dele-
tion updates partially resembles to querying; i.e., we first need to
locate the entries for each deleted object inside the index partitions.
Under this, tIF+Sharding which has the lowest querying through-
put, also exhibits the highest deletion cost, despite there is a single
index entry for each deleted object, due to the lack of replication.
We also see that the hybrid tIF+HINT with slicing and the irHINT
variant for size incur high deletion costs due to their dual structure
design. Overall, tIF+HINT with merge-sort has the lowest deletion
time due to its lower replication factor compared to tIF+Slicing.

6 Related Work
We last discuss additional related work besides Section 2.

6.1 IR and temporal IR indexing
There exist two main indexing approaches for IR containment
queries in the literature: inverted indices or files [67] and signa-
ture files [28, 29], although tries have been also considered [59, 61].
We already discussed the traditional inverted index in previous
paragraphs. Nevertheless, extensions have been also proposed to
enhance its performance, based on the idea to treat long and short
postings lists, differently. The Hybrid Trie Inverted file (HTI) [61]
breaks up the larger inverted lists to smaller sub-lists that contain
known combinations of items. König et. al. [44] propose a index
structure that similarly to HTI creates inverted lists for combi-
nations of items. The Ordered Inverted File (OIF) [60] introduces
an ordering for the database elements and records; under this, a
B+-tree organizes the access to all the parts of each postings list.

On the other hand, the idea behind signature files is to hash every
element to a fixed size word. By superimposing the codes from all
the elements in the object description, the object signature is defined.
These signatures are used as cheap filters to quickly remove the
objects that do not contain the query elements. Extensions which
organize object signatures into hierarchical structures, include the
signature trees [15, 23, 49, 51]. Similar to previous work on temporal
IR indexing, our study focuses exclusively on the inverted index,
because previous surveys showed that they outperform signature-
based methods for containment queries both on low cardinality
set-valued database attributes [35] and on text documents [66].

Besides the slicing and sharding techniques, other work on tem-
poral IR indexing can be found in indexing versioned archives e.g.,
[52, 53]. The approaches are built upon the idea of maintaining,
along with the current document, small delta updates for every
version, each one of them with their own creation date timestamp.
In case the temporal index includes positional information, e.g.,
[8, 64], to answer phrase queries for instance, previous work typi-
cally partitions every document version into a number of fragments,
which are then indexed individually. Contrary to most methods
where each version is a separate document, He et al. [34] takes a
slightly different approach bymodeling a versioned collection using

a two-level index, a document level where each distinct document
has a global identifier and a version level index. Finally, Huo and
Tsotras [36] propose rank-based partitioning solutions which are
however applicable only for top-𝑘 time-travel relevance IR search.

6.2 Indexing intervals
A simple and practical data structure for intervals is a 1D-grid, which
divides the domain into𝑘 pair-wise disjoint, partitions 𝑃1, 𝑃2, . . . , 𝑃𝑘 .
Input intervals are assigned to all partitions they intersect and
results to a range query 𝑞 are obtained by accessing all partitions 𝑃𝑖
that overlap with 𝑞. To avoid duplicates if the query interval spans
multiple partitions, the reference value method [25] can be used.

The interval tree [26] offers optimal worst-case space and time
guarantees. The tree divides the input domain hierarchically by
placing all intervals strictly before (after) the domain’s center to the
left (right) subtree and all intervals that overlap with the domain’s
center at the root. This process is repeated recursively for the left
and right subtrees using the centers of the corresponding sub-
domains. The intervals assigned to each tree node are sorted in
two lists based on their starting and ending values, respectively.
To answer a range query, the interval tree is traversed top-down
comparing the center on each node to the query range. A relational
interval tree RI-tree for disk-resident data was proposed in [45].
Another binary search tree for intervals is the segment tree [22],
which however was designed for stabbing (or point) queries where
the goal is to determine the intervals that contain a specific value.

In other solutions for indexing intervals, the timeline index [43]
is a general-purpose access method for temporal (versioned) data,
implemented as SAP-HANA tables. A table called the event list
stores a ⟨𝑡𝑖𝑚𝑒, 𝑖𝑑, 𝑖𝑠𝑆𝑡𝑎𝑟𝑡⟩ triple for the endpoints of all intervals,
where 𝑡𝑖𝑚𝑒 is either the start or end of an interval, specified accord-
ingly by the boolean 𝑖𝑠𝑆𝑡𝑎𝑟𝑡 flag. In addition, at certain timestamps,
called checkpoints, the entire set of active objects is materialized, i.e.,
those with an interval that contain the checkpoint. Range queries
𝑞 = [𝑞.𝑠𝑡, 𝑞.𝑒𝑛𝑑] are evaluated by comparing the contents of the
closest checkpoint before 𝑞.𝑠𝑡 and the entries in the event list after
the checkpoint, against the query range. The period [5] and the
RD-index [13] are self-adaptive structures which split the domain
into coarse partitions, and then further divide each partition hierar-
chically to organize the contained intervals based on their positions
and durations. They are specialized to range and duration queries.

6.3 Keyword search in temporal databases
Keyword search has also been studied in temporal databases [55], al-
though receiving significantly less attention than its counterpart in
typical relational databases. Jia et al. [38] designed a target-oriented
search on a augmented data graph (modeling the temporal data) to
efficiently evaluate temporal keyword queries. In a different line of
approach, Gao et al. [33] showed how temporal keyword queries
could be rewritten to SQL queries (including temporal joins), which
allows the RDBMS engine to directly evaluate them. Gao et al. [32]
shows how temporal aggregation can be employed in temporal
keyword search, allowing to query statistical information over time.
Nevertheless, the works above do not propose a native indexing

13

SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India Christian Rauch and Panagiotis Bouros

scheme for efficient query processing and so, they are not compa-
rable either to our solutions nor to tIF+Slicing and tIF+Sharding.

7 Conclusions and Future Work
We studied time-travel IR queries, where the goal is to identify ob-
jects whose lifespan temporally overlaps the query time interval and
their description contains the query elements. We proposed novel
IR-first solutions, which build on the inverted index but organize
every postings list using the state-of-the-art interval index HINT.
In addition, we devised a novel approach termed irHINT, which
injects HINT with inverted indices to organize the contents of every
partition. Our tests showed that the performance variant of irHINT
outperforms all IR-first solutions (both existing and our proposed)
while the size variant achieves the lowest storage requirements.
In the future, we will extend our work towards several directions.
First, we plan to consider bag semantics and language models for
the object description and relevance-based query definitions, e.g.,
to find the most relevant objects overlapping the query time inter-
val. Furthermore, we plan to investigate the role of compression
techniques for both the IR-first and irHINT indices. Finally, we also
intend to study other types of temporal IR queries, e.g., joins.

References
[1] Omar Alonso and Michael Gertz. 2006. Clustering of search results using tempo-

ral attributes. In SIGIR 2006: Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Seattle,
Washington, USA, August 6-11, 2006. ACM, 597–598. doi:10.1145/1148170.1148273

[2] Omar Alonso, Michael Gertz, and Ricardo Baeza-Yates. 2009. Clustering and
exploring search results using timeline constructions. In Proceedings of the 18th
ACM Conference on Information and Knowledge Management, CIKM 2009, Hong
Kong, China, November 2-6, 2009. ACM, 97–106. doi:10.1145/1645953.1645968

[3] Avishek Anand, Srikanta J. Bedathur, Klaus Berberich, and Ralf Schenkel. 2010.
Efficient temporal keyword search over versioned text. In Proceedings of the 19th
ACM Conference on Information and Knowledge Management, CIKM 2010, Toronto,
Ontario, Canada, October 26-30, 2010. ACM, 699–708. doi:10.1145/1871437.1871528

[4] Avishek Anand, Srikanta J. Bedathur, Klaus Berberich, and Ralf Schenkel. 2011.
Temporal index sharding for space-time efficiency in archive search. In Proceed-
ings of the 34th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2011, Beijing, China, July 25-29, 2011. ACM, 545–554.
doi:10.1145/2009916.2009991

[5] Andreas Behrend, Anton Dignös, Johann Gamper, Philip Schmiegelt, Hannes
Voigt, Matthias Rottmann, and Karsten Kahl. 2019. Period Index: A Learned 2D
Hash Index for Range and Duration Queries. In Proceedings of the 16th Interna-
tional Symposium on Spatial and Temporal Databases, SSTD 2019, Vienna, Austria,
August 19-21, 2019. ACM, 100–109. doi:10.1145/3340964.3340965

[6] Klaus Berberich, Srikanta J. Bedathur, Omar Alonso, and Gerhard Weikum. 2010.
A Language Modeling Approach for Temporal Information Needs. In Advances in
Information Retrieval, 32nd European Conference on IR Research, ECIR 2010, Milton
Keynes, UK, March 28-31, 2010. Proceedings (Lecture Notes in Computer Science,
Vol. 5993). Springer, 13–25. doi:10.1007/978-3-642-12275-0_5

[7] Klaus Berberich, Srikanta J. Bedathur, Thomas Neumann, and Gerhard Weikum.
2007. A time machine for text search. In Proceedings of the 30th Annual In-
ternational ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, Amsterdam, The Netherlands, July 23-27, 2007. ACM, 519–526.
doi:10.1145/1277741.1277831

[8] Andrei Z. Broder, Nadav Eiron, Marcus Fontoura, Michael Herscovici, Ronny Lem-
pel, John McPherson, Runping Qi, and Eugene J. Shekita. 2006. Indexing Shared
Content in Information Retrieval Systems. In Advances in Database Technology
- EDBT 2006, 10th International Conference on Extending Database Technology,
Munich, Germany, March 26-31, 2006, Proceedings (Lecture Notes in Computer
Science, Vol. 3896). Springer, 313–330. doi:10.1007/11687238_21

[9] Brian Brost, Rishabh Mehrotra, and Tristan Jehan. 2019. The Music Streaming
Sessions Dataset. In The World Wide Web Conference, WWW 2019, San Francisco,
CA, USA, May 13-17, 2019. ACM, 2594–2600. doi:10.1145/3308558.3313641

[10] Ricardo Campos, Gaël Dias, and Alípio Jorge. 2011. An Exploratory Study on
the Impact of Temporal Features on the Classification and Clustering of Future-
Related Web Documents. In Progress in Artificial Intelligence, 15th Portuguese
Conference on Artificial Intelligence, EPIA 2011, Lisbon, Portugal, October 10-13,

2011. Proceedings (Lecture Notes in Computer Science, Vol. 7026). Springer, 581–596.
doi:10.1007/978-3-642-24769-9_42

[11] Ricardo Campos, Gaël Dias, Alípio Mário Jorge, and Adam Jatowt. 2014. Survey
of Temporal Information Retrieval and Related Applications. ACM Comput. Surv.
47, 2 (2014), 15:1–15:41. doi:10.1145/2619088

[12] Ricardo Campos, Gaël Dias, Alípio Mário Jorge, and Célia Nunes. 2014. GTE-
Rank: Searching for Implicit Temporal Query Results. In Proceedings of the 23rd
ACM International Conference on Conference on Information and Knowledge Man-
agement, CIKM 2014, Shanghai, China, November 3-7, 2014. ACM, 2081–2083.
doi:10.1145/2661829.2661856

[13] Matteo Ceccarello, Anton Dignös, Johann Gamper, and Christina Khnaisser. 2023.
Indexing Temporal Relations for Range-Duration Queries. In Proceedings of the
35th International Conference on Scientific and Statistical Database Management,
SSDBM 2023, Los Angeles, CA, USA, July 10-12, 2023. ACM, 3:1–3:12. doi:10.1145/
3603719.3603732

[14] Matteo Ceccarello, Anton Dignös, Johann Gamper, and Christina Khnaisser. 2025.
Indexing temporal relations for range-duration queries. Distributed Parallel
Databases 43, 1 (2025), 7. doi:10.1007/S10619-024-07452-6

[15] Yangjun Chen. 2005. On the Signature Trees and Balanced Signature Trees. In
Proceedings of the 21st International Conference on Data Engineering, ICDE 2005,
5-8 April 2005, Tokyo, Japan. IEEE Computer Society, 742–753. doi:10.1109/ICDE.
2005.99

[16] Zhida Chen, Lisi Chen, Gao Cong, and Christian S. Jensen. 2021. Location- and
keyword-based querying of geo-textual data: a survey. VLDB J. 30, 4 (2021),
603–640. doi:10.1007/S00778-021-00661-W

[17] Shiwen Cheng, Anastasios Arvanitis, and Vagelis Hristidis. 2013. How fresh do
you want your search results?. In 22nd ACM International Conference on Informa-
tion and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27 -
November 1, 2013. ACM, 1271–1280. doi:10.1145/2505515.2505696

[18] Grzegorz Chodak, Grażyna Suchacka, and Yash Chawla. 2020. EClog: HTTP-level
e-commerce data based on server access logs for an online store. doi:10.7910/
DVN/Z834IK

[19] George Christodoulou, Panagiotis Bouros, and Nikos Mamoulis. 2022. HINT: A
Hierarchical Index for Intervals in Main Memory. In Proceedings of the 2022 ACM
SIGMOD International Conference on Management of Data, Philadelphia, PA, USA,
June 12 - 17, 2022. ACM, 1257–1270. doi:10.1145/3514221.3517873

[20] George Christodoulou, Panagiotis Bouros, and Nikos Mamoulis. 2024. HINT: a
hierarchical interval index for Allen relationships. VLDB J. 33, 1 (2024), 73–100.
doi:10.1007/S00778-023-00798-W

[21] George Christodoulou, Panagiotis Bouros, and Nikos Mamoulis. 2024. LIT:
Lightning-fast In-memory Temporal Indexing. Proc. ACM Manag. Data 2, 1
(2024), 20:1–20:27. doi:10.1145/3639275

[22] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars.
2008. Computational geometry: algorithms and applications, 3rd Edition. Springer.
https://www.worldcat.org/oclc/227584184

[23] Uwe Deppisch. 1986. S-Tree: A Dynamic Balanced Signature Index for Office
Retrieval. In SIGIR’86, Proceedings of the 9th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Pisa, Italy,
September 8-10, 1986. ACM, 77–87. doi:10.1145/253168.253189

[24] Leon Derczynski, Jannik Strötgen, Ricardo Campos, and Omar Alonso. 2015.
Time and information retrieval: Introduction to the special issue. Inf. Process.
Manag. 51, 6 (2015), 786–790. doi:10.1016/J.IPM.2015.05.002

[25] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In Proceedings of the 16th International
Conference on Data Engineering, San Diego, California, USA, February 28 - March
3, 2000. IEEE Computer Society, 535–546. doi:10.1109/ICDE.2000.839452

[26] Herbert Edelsbrunner. 1980. Dynamic Rectangle Intersection Searching. Technical
Report 47. Institute for Information Processing, Technical University of Graz,
Austria.

[27] Jonathan L. Elsas and Susan T. Dumais. 2010. Leveraging temporal dynamics of
document content in relevance ranking. In Proceedings of the Third International
Conference on Web Search and Web Data Mining, WSDM 2010, New York, NY, USA,
February 4-6, 2010. ACM, 1–10. doi:10.1145/1718487.1718489

[28] Christos Faloutsos. 1992. Signature Files. In Information Retrieval: Data Structures
& Algorithms, William B. Frakes and Ricardo A. Baeza-Yates (Eds.). Prentice-Hall,
44–65.

[29] Christos Faloutsos and Stavros Christodoulakis. 1984. Signature Files: An Access
Method for Documents and Its Analytical Performance Evaluation. ACM Trans.
Inf. Syst. 2, 4 (1984), 267–288. doi:10.1145/2275.357411

[30] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. Proc. VLDB Endow.
13, 8 (2020), 1162–1175. doi:10.14778/3389133.3389135

[31] Volker Gaede and Oliver Günther. 1998. Multidimensional Access Methods. ACM
Comput. Surv. 30, 2 (1998), 170–231. doi:10.1145/280277.280279

[32] Qiao Gao,Mong-Li Lee, and TokWang Ling. 2021. Temporal Keyword Searchwith
Aggregates and Group-By. In Conceptual Modeling - 40th International Conference,
ER 2021, Virtual Event, October 18-21, 2021, Proceedings (Lecture Notes in Computer
Science, Vol. 13011). Springer, 160–175. doi:10.1007/978-3-030-89022-3_14

14

https://doi.org/10.1145/1148170.1148273
https://doi.org/10.1145/1645953.1645968
https://doi.org/10.1145/1871437.1871528
https://doi.org/10.1145/2009916.2009991
https://doi.org/10.1145/3340964.3340965
https://doi.org/10.1007/978-3-642-12275-0_5
https://doi.org/10.1145/1277741.1277831
https://doi.org/10.1007/11687238_21
https://doi.org/10.1145/3308558.3313641
https://doi.org/10.1007/978-3-642-24769-9_42
https://doi.org/10.1145/2619088
https://doi.org/10.1145/2661829.2661856
https://doi.org/10.1145/3603719.3603732
https://doi.org/10.1145/3603719.3603732
https://doi.org/10.1007/S10619-024-07452-6
https://doi.org/10.1109/ICDE.2005.99
https://doi.org/10.1109/ICDE.2005.99
https://doi.org/10.1007/S00778-021-00661-W
https://doi.org/10.1145/2505515.2505696
https://doi.org/10.7910/DVN/Z834IK
https://doi.org/10.7910/DVN/Z834IK
https://doi.org/10.1145/3514221.3517873
https://doi.org/10.1007/S00778-023-00798-W
https://doi.org/10.1145/3639275
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1145/253168.253189
https://doi.org/10.1016/J.IPM.2015.05.002
https://doi.org/10.1109/ICDE.2000.839452
https://doi.org/10.1145/1718487.1718489
https://doi.org/10.1145/2275.357411
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/280277.280279
https://doi.org/10.1007/978-3-030-89022-3_14

Fast Indexing for Temporal Information Retrieval SIGMOD ’26, May 31–June 5, 2026, Bengaluru, India

[33] Qiao Gao, Mong-Li Lee, Tok Wang Ling, Gillian Dobbie, and Zhong Zeng. 2018.
Analyzing Temporal Keyword Queries for Interactive Search over Temporal
Databases. In Database and Expert Systems Applications - 29th International
Conference, DEXA 2018, Regensburg, Germany, September 3-6, 2018, Proceed-
ings, Part I (Lecture Notes in Computer Science, Vol. 11029). Springer, 355–371.
doi:10.1007/978-3-319-98809-2_22

[34] JinruHe, Hao Yan, and Torsten Suel. 2009. Compact full-text indexing of versioned
document collections. In Proceedings of the 18th ACM Conference on Information
and Knowledge Management, CIKM 2009, Hong Kong, China, November 2-6, 2009.
ACM, 415–424. doi:10.1145/1645953.1646008

[35] Sven Helmer and Guido Moerkotte. 2003. A performance study of four index
structures for set-valued attributes of low cardinality. VLDB J. 12, 3 (2003),
244–261. doi:10.1007/S00778-003-0106-0

[36] Wenyu Huo and Vassilis J. Tsotras. 2012. A Comparison of Top-k Temporal Key-
word Querying over Versioned Text Collections. In Database and Expert Systems
Applications - 23rd International Conference, DEXA 2012, Vienna, Austria, Septem-
ber 3-6, 2012. Proceedings, Part II (Lecture Notes in Computer Science, Vol. 7447).
Springer, 360–374. doi:10.1007/978-3-642-32597-7_31

[37] Adam Jatowt, Mari Sato, Simon Draxl, Yijun Duan, Ricardo Campos, and
Masatoshi Yoshikawa. 2024. Is this news article still relevant? Ranking by con-
temporary relevance in archival search. Int. J. Digit. Libr. 25, 2 (2024), 197–216.
doi:10.1007/S00799-023-00377-Y

[38] Xianyan Jia, Wynne Hsu, and Mong-Li Lee. 2016. Target-Oriented Keyword
Search over Temporal Databases. In Database and Expert Systems Applications
- 27th International Conference, DEXA 2016, Porto, Portugal, September 5-8, 2016,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9827). Springer, 3–19.
doi:10.1007/978-3-319-44403-1_1

[39] Hideo Joho, Adam Jatowt, and Roi Blanco. 2015. Temporal information searching
behaviour and strategies. Inf. Process. Manag. 51, 6 (2015), 834–850. doi:10.1016/J.
IPM.2015.03.006

[40] Rosie Jones and Fernando Diaz. 2007. Temporal profiles of queries. ACM Trans.
Inf. Syst. 25, 3 (2007), 14. doi:10.1145/1247715.1247720

[41] Nattiya Kanhabua, Roi Blanco, and Kjetil Nørvåg. 2015. Temporal Information
Retrieval. Found. Trends Inf. Retr. 9, 2 (2015), 91–208. doi:10.1561/1500000043

[42] Nattiya Kanhabua and Kjetil Nørvåg. 2012. Learning to rank search results for
time-sensitive queries. In 21st ACM International Conference on Information and
Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012.
ACM, 2463–2466. doi:10.1145/2396761.2398667

[43] Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter M. Fischer,
Donald Kossmann, Franz Färber, and Norman May. 2013. Timeline index: a
unified data structure for processing queries on temporal data in SAP HANA.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013. ACM, 1173–1184.
doi:10.1145/2463676.2465293

[44] Arnd Christian König, Kenneth Ward Church, and Martin Markov. 2009. A Data
Structure for Sponsored Search. In Proceedings of the 25th International Conference
on Data Engineering, ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China.
IEEE Computer Society, 90–101. doi:10.1109/ICDE.2009.37

[45] Hans-Peter Kriegel, Marco Pötke, and Thomas Seidl. 2000. Managing Intervals
Efficiently in Object-Relational Databases. In VLDB 2000, Proceedings of 26th
International Conference on Very Large Data Bases, September 10-14, 2000, Cairo,
Egypt. Morgan Kaufmann, 407–418. http://www.vldb.org/conf/2000/P407.pdf

[46] Anagha Kulkarni, Jaime Teevan, Krysta M. Svore, and Susan T. Dumais. 2011.
Understanding temporal query dynamics. In Proceedings of the Forth International
Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China,
February 9-12, 2011. ACM, 167–176. doi:10.1145/1935826.1935862

[47] David B. Lomet. 1975. Scheme for Invalidating References to Freed Storage. IBM
J. Res. Dev. 19, 1 (1975), 26–35. doi:10.1147/RD.191.0026

[48] Wei Lu, Zhanhao Zhao, Xiaoyu Wang, Haixiang Li, Zhenmiao Zhang, Zhiyu
Shui, Sheng Ye, Anqun Pan, and Xiaoyong Du. 2019. A Lightweight and Efficient
Temporal Database Management System in TDSQL. Proc. VLDB Endow. 12, 12
(2019), 2035–2046. doi:10.14778/3352063.3352122

[49] Nikos Mamoulis, David W. Cheung, and Wang Lian. 2003. Similarity Search in
Sets and Categorical Data Using the Signature Tree. In Proceedings of the 19th
International Conference on Data Engineering, March 5-8, 2003, Bangalore, India.
IEEE Computer Society, 75–86. doi:10.1109/ICDE.2003.1260783

[50] Donald Metzler, Rosie Jones, Fuchun Peng, and Ruiqiang Zhang. 2009. Improving
search relevance for implicitly temporal queries. In Proceedings of the 32nd Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2009, Boston, MA, USA, July 19-23, 2009. ACM, 700–701. doi:10.
1145/1571941.1572085

[51] Alexandros Nanopoulos and Yannis Manolopoulos. 2002. Efficient similarity
search for market basket data. VLDB J. 11, 2 (2002), 138–152. doi:10.1007/S00778-
002-0068-7

[52] Kjetil Nørvåg and Albert Overskeid Nybø. 2005. Improving Space-Efficiency
in Temporal Text-Indexing. In Database Systems for Advanced Applications,
10th International Conference, DASFAA 2005, Beijing, China, April 17-20, 2005,
Proceedings (Lecture Notes in Computer Science, Vol. 3453). Springer, 791–802.
doi:10.1007/11408079_72

[53] Kjetil Nørvåg and Albert Overskeid Nybø. 2006. DyST: Dynamic and Scalable
Temporal Text Indexing. In 13th International Symposium on Temporal Repre-
sentation and Reasoning (TIME 2006), 15-17 June 2006, Budapest, Hungary. IEEE
Computer Society, 204–211. doi:10.1109/TIME.2006.12

[54] Mark H. Overmars. 1983. The Design of Dynamic Data Structures. Lecture Notes
in Computer Science, Vol. 156. Springer. doi:10.1007/BFB0014927

[55] Gultekin Özsoyoglu and Richard T. Snodgrass. 1995. Temporal and Real-Time
Databases: A Survey. IEEE Trans. Knowl. Data Eng. 7, 4 (1995), 513–532. doi:10.
1109/69.404027

[56] Giulio Ermanno Pibiri and Rossano Venturini. 2021. Techniques for Inverted Index
Compression. ACM Comput. Surv. 53, 6 (2021), 125:1–125:36. doi:10.1145/3415148

[57] Kira Radinsky, Krysta M. Svore, Susan T. Dumais, Jaime Teevan, Alex Bocharov,
and Eric Horvitz. 2012. Modeling and predicting behavioral dynamics on the web.
In Proceedings of the 21st World Wide Web Conference 2012, WWW 2012, Lyon,
France, April 16-20, 2012. ACM, 599–608. doi:10.1145/2187836.2187918

[58] Stefano Giovanni Rizzo, Matteo Brucato, and Danilo Montesi. 2023. Ranking
Models for the Temporal Dimension of Text. ACM Trans. Inf. Syst. 41, 2 (2023),
49:1–49:34. doi:10.1145/3565481

[59] Iztok Savnik, Mikita Akulich, Matjaž Krnc, and Riste Škrekovski. 2021. Data
structure set-trie for storing and querying sets: Theoretical and empirical analysis.
PLoS ONE 16, 2 (2021), 1–38. doi:10.1371/journal.pone.0245122

[60] Manolis Terrovitis, Panagiotis Bouros, Panos Vassiliadis, Timos K. Sellis, and
Nikos Mamoulis. 2011. Efficient answering of set containment queries for skewed
item distributions. In EDBT 2011, 14th International Conference on Extending
Database Technology, Uppsala, Sweden, March 21-24, 2011, Proceedings. ACM,
225–236. doi:10.1145/1951365.1951394

[61] Manolis Terrovitis, Spyros Passas, Panos Vassiliadis, and Timos K. Sellis. 2006.
A combination of trie-trees and inverted files for the indexing of set-valued
attributes. In Proceedings of the 2006 ACM CIKM International Conference on
Information and Knowledge Management, Arlington, Virginia, USA, November 6-11,
2006. ACM, 728–737. doi:10.1145/1183614.1183718

[62] Leong Hou U, Nikos Mamoulis, Klaus Berberich, and Srikanta J. Bedathur. 2010.
Durable top-k search in document archives. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010. ACM, 555–566. doi:10.1145/1807167.1807228

[63] Pengming Wang, Qing Chen, and Bin Wang. 2019. Temporal Smoothing: Dis-
criminatively Incorporating Various Temporal Profiles of Queries. In Information
Retrieval - 25th China Conference, CCIR 2019, Fuzhou, China, September 20-22,
2019, Proceedings (Lecture Notes in Computer Science, Vol. 11772). Springer, 26–38.
doi:10.1007/978-3-030-31624-2_3

[64] Jiangong Zhang and Torsten Suel. 2007. Efficient search in large textual collections
with redundancy. In Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007. ACM, 411–420.
doi:10.1145/1242572.1242628

[65] Yating Zhang, Adam Jatowt, Sourav S. Bhowmick, and Katsumi Tanaka. 2016.
The Past is Not a Foreign Country: Detecting Semantically Similar Terms across
Time. IEEE Trans. Knowl. Data Eng. 28, 10 (2016), 2793–2807. doi:10.1109/TKDE.
2016.2591008

[66] Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines. ACM
Comput. Surv. 38, 2 (2006), 6. doi:10.1145/1132956.1132959

[67] Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. 1992. An Efficient Index-
ing Technique for Full Text Databases. In 18th International Conference on Very
Large Data Bases, August 23-27, 1992, Vancouver, Canada, Proceedings. Morgan
Kaufmann, 352–362. http://www.vldb.org/conf/1992/P353.PDF

15

https://doi.org/10.1007/978-3-319-98809-2_22
https://doi.org/10.1145/1645953.1646008
https://doi.org/10.1007/S00778-003-0106-0
https://doi.org/10.1007/978-3-642-32597-7_31
https://doi.org/10.1007/S00799-023-00377-Y
https://doi.org/10.1007/978-3-319-44403-1_1
https://doi.org/10.1016/J.IPM.2015.03.006
https://doi.org/10.1016/J.IPM.2015.03.006
https://doi.org/10.1145/1247715.1247720
https://doi.org/10.1561/1500000043
https://doi.org/10.1145/2396761.2398667
https://doi.org/10.1145/2463676.2465293
https://doi.org/10.1109/ICDE.2009.37
http://www.vldb.org/conf/2000/P407.pdf
https://doi.org/10.1145/1935826.1935862
https://doi.org/10.1147/RD.191.0026
https://doi.org/10.14778/3352063.3352122
https://doi.org/10.1109/ICDE.2003.1260783
https://doi.org/10.1145/1571941.1572085
https://doi.org/10.1145/1571941.1572085
https://doi.org/10.1007/S00778-002-0068-7
https://doi.org/10.1007/S00778-002-0068-7
https://doi.org/10.1007/11408079_72
https://doi.org/10.1109/TIME.2006.12
https://doi.org/10.1007/BFB0014927
https://doi.org/10.1109/69.404027
https://doi.org/10.1109/69.404027
https://doi.org/10.1145/3415148
https://doi.org/10.1145/2187836.2187918
https://doi.org/10.1145/3565481
https://doi.org/10.1371/journal.pone.0245122
https://doi.org/10.1145/1951365.1951394
https://doi.org/10.1145/1183614.1183718
https://doi.org/10.1145/1807167.1807228
https://doi.org/10.1007/978-3-030-31624-2_3
https://doi.org/10.1145/1242572.1242628
https://doi.org/10.1109/TKDE.2016.2591008
https://doi.org/10.1109/TKDE.2016.2591008
https://doi.org/10.1145/1132956.1132959
http://www.vldb.org/conf/1992/P353.PDF

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation and problem definition
	2.2 Temporal IR indexing
	2.3 Indexing intervals with HINT

	3 Novel IR-first Indexing
	3.1 The tIF+HINT index
	3.2 A Hybrid Index

	4 The irHINT Index
	4.1 Focus on performance
	4.2 Focus on index size

	5 Experimental Analysis
	5.1 Setup
	5.2 Tuning
	5.3 Comparing tIF+HINT variants
	5.4 tIF+HINT and irHINT against competition
	5.5 Updates

	6 Related Work
	6.1 IR and temporal IR indexing
	6.2 Indexing intervals
	6.3 Keyword search in temporal databases

	7 Conclusions and Future Work
	References

