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ABSTRACT
A wide range of applications manage large collections of interval

data. For instance, temporal databases manage validity intervals of

objects or versions thereof, while in probabilistic databases attribute

values of records are associated with confidence or uncertainty in-

tervals. The main search operation on interval data is the retrieval

of data intervals that intersect (i.e., overlap with) a query interval

(e.g., find records which were valid in September 2020, find tem-

perature readings with non-zero probability to be within [24, 26]

degrees). As query results could be many, we need mechanisms that

filter or order them based on how relevant they are to the query

interval. We define alternative relevance scores between a data and

a query interval based on their (relative) overlap. We define rele-

vance queries, which compute only a subset of the most relevant

intervals that intersect a query. Then, we propose a framework

for evaluating relevance queries that can be applied on popular

domain-partitioning interval indices (interval tree and HINT). We

present experiments on real datasets that demonstrate the efficiency

of our framework over baseline approaches.
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1 INTRODUCTION
A wide range of applications manage and search large collections

of interval data, including temporal databases [7, 36], probabilistic

databases [12, 17], anonymized databases [33], XML databases [24,

25], spatial databases [23], and data streaming applications [4]. The

most popular query over interval collections retrieves the intervals

that overlap with a query point or range. Formally, consider a
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collection 𝑆 of intervals, such that each 𝑠 ∈ 𝑆 is defined by a pair of

values [𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑠 .𝑒𝑛𝑑], where 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠 .𝑒𝑛𝑑 .1 Given a query interval
𝑞 = [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑], the objective of the range overlap query is to

find the subset 𝑆𝑞 of 𝑆 , such that for every 𝑠 ∈ 𝑆𝑞 , the intersection 𝑠∩
𝑞 = [max{𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑠 .𝑠𝑡𝑎𝑟𝑡},min{𝑞.𝑒𝑛𝑑, 𝑠 .𝑒𝑛𝑑}] is non-empty. Below,

we list important applications of interval search:

Temporal databases. In temporal databases [7, 36], records or

versions thereof are associated with validity time intervals based

on transaction time, valid time, or both. Pure-timeslice queries [32]
ask for records valid sometime in a query time interval; these are

equivalent to range-overlap queries. Range-timeslice queries ask for
records valid in a query interval, also having their key (or some

other attribute) in a given range. These two types of temporal selec-
tions are included in SQL extensions [26, 29] and implemented in

PostgreSQL
2
, Oracle Workspace Manager, IBM DB2 [34], Microsoft

SQL Server
3
, Teradata [1], and MariaDB

4
.

Uncertain databases. Due to resource limitations or errors in

sensing, an uncertainty interval is often used to model the possible

range of actual values of an object [12]. For instance, sensors report

their readings (e.g., temperature) periodically or only when they

deviate a lot from the previously transmitted value. The price of

a stock within a certain time bound (a few seconds) is approxi-

mated by a [𝑚𝑖𝑛,𝑚𝑎𝑥] interval [2]. The actual value of the object
is assumed to be within the uncertainty interval and its probability

outside the interval is 0. Given a collection of such uncertainty

intervals, a probabilistic range query is also expressed by an interval

(data range) and the objective is to retrieve the set of all tuples

(𝑠𝑖 , 𝑝𝑖 ), where 𝑠𝑖 is the uncertainty interval of the reading and 𝑝𝑖
is the non-zero probability that the actual value of 𝑠𝑖 is inside the

query range. In effect, this is a range overlap query.

XML document encodings. Finding the relationship (e.g., ances-

tor, sibling, etc.) between nodes in tree representations of XML

documents facilitates the evaluation of XPath queries. Grust [24]

encodes each node 𝑣 by a [𝑝𝑟𝑒 (𝑣), 𝑝𝑜𝑠𝑡 (𝑣)] interval, where 𝑝𝑟𝑒 (𝑣)
and 𝑝𝑜𝑠𝑡 (𝑣) are the ranks of 𝑣 in the preorder and postorder tra-

versal of the tree, respectively. Retrieving the nodes relative to a

query node 𝑣 is then translated to interval search operations (e.g.,

interval containment search retrieves the descendants).

Anonymized data. Generalization is one of the most popular

anonymization approaches for relational data [39]. The values of a

sensitive column are clustered and each original value is replaced by

1
For the ease of exposition, we consider intervals that are closed at both ends. The

techniques that we propose in this work can also directly be applied on collections of

intervals that may be open at one or both ends.

2
http://wiki.postgresql.org/wiki/Temporal_Extensions

3
http://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables

4
http://mariadb.com/kb/en/system-versioned-tables/
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Figure 1: Example of data intervals and a query

a range which includes all values in the cluster where the value be-

longs. Then, range queries on the original column become interval

overlap queries on the anonymized column, similar to probabilistic

range queries over uncertain data [12]. PostgreSQL v. 9.2 includes

native ranged data types, supported by range search operators.
5

Managing intervals for the efficient evaluation of range over-

lap queries is a well-studied problem in the past 40 years for both

memory-resident and disk-based data. A classic, worst-case optimal,

data structure for intervals is the interval tree [22], originally used

for the support of windowing operations in computational geome-

try [18]. Kriegel et al. adapted it for storage and search of intervals

in a relational database [28]. The state-of-the-art data structure

for intervals in main memory is HINT [14, 15]. To support range-

timeslice queries in temporal databases, a number of composite

indices have been proposed, most notably the multi-version B-tree

[5, 30], the timeline index [27] (implemented in SAP HANA), and

the recently proposed LIT [16]. These methods primarily index the

records by time and secondarily by other attributes (such as record

keys), as (typically) the time predicate is more selective.

Figure 1 shows a sample of intervals from the TAXIS dataset
6
,

which we use in our experiments. The dataset includes 169M NYC

taxi trip records in 2009; the figure shows a tiny sample of the trips

timespan on March 1, 2009 as intervals 𝑠1 to 𝑠15. The numbers on

top of each interval indicate the number of passengers on that trip.

Overall, 327K taxi trips took place on March 1, 2009 and the number

of passengers in each trip ranged from 1 to 5. For each trip, the pick-

up and drop-off locations are recorded but not the route in-between.

Assume that a suspect involved in a crime was eye-witnessed in a

cab between 17:00 and 17:30, denoted by interval 𝑞 in the figure. In

the example, taxi trips denoted by 𝑠11 to 𝑠14 overlap with 𝑞, so these

trips should be investigated (i.e., by finding the license plates of the

corresponding cabs and questioning the drivers). This corresponds

to a pure-timeslice query [32]. The number of taxi trips that overlap

with the query interval 17:00 to 17:30 on March 1st, 2009 is 12432.

The cost to retrieve them using a HINT index [14] built on the entire

data collection is 10 nsec, while a naive approach that accesses all

intervals to find those that overlap with 𝑞 is 65 msec. If additional

information is known about the suspect, i.e., he was alone in the cab,

the query would retrieve only 𝑠11 and 𝑠13 in Figure 1, i.e., trips with

1 passenger only. This range-timeslice query on the entire TAXIS

dataset returns 8733 results. The cost to retrieve these results using

a HINT index on all data and post-filtering by the passenger number

is 50 nsec, while the cost of accessing only the single-passenger

trips and verifying 𝑞 on them is 42 msec. This example indicates

that interval indexing such as the interval tree and HINT, are useful

5
https://wiki.postgresql.org/images/7/73/Range-types-pgopen-2012.pdf

6
http://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

even if there are additional filters on other non-interval attributes.
7

Composite indices, such as LIT (which uses HINT to index part of

the data), do even better, as shown in [16].

Motivation. In the previous example, regardless whether there is

an additional selection on the number of passengers or not, the

interval overlap query (17:00 to 17:30 on March 1st, 2009) returns

numerous results. Examining these results one-by-one (e.g., ques-

tioning the taxi drivers that drove these suspect trips and following

up at the drop-off points) is tedious and resource-consuming. It

would make sense to either restrict the results to those that have

large relative overlap with the query interval, or rank them based

on their overlap-based similarity to the query. For example, we may

want to examine the trips that overlap at least 80% of the query

interval, or we may want to retrieve the ones that have the highest

probability to overlap with the query.

Contributions. We first define the concept of the relevance for a
data interval 𝑠 to a query𝑞, denoted by𝑅𝑒𝑙 (𝑠, 𝑞). We provide alterna-

tive definitions that could be useful in different application scenaria;

i.e., based on the absolute length |𝑠∩𝑞 | of the intersection, based on
the data- or query-relative length (|𝑠 ∩𝑞 |/|𝑠 | or |𝑠 ∩𝑞 |/|𝑞 |), or based
on the symmetric relative length (|𝑠 ∩ 𝑞 |/|𝑠 ∪ 𝑞 |). In probabilistic

databases, |𝑠 ∩ 𝑞 |/|𝑠 | computes the probability that an uncertain

value in range 𝑠 is in the query interval 𝑞. Absolute (|𝑠 ∩ 𝑞 |) and
query-relative (|𝑠 ∩ 𝑞 |/|𝑞 |) relevance is meaningful in applications

with temporal data. For example, assume that 𝑞 is a time period

(e.g., a month) during which a rumor spread. The objective could be

to find social network users who had been propagating the rumor

for the most time within 𝑞. Symmetric relevance (|𝑠 ∩ 𝑞 |/|𝑠 ∪ 𝑞 |) is
a continuous-space analog of Jaccard similarity and can be used to

detect the most similar intervals to the query interval 𝑞; e.g., find

web sessions whose timespan was very similar to the timespan of a

fraudulent activity, to identify suspects. Keyword web queries (e.g.,

“war” and “peace”) can be semantically related if the time periods

when they are popular are similar [10]. Finally, as shown in [31],

temporal queries may have too many or too few results, so defining

approximate matches and ranking them is more practical.

We study two types of relevance queries for interval data. Thresh-
old-based queries take as input a threshold 𝜃 and select only the data
intervals 𝑠 with relevance𝑅𝑒𝑙 (𝑠, 𝑞) at least 𝜃 ; ranking queries take as
input a positive integer 𝑘 and return the top-𝑘 data intervals having

the highest relevance to 𝑞. For example, in Figure 1, the taxi trips

with the highest relevance to𝑞 using |𝑠∩𝑞 |/|𝑞 | are 𝑠12, 𝑠13; if we limit

search to trips with only one passenger, the most relevant trip is 𝑠13.

If relevance is defined as |𝑠∩𝑞 |/|𝑠 |, then the most relevant trip is 𝑠13
regardless whether there is a filter that the number of passengers

is 1. If 𝑞 is the uncertain time interval where the suspect was seen,

and we look for the trips that overlap 𝑞 with 𝜃 = 80% probability,

then we obtain 𝑠12, 𝑠13 as results (or just 𝑠13 if we are looking for

single-passenger taxi trips). The user may set appropriate values for

𝜃 and 𝑘 depending on the application; in our taxi suspect example,

we could set a small value, e.g., 𝑘 = 10, since following up with the

results can be resource demanding. Implementations of uncertain

7
Using an interval or another index for a composite query is a query optimization

problem. Based on the analysis in [14], we can estimate the selectivity and the cost of

an interval overlap query, enabling the optimizer to consider predicates on intervals.
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data management systems [13, 35] allow for the specification of

probabilistic thresholds in range-overlap queries.

A baseline approach to evaluate relevance queries is to first find

all data intervals that overlap with 𝑞 and then for each such object

compute its relevance and output only the qualifying ones (based

on 𝜃 or 𝑘). To this end, any existing interval index can be utilized.

However, this method is expected to be slow, especially if the size

of 𝑆𝑞 is large. We propose a more efficient, general framework for

relevance queries that can be used with any partition-based inter-

val index, including the interval tree [22] and HINT [14]. For each

partition 𝑃 of the interval index, our approach requires knowledge

about the minimum and maximum 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 points of the in-

tervals assigned to 𝑃 . In most cases this information can be readily

available from the index, since intervals are typically sorted there.

In case they are not, such information can be computed and main-

tained at minimal cost, as we will discuss. Given these statistics and

𝑞, we show how to derive fast upper and lower relevance bounds

for the intervals in each partition. These bounds make it possible

to prune partitions or obtain results in them without computations;

they can also be used to define an access order for the partitions in

ranking queries.

Our contributions can be summarized as follows:

• This is the first work, to our knowledge, that defines and

studies relevance queries over interval data, based on alter-

native definitions, to be used by various applications that

manage large volumes of interval data.

• We propose a unified approach for the efficient evaluation

of relevance queries that applies on any off-the-shelf inter-

val index. Our framework only requires statistics about the

minimum and maximum end points of the intervals in each

partition. Our method computes provable upper and lower

bound relevance scores for each partition in 𝑂 (1) time, and

uses them to prune partitions or schedule their access.

• We conduct an experimental study on real datasets demon-

strating that our framework, when applied using state-of-

the-art interval indices (interval tree, HINT) can reduce the

relevance query processing cost by orders of magnitude.

Outline. The rest of the text is organized as follows. Section 2

defines the problem under study and includes the necessary back-

ground in indexing intervals. Section 3 presents our methodology

for efficient evaluation of relevance queries over popular interval

indices. Section 4 presents our experimental analysis. Section 5

discusses the related work. Finally, Section 6 concludes the paper.

2 PRELIMINARIES
We first introduce necessary notation and formally define the prob-

lem of relevance search on interval data. Then, we briefly describe

two state-of-the-art indexing structures for interval data; later in

the paper, we will elaborate on how to evaluate relevance queries

efficiently using these structures.

2.1 Notation and problem definitions
Given a discrete or continuous 1D space, an interval is defined by

a starting and an ending point in this domain. For instance, in the

space of all non-negative integers N, an interval [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] with

𝑠𝑡𝑎𝑟𝑡 , 𝑒𝑛𝑑 ∈ N and 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑛𝑑 , is the subset of N, which includes

all integers 𝑥 with 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑥 ≤ 𝑒𝑛𝑑 .
We denote by [𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑠 .𝑒𝑛𝑑] the interval which is associated to

a data object 𝑠 ; for example, 𝑠 could be a version of a record in a tem-

poral database, or a probabilistic object in an uncertain database.We

denote by |𝑠 | the extent (i.e., length) of an object 𝑠 , which equals the

extent of its associated interval, i.e., |𝑠 | = 𝑠 .𝑒𝑛𝑑 − 𝑠 .𝑠𝑡𝑎𝑟𝑡 in the do-

main is continuous or |𝑠 | = 𝑠 .𝑒𝑛𝑑−𝑠 .𝑠𝑡𝑎𝑟𝑡+1 if the domain is discrete.

Given a query interval 𝑞 = [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑], the intersection of an

object 𝑠 with 𝑞 is 𝑠 ∩𝑞 = [max{𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑠𝑡𝑎𝑟𝑡},min{𝑠 .𝑒𝑛𝑑, 𝑞.𝑒𝑛𝑑}].
Last, we denote by 𝑅𝑒𝑙 (𝑠, 𝑞) the relevance of an object 𝑠 to a query

𝑞. We introduce four alternative definitions for 𝑅𝑒𝑙 (𝑠, 𝑞):

𝑅𝑒𝑙𝑎 (𝑠, 𝑞) = |𝑠 ∩ 𝑞 | (1)

𝑅𝑒𝑙𝑟 (𝑠, 𝑞) =
|𝑠 ∩ 𝑞 |
|𝑠 ∪ 𝑞 | (2)

𝑅𝑒𝑙𝑟𝑑 (𝑠, 𝑞) =
|𝑠 ∩ 𝑞 |
|𝑠 | (3)

𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞) =
|𝑠 ∩ 𝑞 |
|𝑞 | (4)

where 𝑠∪𝑞 denotes the interval that covers the collective range of 𝑠 ,
𝑞, i.e., 𝑠∪𝑞 = [min{𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑠𝑡𝑎𝑟𝑡},max{𝑠 .𝑒𝑛𝑑, 𝑞.𝑒𝑛𝑑}]. Equation 1
computes an absolute relevance of 𝑠 to 𝑞, while Equations 2–4, a
relative relevance. For the relative relevance, we particularly distin-

guish between a symmetric version defined in Equation 2 and the

data- or query-relative asymmetric one, defined in Equations 3 and

4, respectively.

Given a collection of data objects 𝑆 and a query interval 𝑞, we

next define two variants of relevance search on 𝑆 .

Definition 2.1 (Threshold-based). Let 𝜃 be a relevance threshold;

the threshold-based relevance query denoted by 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞),
returns all objects in 𝑆 whose relevance to query interval 𝑞 exceeds

𝜃 . Formally,

𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞) = {𝑠 ∈ 𝑆 : 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 }

Definition 2.2 (Ranking). Let 𝑘 a positive integer; the ranking
relevance query denoted by 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞), returns the 𝑘 subset

of the objects in 𝑆 with the highest relevance to query interval 𝑞,

Formally,

• |𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞) | = 𝑘 , and
• 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞) = {𝑠 ∈ 𝑆 : ∀𝑠′ ∈ 𝑆 \ 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞),
𝑅𝑒𝑙 (𝑠′, 𝑞) ≤ 𝑅𝑒𝑙 (𝑠, 𝑞)}

2.2 Background on indexing intervals
We revisit the popular interval tree [22] and the recently proposed

HINT [14, 16] for indexing a collection of data objects S. Based on

the analysis in [16], the two structures represent the best profiles in

terms of query performance and storage requirements. Specifically,

the interval tree typically has the lowest space requirements while

HINT achieves the highest query throughput.

2.2.1 Interval tree. The interval tree [22] is a binary search tree,

which occupies 𝑂 (𝑛) space and answers selection queries on in-

terval data in 𝑂 (log𝑛 + 𝐾) time, where 𝐾 is the number of query

results. The tree divides the 1D domain hierarchically as follows.

We first use the median𝑀1 of the 2𝑛 endpoints of all intervals to

define the root 𝑣1 of the tree and partition the set 𝑆 of data intervals

into three sets: the intervals which include 𝑀1 are placed in the
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Figure 2: Example of an interval tree

ALGORITHM 1: Range query on the interval tree

Input : Interval tree I, query interval 𝑞

Output : set of all intervals that overlap with 𝑞

1 Function Search(node 𝑣, query interval 𝑞):
2 if 𝑣.𝑀 < 𝑞.𝑠𝑡𝑎𝑟𝑡 then
3 𝑠 ← 𝑣.𝐿𝑒𝑛𝑑.𝑓 𝑖𝑟𝑠𝑡 ( ) ;
4 while 𝑠.𝑒𝑛𝑑 ≤ 𝑞.𝑠𝑡𝑎𝑟𝑡 do
5 output 𝑠 ;
6 𝑠 ← 𝑣.𝐿𝑒𝑛𝑑.𝑛𝑒𝑥𝑡 ( ) ;
7 Search(𝑣.𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑,𝑞);

8 else if 𝑣.𝑀 > 𝑞.𝑒𝑛𝑑 then
9 𝑠 ← 𝑣.𝐿𝑠𝑡 .𝑓 𝑖𝑟𝑠𝑡 ( ) ;

10 while 𝑠.𝑠𝑡𝑎𝑟𝑡 ≥ 𝑞.𝑒𝑛𝑑 do
11 output 𝑠 ;
12 𝑠 ← 𝑣.𝐿𝑠𝑡 .𝑛𝑒𝑥𝑡 ( ) ;
13 Search(𝑣.𝑙𝑒 𝑓 𝑡𝑐ℎ𝑖𝑙𝑑,𝑞);

14 else ⊲ 𝑞.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑀 ≤ 𝑞.𝑒𝑛𝑑

15 output all 𝑠 ∈ 𝑣.𝐿𝑠𝑡 ;

16 Search(𝑣.𝑙𝑒 𝑓 𝑡𝑐ℎ𝑖𝑙𝑑,𝑞);
17 Search(𝑣.𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑,𝑞);

18 Search(I.𝑟𝑜𝑜𝑡, 𝑞) ; ⊲ Traverse the tree, depth-first

root, the set of intervals 𝑆𝐿 which end before𝑀1 are assigned to the

left subtree of the root and the set of intervals 𝑆𝑅 which begin after

𝑀1 are assigned to the right subtree of the root. The intervals in

the root 𝑣1 are placed in two sorted lists: 𝑣1 .𝐿𝑠𝑡 keeps the intervals

in increasing order of their 𝑠 .𝑠𝑡𝑎𝑟𝑡 endpoint and 𝑣1 .𝐿𝑒𝑛𝑑 keeps the

intervals in decreasing order of their 𝑠 .𝑒𝑛𝑑 endpoint. 𝑆𝐿 and 𝑆𝑅 are

divided recursively using their respective medians𝑀2 and𝑀3, to

define 𝑣2 and 𝑣3, the left and right children of 𝑣1. Figure 2 shows an

example of an interval tree (bottom) for a set of 14 intervals (top).

Point and range queries can be evaluated as shown by Algorithm

1. Consider the range query 𝑞 = [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑] shown in Figure 2.

Since𝑞.𝑠𝑡𝑎𝑟𝑡 > 𝑀1, we scan 𝑣1 .𝐿𝑒𝑛𝑑 to find any intervals in the root

that overlap with 𝑞. As soon as we access one interval (e.g., 𝑠6) for

which the end point is smaller than 𝑞.𝑠𝑡𝑎𝑟𝑡 , we terminate the scan

(e.g., 𝑠6 .𝑒𝑛𝑑 < 𝑞.𝑠𝑡𝑎𝑟𝑡 ) because subsequent intervals 𝑠 (e.g., 𝑠8, 𝑠7)

have an even smaller 𝑠 .𝑒𝑛𝑑 . Condition𝑞.𝑠𝑡𝑎𝑟𝑡 > 𝑀1 dictates that we

have to search the right subtree, so we access 𝑣3 and compare𝑀3 to

𝑞. In this case,𝑀3 is included in 𝑞, so all intervals assigned to 𝑣3 are

guaranteed to overlap with 𝑞. To report them, we can scan any of

𝑣3 .𝐿𝑠𝑡 or 𝑣3 .𝐿𝑒𝑛𝑑 . Since𝑀3 is included in 𝑞, we have to recursively

search both subtrees of 𝑣3. To the left, 𝑀6 < 𝑞.𝑠𝑡𝑎𝑟𝑡 , so we scan

𝑣6 .𝐿𝑒𝑛𝑑 , obtain 𝑠10, and stop the scan at 𝑠9 since 𝑠9 .𝑒𝑛𝑑 < 𝑞.𝑠𝑡𝑎𝑟𝑡 . To

the right,𝑀7 > 𝑞.𝑠𝑡𝑎𝑟𝑡 , so we scan 𝑣7 .𝐿𝑠𝑡 and obtain 𝑠13 (scanning

is stopped at 𝑠14 since 𝑠14 .𝑠𝑡𝑎𝑟𝑡 > 𝑞.𝑒𝑛𝑑).
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Figure 3: Example of HINT

2.2.2 HINT. HINT [14, 16] hierarchically and uniformly divides

the domain into 2
ℓ
partitions for ℓ = 0 to𝑚, defining𝑚 + 1 levels,

as shown in Figure 3. Partitions at level ℓ are denoted by 𝑃ℓ,0 to

𝑃ℓ,2ℓ−1. Each interval 𝑠 is normalized, discretized in the [0, 2𝑚−1]
domain, and assigned to the smallest set of partitions from all levels

that cover 𝑠 (at most 2 partitions per level). For example, in Figure 3,

intervals 𝑠1, 𝑠3, 𝑠4 are assigned to partition 𝑃2,0 only, interval 𝑠5 to

partitions 𝑃3,1 and 𝑃3,2, and intervals 𝑠6, 𝑠8 to partitions 𝑃2,1 and

𝑃3,4. The intervals in each partition 𝑃 are split into two divisions

(sub-partitions): those that start inside 𝑃 (called originals), denoted
by 𝑃𝑂 , and those that start before 𝑃 (called replicas), denoted by 𝑃𝑅 .

For example, intervals 𝑠6, 𝑠8 are in 𝑃
𝑂
2,1

and in 𝑃𝑅
3,4
.

Given a selection query 𝑞 = [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑], at each index level

ℓ , only the sequence of partitions 𝑃ℓ,𝑖 that overlap with 𝑞 are ac-

cessed. For example, for query 𝑞 in Figure 3, the accessed partitions

are gray-shaded. To avoid producing duplicate results and save

on unnecessary accesses and comparisons, originals and replicas

divisions are only processed in the first accessed partition at each

level ℓ , while for the remaining partitions only originals are pro-

cessed. Hence, for query 𝑞 in Figure 3, in partition 𝑃3,5, we access

𝑃𝑂
3,5
, containing intervals than begin inside 𝑃3,5, including 𝑠10, and

𝑃𝑅
3,5

which includes any intervals that begin before 𝑃3,5 and end

inside it. In 𝑃3,6, we only access 𝑃𝑂
3,6

which includes 𝑠11 and 𝑠12, but

do not access 𝑃𝑅
3,6

= {𝑠10}, thus avoiding considering 𝑠10 again.
At each level ℓ , the partitions that overlap a query 𝑞 span from

𝑃ℓ,𝑓 to 𝑃ℓ,𝑙 , where 𝑓 and 𝑙 are the ℓ-bit prefixes of 𝑞.𝑠𝑡𝑎𝑟𝑡 and

𝑞.𝑒𝑛𝑑 , respectively. For all partitions 𝑃ℓ,𝑖 with 𝑓 < 𝑖 < 𝑙 , we can

simply report all intervals in 𝑃𝑂
ℓ,𝑖

(no comparisons are required).

To minimize the required comparisons for 𝑃ℓ,𝑓 and 𝑃ℓ,𝑙 , the search

algorithm accesses HINT bottom-up, i.e., from level𝑚 to level 0. If

𝑃ℓ,𝑓 (resp. 𝑃ℓ,𝑙 ) starts (resp. ends) at the same point as 𝑃ℓ+1,𝑓 (resp.

𝑃ℓ+1,𝑙 ), then no comparisons are required for 𝑃ℓ,𝑓 (resp. 𝑃ℓ,𝑙 ) and

for all 𝑃ℓ ′,𝑓 (resp. 𝑃ℓ ′,𝑙 ), ℓ
′ < ℓ . Given this, the search algorithm

conducts comparisons at just four partitions by expectation [14].

The number of comparisons can be further reduced by splitting the

𝑃𝑂 division (i.e., originals) of a partition 𝑃 into subdivisions 𝑃𝑂𝑖𝑛

and 𝑃𝑂𝑎𝑓 𝑡
, so that 𝑃𝑂𝑖𝑛

(𝑃𝑂𝑎𝑓 𝑡
) holds the intervals from 𝑃𝑂 that

end inside (resp. after) 𝑃 . Similarly, each 𝑃𝑅 is divided into 𝑃𝑅𝑖𝑛

and 𝑃𝑅𝑎𝑓 𝑡
. For example, in partition 𝑃3,6, intervals 𝑠11 and 𝑠12 are

both “original” because they begin in the subdomain defined by 𝑃3,6,

so they are placed in 𝑃𝑂
3,6
. Division 𝑃𝑂

3,6
is further subdivided into

𝑃
𝑂𝑖𝑛

3,6
which includes 𝑠11 and 𝑃

𝑂𝑎𝑓 𝑡

3,6
which includes 𝑠12. Algorithm 2

illustrates the pseudocode for computing range queries with HINT.
8

8
For simplicity, we omitted the special case when the first and the last relevant parti-

tions coincide, i.e., 𝑓 = 𝑙 .
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ALGORITHM 2: Range query on HINT

Input :HINT index H, query interval 𝑞

Output : set of all intervals that overlap with 𝑞

1 foreach level ℓ =𝑚 to 0 do ⊲ traverse index, bottom-up
2 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡𝑎𝑟𝑡 ) ; ⊲ first overlapping partition

3 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑 ) ; ⊲ last overlapping partition

4 output all 𝑠 ∈ 𝑃𝑂𝑖𝑛
ℓ,𝑓

with 𝑠.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑞.𝑒𝑛𝑑 ;

5 output all 𝑠 ∈ 𝑃
𝑂𝑎𝑓 𝑡

ℓ,𝑓
;

6 output all 𝑠 ∈ 𝑃𝑅𝑖𝑛
ℓ,𝑓

with 𝑞.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠.𝑒𝑛𝑑 ;

7 output all 𝑠 ∈ 𝑃
𝑅𝑎𝑓 𝑡

ℓ,𝑓
;

8 foreach partition 𝑖 with 𝑓 < 𝑖 < 𝑙 do

9 output all 𝑠 ∈ 𝑃𝑂𝑖𝑛
ℓ,𝑖

⋃
𝑃
𝑂𝑎𝑓 𝑡

ℓ,𝑖
;

10 output all 𝑠 ∈ 𝑃𝑂𝑖𝑛
ℓ,𝑙

⋃
𝑃
𝑂𝑎𝑓 𝑡

ℓ,𝑙
with 𝑠.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑞.𝑒𝑛𝑑 ;

Observe how the subdivisions of 𝑃𝑂 and 𝑃𝑅 are processed in a

different fashion allowing to reduce the necessary comparisons;

e.g., for the intervals in 𝑃𝑅𝑖𝑛 only their end is checked while for the

intervals in 𝑃𝑅𝑎𝑓 𝑡
no checks are required as they all overlap with

the query 𝑞, by definition. Lastly, to further accelerate Lines 4, 6

and 10 where interval endpoints are compared against the query

interval 𝑞, the contents of 𝑃𝑂𝑖𝑛
and 𝑃𝑂𝑎𝑓 𝑡

are sorted by 𝑠 .𝑠𝑡𝑎𝑟𝑡 and

of 𝑃𝑅𝑖𝑛 , by 𝑠 .𝑒𝑛𝑑 , similar to the interval tree lists 𝐿𝑠𝑡 and 𝐿𝑒𝑛𝑑 .

3 METHODOLOGY
The naive approach of processing relevance queries (Definitions

2.1 and 2.2) is to use an index, such as the interval tree or HINT

(described in Section 2.2), to retrieve all data intervals that overlap
with the query interval 𝑞. For every such interval 𝑠 , we can compute

𝑅𝑒𝑙 (𝑠, 𝑞) and either verify 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 (Def. 2.1) or keep track

(in a heap) of the 𝑘 intervals with the highest 𝑅𝑒𝑙 (𝑠, 𝑞) (Def. 2.2).
However, the naive approach may access more data than necessary.

In this section, we present ourmethodologywhich prunes partitions

that cannot produce results and reduces computations in accessed

partitions as much as possible.

3.1 Overview
Figure 4 illustrates our framework and the steps of query evaluation.

In a preprocessing (offline) phase, i.e., before any query arrives,

for each partition (e.g., interval tree node or HINT partition), we

compute the minimum and maximum start and end points of any

interval in the partition. As we discuss in Section 3.2, these statistics

can be readily available in the partitions.

Then, for a threshold query𝑞 (Definition 2.1), where we search for
data intervals 𝑠 having 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 , we use the index to identify
the partitions that may include intervals that overlap with 𝑞; for

each such partition 𝑃 , we use the minimum and maximum statistics

for the start/end of intervals in 𝑃 to compute𝑈𝐵(𝑃) and 𝐿𝐵(𝑃), i.e.,
the upper and lower bound of 𝑅𝑒𝑙 (𝑠, 𝑞) for any 𝑠 ∈ 𝑃 , respectively,
in 𝑂 (1) time, as explained in Section 3.3. If 𝑈𝐵(𝑃) < 𝜃 holds, we

can prune the entire partition, without accessing any data in it.

If 𝐿𝐵(𝑃) ≥ 𝜃 , we report all data intervals in 𝑃 as results without

having to compute their intersection with 𝑞 and to conduct any

comparisons. If neither of the above holds, then we have 𝐿𝐵(𝑃) <
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Figure 4: Proposed relevance framework

𝜃 ≤ 𝑈𝐵(𝑃) and we do have to access the partition and for each

𝑠 ∈ 𝑃 that intersects 𝑞 compute 𝑅𝑒𝑙 (𝑠, 𝑞) and check if 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 .
For a ranking query 𝑞 (Definition 2.2), we use again the index to

identify all partitions with intervals that may overlap with 𝑞, but

do not access each of them immediately. Instead, we add all these

partitions 𝑃 to a max-heap, to be accessed in decreasing order of

their 𝑈𝐵(𝑃), i.e., the upper bound of 𝑅𝑒𝑙 (𝑠, 𝑞) for any 𝑠 ∈ 𝑃 ; we
break ties by 𝐿𝐵(𝑃). Then, we start processing the partitions in

priority order, access each data interval 𝑠 in each partition, compute

their relevance score 𝑅𝑒𝑙 (𝑠, 𝑞) to 𝑞, and keep track of the 𝑘 intervals

with the largest 𝑅𝑒𝑙 (𝑠, 𝑞) in a min-priority query Q. If the next

partition 𝑃 to process has 𝑈𝐵(𝑃) ≤ 𝜃 , where 𝜃 is the smallest

𝑅𝑒𝑙 (𝑠, 𝑞) in Q, we stop, reporting Q as the top-𝑘 results.

3.2 Min/Max statistics in partitions
For each partition, our framework needs four numbers: the min-

imum and maximum 𝑠𝑡𝑎𝑟𝑡 and the minimum and maximum 𝑒𝑛𝑑

of the intervals in the partition. For example, for partition 𝑃
𝑂𝑖𝑛

2,0
in

Figure 3, we have𝑚𝑖𝑛𝑠𝑡 = 𝑠1 .𝑠𝑡𝑎𝑟𝑡 ,𝑚𝑎𝑥𝑠𝑡 = 𝑠4 .𝑠𝑡𝑎𝑟𝑡 and𝑚𝑖𝑛𝑒𝑛𝑑 =

𝑠1 .𝑒𝑛𝑑 ,𝑚𝑎𝑥𝑒𝑛𝑑 = 𝑠4 .𝑒𝑛𝑑 . In principle, these bounds can be obtained

from respective statistics which we can maintain together with the

index. They take up to 𝑂 (1) space per partition, so their space

requirements are bounded by the number of non-empty partitions.

For the interval tree, there is no space or maintenance overhead

for the min/max statistics. Recall that in each node 𝑣 , the contained

intervals are kept in two lists: 𝑣 .𝐿𝑠𝑡 and 𝑣 .𝐿𝑒𝑛𝑑 , sorted by their

𝑠𝑡𝑎𝑟𝑡 and by their 𝑒𝑛𝑑 point, respectively. Hence, 𝑣 .𝑚𝑖𝑛𝑠𝑡 , 𝑣 .𝑚𝑎𝑥𝑠𝑡

and 𝑣 .𝑚𝑖𝑛𝑒𝑛𝑑 , 𝑣 .𝑚𝑎𝑥𝑒𝑛𝑑 equal the first and the last entry in 𝑣 .𝐿𝑠𝑡

and 𝑣 .𝐿𝑒𝑛𝑑 , respectively. When a new interval is inserted to 𝑣 or

an existing interval is deleted from 𝑣 , 𝑣 .𝐿𝑠𝑡 and 𝑣 .𝐿𝑒𝑛𝑑 are updated

and the order in each list is maintained, so the min/max statistics

in 𝑣 are still obtained from the first and last entries in the lists.

In HINT, for a partition 𝑃 , we distinguish between two cases

depending on whether the contents of the 𝑃𝑂𝑖𝑛
, 𝑃𝑂𝑎𝑓 𝑡

and 𝑃𝑅𝑖𝑛

subdivisions are sorted or not (see Section 2.2.2). If no sorting is

imposed, we store and maintain all four𝑚𝑖𝑛𝑠𝑡 ,𝑚𝑎𝑥𝑠𝑡 and𝑚𝑖𝑛𝑒𝑛𝑑 ,

𝑚𝑎𝑥𝑒𝑛𝑑 statistics for every subdivision. When a new interval 𝑠

is added to a subdivision, it suffices to compare 𝑠 .𝑠𝑡𝑎𝑟𝑡 and 𝑠 .𝑒𝑛𝑑
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against these four numbers and update the statistics if needed.

When an existing interval is deleted, we need to scan the contents

of the subdivision to update the statistics, only if 𝑠 .𝑠𝑡𝑎𝑟𝑡 = 𝑚𝑖𝑛𝑠𝑡

or 𝑠 .𝑠𝑡𝑎𝑟𝑡 = 𝑚𝑎𝑥𝑠𝑡 and 𝑠 .𝑒𝑛𝑑 = 𝑚𝑖𝑛𝑒𝑛𝑑 or 𝑠 .𝑒𝑛𝑑 = 𝑚𝑎𝑥𝑒𝑛𝑑 . Since

deletion requires scanning the subdivision to find 𝑠 and delete it,

asymptotically, updating the statistics does not impose an overhead

to the update process. On the other hand, when sorting is used,

we explicitly store and update only𝑚𝑖𝑛𝑒𝑛𝑑 ,𝑚𝑎𝑥𝑒𝑛𝑑 for the 𝑃𝑂𝑖𝑛
,

𝑃𝑂𝑎𝑓 𝑡
subdivisions, which are sorted by the 𝑠𝑡𝑎𝑟𝑡 point, and𝑚𝑖𝑛𝑠𝑡 ,

𝑚𝑎𝑥𝑠𝑡 for 𝑃𝑅𝑖𝑛 which is sorted by 𝑒𝑛𝑑 , similar to the interval tree

and lists 𝐿𝑖𝑛 and 𝐿𝑒𝑛𝑑 , respectively. Note that 𝑃𝑅𝑎𝑓 𝑡
employs no

sorting and so, all four bounds are stored and maintained. Overall,

for HINT, (1) the time complexity of updates is not affected by the

maintenance of min/max statistics and (2) we need 𝑂 (1) space per
non-empty subdivision to store its min/max statistics.

3.3 Computing relevance bounds
Given a partition 𝑃 of an interval index, a query interval 𝑞, and a

definition 𝑅𝑒𝑙 for relevance (e.g., Eq. 3), our framework computes an

upper bound 𝑈𝐵(𝑃) and a lower bound 𝐿𝐵(𝑃) of 𝑅𝑒𝑙 (𝑠, 𝑞) for any
data interval 𝑠 ∈ 𝑃 , to be used for potentially pruning or ranking

partitions.

3.3.1 Upper relevance bounds. Our first theoretical result is that, in
all definitions of relevance, the best possible interval in a partition

is the shortest possible interval in the partition that maximizes the
absolute overlapwith the query interval. This interval can be derived
from the minimum and maximum statistics (see Section 3.2) and

the query interval. More formally:

Theorem 3.1. Let𝑚𝑖𝑛𝑠𝑡 and𝑚𝑎𝑥𝑠𝑡 (resp.𝑚𝑖𝑛𝑒𝑛𝑑 and𝑚𝑎𝑥𝑒𝑛𝑑) be
the smallest and largest start (resp. end) points of any interval in a par-
tition 𝑃 . In addition, let 𝑞 be a query interval. The data interval 𝑠𝑢𝑏 in
𝑃 that gives the largest possible relevance score for any definition of rel-
evance 𝑅𝑒𝑙 (𝑠, 𝑞) has 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 = min{max(𝑞.𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛𝑠𝑡),𝑚𝑎𝑥𝑠𝑡}
and 𝑠𝑢𝑏 .𝑒𝑛𝑑 = max{min(𝑞.𝑒𝑛𝑑,𝑚𝑎𝑥𝑒𝑛𝑑),𝑚𝑖𝑛𝑒𝑛𝑑}.

Proof. (Sketch.) Provided that we do not know the contents

of 𝑃 , but only its min/max statistics (i.e., 𝑚𝑖𝑛𝑠𝑡 , 𝑚𝑎𝑥𝑠𝑡 , 𝑚𝑖𝑛𝑒𝑛𝑑 ,

and 𝑚𝑎𝑥𝑒𝑛𝑑), we will first prove that the shortest interval in 𝑃

that maximizes the overlap with 𝑞 is 𝑠𝑢𝑏 . Based on the statistics,

𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 ranges within [𝑚𝑖𝑛𝑠𝑡,𝑚𝑎𝑥𝑠𝑡]. If 𝑞.𝑠𝑡𝑎𝑟𝑡 < 𝑚𝑖𝑛𝑠𝑡 , then

𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 should be𝑚𝑖𝑛𝑠𝑡 because any value greater than𝑚𝑖𝑛𝑠𝑡 will

result in smaller overlap, regardless where 𝑞.𝑒𝑛𝑑 lies. If𝑚𝑖𝑛𝑠𝑡 ≤
𝑞.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑚𝑎𝑥𝑠𝑡 , to maximize overlap 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 should be smaller

than or equal to 𝑞.𝑠𝑡𝑎𝑟𝑡 , so, the shortest interval that maximizes the

overlap with 𝑞 should start at 𝑞.𝑠𝑡𝑎𝑟𝑡 . Finally, if 𝑞.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑚𝑎𝑥𝑠𝑡 ,
𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 should be 𝑚𝑎𝑥𝑠𝑡 , as setting it to a smaller value does

not increase the overlap. The three cases, exemplified in Figure 5,

can be combined to 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 = min{max(𝑞.𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛𝑠𝑡),𝑚𝑎𝑥𝑠𝑡}.
𝑠𝑢𝑏 .𝑒𝑛𝑑 = max{min(𝑞.𝑒𝑛𝑑,𝑚𝑎𝑥𝑒𝑛𝑑),𝑚𝑖𝑛𝑒𝑛𝑑} can be proved sym-

metrically. Overall, 𝑠𝑢𝑏 is the shortest possible interval 𝑠 ∈ 𝑃 having

maximal intersection |𝑠 ∩ 𝑞 | with 𝑞.
Now, we will show, for all definitions of relevance 𝑅𝑒𝑙 (𝑠, 𝑞), that

if we change the endpoints of 𝑠𝑢𝑏 within their allowable bounds

𝑅𝑒𝑙 (𝑠, 𝑞) cannot increase. For 𝑅𝑒𝑙𝑎 (𝑠, 𝑞) = |𝑠 ∩ 𝑞 | and 𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞) =
|𝑠 ∩ 𝑞 |/|𝑞 |, the proof is straightforward, as we have already shown

Proof of upper bound

• best = [min{max(q.st,minst),maxst}, 
max{min(q.end,maxend),minend}]
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Figure 5: Three cases of 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡

that 𝑠𝑢𝑏 is the interval that maximizes |𝑠 ∩𝑞 |. Hence, changing end-
points of 𝑠𝑢𝑏 can only decrease the relevance. Regarding𝑅𝑒𝑙𝑟𝑠 (𝑠, 𝑞) =
|𝑠 ∩ 𝑞 |/|𝑠 |, reducing 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 or increasing 𝑠𝑢𝑏 .𝑒𝑛𝑑 does not in-

crease |𝑠 ∩ 𝑞 |, but increases |𝑠 |, so relevance decreases. Increasing

𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 or decreasing 𝑠𝑢𝑏 .𝑒𝑛𝑑 reduces the length of 𝑠 , say by 𝑎,

decreasing the denominator |𝑠 | by 𝑎. The numerator |𝑠 ∩ 𝑞 | can
decrease by at most 𝑎. Hence, the fraction may only decrease as

the numerator is smaller than or equal to the denominator and

𝑥/𝑦 ≥ (𝑥 − 𝑎)/(𝑦 − 𝑎) for all positive 𝑥,𝑦, 𝑎, where 𝑥 ≤ 𝑦. Finally,
for 𝑅𝑒𝑙𝑟 (𝑠, 𝑞) = |𝑠 ∩ 𝑞 |/|𝑠 ∪ 𝑞 |, reducing 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 or increasing
𝑠𝑢𝑏 .𝑒𝑛𝑑 does not increase |𝑠 ∩ 𝑞 |, but can only increase |𝑠 ∪ 𝑞 |. In-
creasing 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 or decreasing 𝑠𝑢𝑏 .𝑒𝑛𝑑 can reduce the numerator

|𝑠 ∩ 𝑞 | and the denominator |𝑠 ∪ 𝑞 | by at most the same value. □

Theorem 3.1 is an important result, because it allows us to derive

upper bounds for the partitions that overlap with the query 𝑞 in

an efficient and unified manner, regardless the type of the interval

index and the relevance measure. We simply have to compute 𝑠𝑢𝑏
and use 𝑅𝑒𝑙 (𝑠𝑢𝑏 , 𝑞) as the upper bound𝑈𝐵(𝑃).

3.3.2 Lower relevance bounds. Lower relevance bounds for the

intervals in a partition 𝑃 can be also derived from the minimum and

maximum statistics in 𝑃 . Similar to the 𝑠𝑢𝑏 for the upper relevance

bound, the goal is to determine the data interval 𝑠𝑙𝑏 in 𝑃 which

minimizes the |𝑠𝑙𝑏 ∩ 𝑞 | overlap while maximizing |𝑠𝑙𝑏 ∪ 𝑞 | for 𝑅𝑒𝑙𝑟
and |𝑠𝑙𝑏 | for 𝑅𝑒𝑙𝑟𝑞 . Under this premise, the process of determining

𝑠𝑙𝑏 heavily depends on the relevance definition and thus, we devise

a case-based solution for 𝐿𝐵(𝑃).

Theorem 3.2. Let𝑚𝑖𝑛𝑠𝑡 and𝑚𝑎𝑥𝑠𝑡 (resp.𝑚𝑖𝑛𝑒𝑛𝑑 and𝑚𝑎𝑥𝑒𝑛𝑑)
be the smallest and largest start (resp. end) points of any interval in
a partition 𝑃 . Assume that𝑚𝑎𝑥𝑠𝑡 ≥ 𝑚𝑖𝑛𝑒𝑛𝑑 . Also, let 𝑞 be a query
interval. The data interval 𝑠𝑙𝑏 in 𝑃 that gives the lowest possible
relevance score for 𝑅𝑒𝑙𝑎 (𝑠, 𝑞) and 𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞) has 𝑠𝑙𝑏 .𝑠𝑡𝑎𝑟𝑡 = 𝑚𝑎𝑥𝑠𝑡
and 𝑠𝑙𝑏 .𝑒𝑛𝑑 =𝑚𝑖𝑛𝑒𝑛𝑑 .

Proof. 𝑠𝑙𝑏 corresponds to the shortest possible valid interval in

𝑃 . Also, 𝑠𝑙𝑏 is covered by all valid intervals in 𝑃 . Hence, |𝑠𝑙𝑏 ∩ 𝑞 | is
the smallest possible overlap between any interval in 𝑃 and 𝑞. □

Following Theorem 3.2, we simply set 𝐿𝐵(𝑃) = 𝑅𝑒𝑙𝑎 (𝑠𝑙𝑏 , 𝑞) or
𝐿𝐵(𝑃) = 𝑅𝑒𝑙𝑟𝑞 (𝑠𝑙𝑏 , 𝑞), depending on the relevance definition.

Note that if 𝑚𝑎𝑥𝑠𝑡 > 𝑚𝑖𝑛𝑒𝑛𝑑 , 𝑠𝑙𝑏 is invalid as its start point

is greater than its end point. In this case, |𝑠 ∩ 𝑞 | in 𝐿𝐵(𝑃) is the
smallest possible interval length, if 𝑞 fully covers [𝑚𝑖𝑛𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑]
or set 𝐿𝐵(𝑃) = 0, otherwise. In both situations, 𝐿𝐵(𝑃) corresponds
to a very small (and hence useless lower bound), so for partitions

where𝑚𝑎𝑥𝑠𝑡 > 𝑚𝑖𝑛𝑒𝑛𝑑 (i.e., at the lowest level of HINT), it is not

advisable to compute and use 𝐿𝐵(𝑃) for 𝑅𝑒𝑙𝑎 or 𝑅𝑒𝑙𝑟𝑞 .

For the relative 𝑅𝑒𝑙𝑟 (𝑠, 𝑞) and the data-relative 𝑅𝑒𝑙𝑟𝑑 definitions,

𝐿𝐵(𝑃) cannot be determined by a single 𝑠𝑙𝑏 , but by the four extreme

cases of 𝑠𝑙𝑏 considering all four combinations of the𝑚𝑖𝑛𝑠𝑡 ,𝑚𝑎𝑥𝑠𝑡

and𝑚𝑖𝑛𝑒𝑛𝑑 ,𝑚𝑎𝑥𝑒𝑛𝑑 bounds.
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Proof of lower bound for rel_data, rel_jaccard

• sub = [min{max(q.st,minst),maxst}, 
max{min(q.end,maxend),minend}]
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Figure 6: Four cases of lower bounds 𝑅𝑒𝑙𝑟 and 𝑅𝑒𝑙𝑟𝑑

Theorem 3.3. Let𝑚𝑖𝑛𝑠𝑡 and𝑚𝑎𝑥𝑠𝑡 (resp.𝑚𝑖𝑛𝑒𝑛𝑑 and𝑚𝑎𝑥𝑒𝑛𝑑)
be the smallest and largest start (resp. end) points of any interval in
a partition 𝑃 . Assume that𝑚𝑎𝑥𝑠𝑡 ≥ 𝑚𝑖𝑛𝑒𝑛𝑑 . Also, let 𝑞 be a query
interval. The lower relevance bound for the relative 𝑅𝑒𝑙𝑟 (𝑠, 𝑞) and the
data-relative 𝑅𝑒𝑙𝑟𝑑 (𝑠, 𝑞) definitions is computed by:

𝐿𝐵(𝑃) = min{𝑅𝑒𝑙 ( [𝑚𝑖𝑛𝑠𝑡,𝑚𝑖𝑛𝑒𝑛𝑑], 𝑞),
𝑅𝑒𝑙 ( [𝑚𝑖𝑛𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑], 𝑞),
𝑅𝑒𝑙 ( [𝑚𝑎𝑥𝑠𝑡,𝑚𝑖𝑛𝑒𝑛𝑑], 𝑞),
𝑅𝑒𝑙 ( [𝑚𝑎𝑥𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑], 𝑞)}

Proof. (Sketch.) Assume 𝑠 is any of {[𝑚𝑖𝑛𝑠𝑡,𝑚𝑖𝑛𝑒𝑛𝑑], [𝑚𝑖𝑛𝑠𝑡,
𝑚𝑎𝑥𝑒𝑛𝑑], [𝑚𝑎𝑥𝑠𝑡,𝑚𝑖𝑛𝑒𝑛𝑑], [𝑚𝑎𝑥𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑]}. For each one of the

two definitions of 𝑅𝑒𝑙 , i.e., 𝑅𝑒𝑙𝑟 or 𝑅𝑒𝑙𝑟𝑑 , we can prove that if we

move 𝑠 .𝑠𝑡𝑎𝑟𝑡 toward 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 and/or move 𝑠 .𝑒𝑛𝑑 toward 𝑠𝑢𝑏 .𝑒𝑛𝑑 ,

where 𝑠𝑢𝑏 is defined by Theorem 3.1, 𝑅𝑒𝑙 (𝑠, 𝑞) can only increase.

(Details are case-based and they are omitted for brevity.) Hence,

each of the four possible instances of 𝑠 gives a local lower bound

and the global lower bound is the lowest of the local ones. □

Finally, like before, the case where𝑚𝑎𝑥𝑠𝑡 > 𝑚𝑖𝑛𝑒𝑛𝑑 should be

treated specially. If 𝑞 covers [𝑚𝑖𝑛𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑] the lower bound is 1

for 𝑅𝑒𝑙𝑟𝑑 or derived using the minimum possible interval length

for 𝑅𝑒𝑙𝑟 . If 𝑞 does not cover [𝑚𝑖𝑛𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑], 𝐿𝐵(𝑃) = 0. Figure 6

exemplifies some cases of applying Theorem 3.3 (𝑚𝑎𝑥𝑠𝑡 ≥ 𝑚𝑖𝑛𝑒𝑛𝑑)
to derive 𝑠𝑙𝑏 , i.e., the interval that gives the lower bound, for 𝑅𝑒𝑙𝑟𝑑
and 𝑅𝑒𝑙𝑟 . Observe that, in both definitions of relevance, if we move

the endpoints of 𝑠𝑙𝑏 towards the endpoints of the interval 𝑠𝑢𝑏 (that

gives𝑈𝐵(𝑃)), relevance cannot decrease.

3.4 Query processing algorithms
Finally, we show how to integrate the lower and upper relevance

bounds of the index partitions in the computation of threshold-

based and ranking relevance queries.

3.4.1 Threshold-based queries. We start off with 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦. For

the interval tree, we rely on the depth-first traversal depicted in

Algorithm 1. Algorithm 3 shows parts of the modifications to Al-

gorithm 1 for the 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, highlighted by gray shade. We detail

the necessary modifications when𝑀 < 𝑞.𝑠𝑡𝑎𝑟𝑡 ; similar changes are

made when 𝑀 > 𝑞.𝑒𝑛𝑑 or 𝑞.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑀 ≤ 𝑞.𝑒𝑛𝑑 . For each visited

node 𝑣 , we first compute𝑈𝐵(𝑣) following the procedure outlined
in Section 3.3.1. If𝑈𝐵(𝑣) ≥ 𝜃 , we compute 𝐿𝐵(𝑣), following Section
3.3.2 and if 𝐿𝐵(𝑣) ≥ 𝜃 we directly report all contents of 𝑣 (e.g.,

taken from 𝑣 .𝐿𝑒𝑛𝑑) without incurring any computations. Other-

wise, depending on the value of 𝑀 w.r.t. 𝑞, we traverse 𝑣 .𝐿𝑠𝑡 or

ALGORITHM 3: 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 on the interval tree

Input : Interval tree I, query interval 𝑞, threshold 𝜃

Output :all intervals that overlap with 𝑞 and 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃

1 Function Search(node 𝑣, query interval 𝑞, threshold 𝜃 )
2 if 𝑣.𝑀 < 𝑞.𝑠𝑡𝑎𝑟𝑡 then
3 if 𝑈𝐵 (𝑣) ≥ 𝜃 then
4 if 𝐿𝐵 (𝑣) ≥ 𝜃 then
5 output all 𝑠 ∈ 𝑣.𝐿𝑒𝑛𝑑 ;

6 else
7 𝑠 ← 𝑣.𝐿𝑒𝑛𝑑.𝑓 𝑖𝑟𝑠𝑡 ( ) ;
8 while 𝑠.𝑒𝑛𝑑 ≤ 𝑞.𝑠𝑡𝑎𝑟𝑡 do
9 if 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 then
10 output 𝑠 ;
11 𝑠 ← 𝑣.𝐿𝑒𝑛𝑑.𝑛𝑒𝑥𝑡 ( ) ;

12 Search(𝑣.𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑,𝑞, 𝜃 ) ;

13 ... ⊲ Similar changes to Lines 8–17 in Algorithm 1

14 Search(I.𝑟𝑜𝑜𝑡, 𝑞, 𝜃 ) ; ⊲ Traverse the tree, depth-first

ALGORITHM 4: 𝜃𝑅𝑒𝑙𝑄𝑞𝑢𝑒𝑟𝑦 on HINT

Input :HINT index H, query interval 𝑞

Output : set of all intervals that overlap with 𝑞

1 foreach level ℓ =𝑚 to 0 do ⊲ traverse index, bottom-up
2 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡𝑎𝑟𝑡 ) ; ⊲ first overlapping partition

3 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑 ) ; ⊲ last overlapping partition

4 if 𝑈𝐵 (𝑃𝑂𝑖𝑛
ℓ,𝑓
) ≥ 𝜃 then

5 if 𝐿𝐵 (𝑃𝑂𝑖𝑛
ℓ,𝑓
) ≥ 𝜃 then

6 output all 𝑠 ∈ 𝑃𝑂𝑖𝑛
ℓ,𝑓

;

7 else
8 output all 𝑠 ∈ 𝑃𝑂𝑖𝑛

ℓ,𝑓
with 𝑠.𝑠𝑡𝑎𝑟𝑡 ≤𝑞.𝑒𝑛𝑑 and 𝑅𝑒𝑙 (𝑠, 𝑞) ≥𝜃 ;

9 ... ⊲ Similar changes to Lines 5-10 in Algorithm 2

𝑣 .𝐿𝑒𝑛𝑑 and conduct comparisons and computations of 𝑅𝑒𝑙 (𝑠, 𝑞) for
the intervals 𝑠 ∈ 𝑣 that overlap with 𝑞. For example, consider the

interval tree and the query 𝑞 in Figure 2 and assume that we want

to retrieve relevant intervals to 𝑞 based on 𝑅𝑒𝑙𝑟𝑞 using 𝜃 = 0.3.

When accessing the root of the tree (𝑣1), we first compute the in-

terval 𝑠𝑢𝑏 that gives the upper relevance bound of any interval

in 𝑣1 using 𝑣1 .𝑚𝑖𝑛𝑠𝑡 = 𝑠6 .𝑠𝑡𝑎𝑟𝑡 , 𝑣1 .𝑚𝑎𝑥𝑒𝑛𝑑 = 𝑠6 .𝑒𝑛𝑑 . According to

Theorem 3.1, 𝑠𝑢𝑏 = [𝑣1 .𝑚𝑖𝑛𝑠𝑡, 𝑣1 .𝑚𝑎𝑥𝑒𝑛𝑑], so the upper relevance

bound 𝑈𝐵(𝑣1) for 𝑣1 is 𝑅𝑒𝑙𝑟𝑞 (𝑠𝑢𝑏 , 𝑞) = 0. This means that we do

not have to access any intervals in 𝑣3 (i.e., the condition of Line 3

in Algorithm 3 is false). Then, we recursively search the right child

of 𝑣1 (Line 12) and for 𝑣3, we compute 𝑈𝐵(𝑣3) and 𝐿𝐵(𝑣3), using
Theorems 3.1 and 3.2, respectively, with 𝑠𝑢𝑏 = [𝑠11 .𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑]
and 𝑠𝑙𝑏 = [𝑠12 .𝑠𝑡𝑎𝑟𝑡, 𝑠11 .𝑒𝑛𝑑]. Both bounds are greater than 𝜃 = 0.3,

hence we know that all intervals in 𝑣3 are query results (Line 5).

The algorithm now searches recursively both children of 𝑣3, i.e., 𝑣6
and 𝑣7. For 𝑣6, 𝑠𝑢𝑏 = 𝑠10, so𝑈𝐵(𝑣6) < 𝜃 and the contents of 𝑣6 are

not accessed. For 𝑣7, 𝑠𝑢𝑏 = [𝑠13 .𝑠𝑡𝑎𝑟𝑡, 𝑠14 .𝑒𝑛𝑑] and𝑈𝐵(𝑣7) > 𝜃 , but
𝑠𝑙𝑏 = 𝑠14 and 𝐿𝐵(𝑣7) = 0, hence, the intervals in 𝑣7 are accessed to

compute their relevance to 𝑞; from these 𝑠13 is reported as result.

For HINT, we accordingly adapt Algorithm 2 to include the

additional checks for verifying overlapping intervals and for the

relevance bounds. Algorithms 4 exemplifies these modifications
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ALGORITHM 5: 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 on the interval tree

Input : Interval tree I, query interval 𝑞, number of results 𝑘

Output :𝑘 intervals that overlap with 𝑞, having the highest 𝑅𝑒𝑙

1 Function Search(node 𝑣, 𝑞, Q, 𝑘)
2 if 𝑣.𝑀 < 𝑞.𝑠𝑡𝑎𝑟𝑡 then
3 if 𝑈𝐵 (𝑣) > 𝑅𝑒𝑠 (Q.𝑡𝑜𝑝 ( ), 𝑞) then
4 𝑠 ← 𝑣.𝐿𝑒𝑛𝑑.𝑓 𝑖𝑟𝑠𝑡 ( ) ;
5 while 𝑠.𝑒𝑛𝑑 ≤ 𝑞.𝑠𝑡𝑎𝑟𝑡 do
6 if 𝑅𝑒𝑙 (𝑠, 𝑞) > 𝑅𝑒𝑠 (Q.𝑡𝑜𝑝 ( ), 𝑞) then
7 add 𝑠 to Q; ⊲ Update result

8 if |𝑄 | > 𝑘 then
9 remove Q.𝑡𝑜𝑝 ( ) ;

10 𝑠 ← 𝑣.𝐿𝑒𝑛𝑑.𝑛𝑒𝑥𝑡 ( ) ;

11 Search(𝑣.𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑,𝑞, Q, 𝑘 ) ;

12 ... ⊲ Similar changes to Lines 8–17 in Algorithm 1

13 initialize min-priority queue Q; ⊲ top-𝑘 list for result

14 Search(I.𝑟𝑜𝑜𝑡, 𝑞, Q, 𝑘 ) ; ⊲ Traverse the tree, depth-first

15 output Q;

for Line 4 in Algorithm 2 and the 𝑃
𝑂𝑖𝑛

ℓ,𝑓
subdivision of the first

relevant partition on each level, again highlighted by gray shade.

The subdivision is considered only if 𝑈𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) ≥ 𝜃 holds for

its upper relevance bound. If 𝐿𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) ≥ 𝜃 also holds for the

lower relevance bound then all contained intervals can be directly

output; their overlap with the query is guaranteed. Otherwise (i.e., if

𝐿𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) < 𝜃 ), we need to compute for every overlapping interval

𝑠 (i.e., with 𝑠 .𝑠𝑡𝑎𝑟𝑡 ≥ 𝑞.𝑒𝑛𝑑) its relevance score and output 𝑠 only if

𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 . As an example consider query 𝑞 and HINT in Figure 3

using 𝑅𝑒𝑙𝑟𝑞 and 𝜃 = 0.3. Recall that the gray-shaded partitions

(their subdivisions) in the figure are the ones to be accessed in a

bottom-up fashion, since they overlap with the query range. From

these partitions, subdivisions 𝑃
𝑂𝑎𝑓 𝑡

3,5
, 𝑃

𝑂𝑖𝑛

3,7
, 𝑃

𝑂𝑖𝑛

2,2
, 𝑃

𝑅𝑖𝑛
2,2

, are pruned

(as per Line 4 of Algorithm 4) because their𝑈𝐵(𝑃) (derived from the

corresponding intervals computed using Theorem 3.1) are smaller

than 𝜃 . For subdivisions 𝑃
𝑂𝑖𝑛

3,6
, 𝑃

𝑂𝑎𝑓 𝑡

3,6
and 𝑃

𝑂𝑖𝑛

2,3
, all contents are

reported as results (as per Lines 5–6 of Algorithm 4), because their

lower bounds (computed with the help of Theorem 3.2) exceed 𝜃 .

3.4.2 Ranking queries. We next discuss 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦. For the inter-

val tree, we can still capitalize on the depth-first approach of Al-

gorithm 1, extended to filter out nodes using the upper relevance

bound 𝑈𝐵(𝑃); lower bounds are not useful in this context. The

key idea is to maintain the 𝑘 intervals with the highest relevance

scores seen so far inside a min-priority queue Q, which will even-

tually contain the final result. Under this premise, the relevance

𝑅𝑒𝑠 (Q .𝑡𝑜𝑝 (), 𝑞) of the top element in Q (i.e., the lowest relevance in

Q) can be used for pruning similar to threshold 𝜃 for 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦. Al-

gorithm 5 presents the pseudocode of this approach; for the interest

of space, we again only discuss the case of𝑀 < 𝑞.𝑠𝑡𝑎𝑟𝑡 . In between

Lines 3–10, the algorithm scans the 𝑣 .𝐿𝑒𝑛𝑑 list of the current node 𝑣

only if its upper relevance bound exceeds the lowest relevance score

in the current result, i.e., if𝑈𝐵(𝑣) > 𝑅𝑒𝑠 (Q .𝑡𝑜𝑝 (), 𝑞). If so, similar

to Algorithm 3, we first identify each overlapping interval 𝑠 to 𝑞

in 𝑣 .𝐿𝑒𝑛𝑑 and then check whether this interval can be part of the

result, i.e., if 𝑅𝑒𝑙 (𝑠, 𝑞) > 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞) holds. Note that Lines 8–9

ALGORITHM 6: 𝑘𝑅𝑒𝑙𝑄𝑞𝑢𝑒𝑟𝑦 on HINT

Input :HINT index H, query interval 𝑞, number of results 𝑘

Output :𝑘 intervals that overlap with 𝑞, having the highest 𝑅𝑒𝑙

1 initialize min-priority queue Q; ⊲ top-𝑘 list for result

2 foreach level ℓ =𝑚 to 0 do ⊲ traverse index, bottom-up
3 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡𝑎𝑟𝑡 ) ; ⊲ first overlapping partition

4 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑 ) ; ⊲ last overlapping partition

5 if 𝑈𝐵 (𝑃𝑂𝑖𝑛
ℓ,𝑓
) > 𝑅𝑒𝑠 (Q.𝑡𝑜𝑝 ( ), 𝑞) then

6 foreach interval 𝑠 ∈ 𝑃𝑂𝑖𝑛
ℓ,𝑓

with 𝑠.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑞.𝑒𝑛𝑑 do
7 if 𝑅𝑒𝑙 (𝑠, 𝑞) > 𝑅𝑒𝑠 (Q.𝑡𝑜𝑝 ( ), 𝑞) then
8 add 𝑠 to Q; ⊲ Update result

9 if |𝑄 | > 𝑘 then
10 remove Q.𝑡𝑜𝑝 ( ) ;

11 ... ⊲ Similar changes to Lines 5-10 in Algorithm 2

12 output Q;

guarantee that queue Q can never contain more than 𝑘 intervals.

As an example, assume that we apply Algorithm 5 on Figure 2 for

𝑘 = 2, using query 𝑞 and 𝑅𝑒𝑙𝑟𝑞 . Node 𝑣1 does not have any intervals

that overlap with 𝑞; after accessing 𝑣3, both its intervals 𝑠11 and

𝑠12 are added to Q = {𝑠11, 𝑠12} as currently the 𝑘 = 2 most simi-

lar ones to 𝑞, with Q .𝑡𝑜𝑝 () = 𝑠12. Upon reaching 𝑣6, we compute

𝑠𝑢𝑏 = 𝑠10 and find that 𝑈𝐵(𝑣6) < 𝑅𝑒𝑙𝑟𝑞 (𝑠12, 𝑞), so, the contents of
𝑣6 need not be accessed (Line 5 of Algorithm 5). When accessing

𝑣7, we also see that 𝑈𝐵(𝑣7) < 𝑅𝑒𝑙𝑟𝑞 (𝑠12, 𝑞), so there is no need to

access the intervals in 𝑣7 and the algorithm terminates reporting

Q = {𝑠11, 𝑠12}.
In a similar fashion, wemodify Algorithm 2 to compute𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

in a bottom-up fashion on HINT. Algorithm 6 illustrates part of

the pseudocode, which covers again the case of the 𝑃
𝑂𝑖𝑛

ℓ,𝑓
sub-

division for the first relevant partition on every level ℓ . Similar

to Algorithm 5, the subdivision is scanned only if 𝑈𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) >

𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞). Then, each contained overlapping interval 𝑠 with

𝑅𝑒𝑙 (𝑠, 𝑞) > 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞) is used to update current result in Q. To
illustrate Algorithm 6, consider the index and query 𝑞 in Figure 3

and 𝑘 = 2, using 𝑅𝑒𝑙𝑟𝑞 . The partitions are accessed bottom-up, and

left-to-right for each level. Upon accessing 𝑃3,5 from Level 3, Q
is populated by 𝑠10. Then, after accessing 𝑃3,6, Q is updated to in-

clude 𝑠11 and 𝑠12, which have higher relative overlap to 𝑞 compared

to 𝑠10. Now, Q .𝑡𝑜𝑝 () = 𝑠12. Partition 𝑃3,7 is eliminated because

𝑈𝐵(𝑃𝑂𝑖𝑛
3,7
) = 0. At level 2, partitions 𝑃2,2 and 𝑃2,3 are eliminated

because their upper bounds are smaller than 𝑅𝑒𝑙𝑟𝑞 (𝑠12, 𝑞) and the

algorithm terminates reporting Q = {𝑠11, 𝑠12}.
As both Algorithm 5 and 6 build upon their counterparts for

range query, they do not prioritize the examination of the index

partitions (i.e., nodes of the interval tree or HINT partitions and

their subdivisions). To this end, we devise a best-first approach,

which examines the partitions in decreasing order of their potential

to include the most relevant intervals to 𝑞. Algorithm 7 shows the

key steps of this approach.We first find the index partitions thatmay

include intervals which overlap with the query, but we do not access

them yet. For each such partition 𝑃 , we use the min/max statistics

of the contained intervals to compute 𝑈𝐵(𝑃) and 𝐿𝐵(𝑃). We then

sort the partitions in decreasing order of their𝑈𝐵(𝑃), breaking ties
using 𝐿𝐵(𝑃). Finally, we consider the partitions in this particular
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ALGORITHM 7: 𝑘𝑅𝑒𝑙𝑄𝑞𝑢𝑒𝑟𝑦 best-first search

Input : Interval index I, query interval 𝑞, number of results 𝑘

Output :𝑘 intervals that overlap with 𝑞, having the highest 𝑅𝑒𝑙

Output : set of all intervals that overlap with 𝑞

1 initialize min-priority queue Q; ⊲ top-𝑘 list for result

2 let P contain all relevant partitions in I ; ⊲ Algorithm 1 or 2

3 sort partitions in P by𝑈𝐵 in decreasing order; solve ties with 𝐿𝐵;

4 foreach partition index 𝑃 ∈ P do
5 if 𝑈𝐵 (𝑃 ) ≤ 𝑅𝑒𝑠 (Q.𝑡𝑜𝑝 ( ), 𝑞) then
6 break;

7 else
8 scan 𝑃 to update Q;

9 output Q;

Table 1: Characteristics of tested datasets
BOOKS WEBKIT BTC TAXIS

[8] [20] [2] [8]

Cardinality 2,050,707 2,347,346 2,538,921 169,290,307

Size [MBs] 32 28 52 2,794

Domain 1 year 15 years 3 months 1 year

Min duration 1 hour 1 sec 1 sec 1 min

Max duration 1 year 15 years 6 days 5 hours

Avg. duration 67 days 1 year 40 mins 12 mins

Avg. duration [%] 18.4 7.22 0.03 0.002

order and access their contents (i.e., the intervals assigned to them),

updating the 𝑘 most relevant intervals to 𝑞 so far. These intervals

are again maintained inside a min-priority queue Q. As soon as the

next partition’s upper bound is smaller than or equal to the 𝑘-th

lowest relevance to 𝑞 in the current result (i.e., the relevance of

Q .𝑡𝑜𝑝 ()), we can terminate, as there is no chance for any subsequent

partitions can improve the top-𝑘 results so far. Let us consider

again our running example with 𝑘 = 2 and 𝑅𝑒𝑙𝑟𝑞 . For the interval

tree, Algorithm 7 considers the relevant nodes in the following

order, 𝑣3, 𝑣7, 𝑣6, 𝑣1. After examining 𝑣3, Q contains intervals 𝑠11 and

𝑠12, with Q .𝑡𝑜𝑝 () = 𝑠12. Hence, when scanning 𝑣7 the algorithm

computes𝑈𝐵(𝑣7) and terminates since𝑈𝐵(𝑣7) < 𝑅𝑒𝑙𝑟𝑞 (𝑠12, 𝑞). For
HINT, Algorithm 7 orders the subdivisions of the relevant partitions

as 𝑃
𝑂𝑖𝑛

3,6
, 𝑃

𝑂𝑎𝑓 𝑡

3,6
, 𝑃

𝑂𝑖𝑛

2,3
, 𝑃

𝑂𝑎𝑓 𝑡

3,5
, 𝑃

𝑂𝑖𝑛

3,7
, 𝑃

𝑂𝑖𝑛

2,2
and 𝑃

𝑅𝑖𝑛
2,2

. The algorithm

inserts 𝑠11, 𝑠12 to Q after scanning the first two subdivisions 𝑃
𝑂𝑖𝑛

3,6
,

𝑃
𝑂𝑖𝑛

3,6
and then terminates since𝑈 (𝑃𝑂𝑖𝑛

2,3
) < 𝑅𝑒𝑙𝑟𝑞 (Q .𝑡𝑜𝑝 (), 𝑞).

4 EXPERIMENTAL ANALYSIS
We implemented both interval tree and HINT indices, and the

query processing methods in C++, compiled using gcc (v4.8.5) with

-O3 and -march=native flags.9 Our tests ran on an Apple M1 Pro

(3.20GHz) with 32GBs of RAM, running MacOS 14.6.1 Sonoma.

4.1 Setup
We wrote the interval tree according to [22]. For HINT, we used

its public source code
10
, activating the subdivisions, the sorting

and the cache misses optimizations. Similar to previous work, the

datasets and the indices all reside in main memory.

9
Code available at https://github.com/sigmod25intrel/code/

10
https://github.com/pbour/hint/

Table 2: Overhead in space and maintenance costs for HINT

overhead BOOKS WEBKIT BTC TAXIS

space 0.02% 0.04% 2.2% 0.09%

insertions 0.3% 0.4% 3.3% 3.1%

deletions 1.2% 0.2% 5.8% 3.1%

We experimented with 4 datasets of real intervals, which have

also been used in past studies; Table 1 summarizes their charac-

teristics. BOOKS [9] contains the periods of time in 2013 when

books were lent out by libraries in the city of Aarhus, Denmark.
11

WEBKIT [19] records the file history in the git repository of the We-

bkit project from 2001 to 2016
12
; the intervals indicate the periods

during which a file did not change. BTC [2] contains historical price

intervals of Bitcoin
13
; the low and high prices are used to determine

the 𝑠𝑡𝑎𝑟𝑡 and the 𝑒𝑛𝑑 points, respectively. TAXIS [9] stores the time

periods of taxi trips (pick-up and drop-off timestamps) from NY

City in 2009.
14

Datasets BOOKS andWEBKIT represent inputs with

long intervals, covering on average over 5% of the domain, whereas

BTC and TAXIS contain short intervals, covering less than 0.1% of

the domain. Lastly, the number of bits𝑚 for the HINT index on

each dataset is automatically set utilizing the cost model in [14].

Our analysis focuses on the relative relevance definitions from
Section 2.1, i.e., 𝑅𝑒𝑙𝑟 (𝑠, 𝑞), 𝑅𝑒𝑙𝑟𝑑 (𝑠, 𝑞) and 𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞). We omit

𝑅𝑒𝑙𝑎 (𝑠, 𝑞) which gives the same results as 𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞) if we divide
its 𝜃 by |𝑞 |. To assess the performance of the querying methods, we

measure their throughput (number of queries per second), while

varying (1) the extent of the query interval as a percentage of the

domain size inside {0.01%, 0.0%, 0.1%, 0.5%, 1%}, (2) the value of 𝜃 in-
side [0, 1] for threshold-based queries, and (3) 𝑘 in {3, 5, 10, 50, 100}
for ranking queries. In each test, we run 10K random queries and

vary one of the above parameters while fixing the rest to their

default value (0.1% for the query extent, 0.5 for 𝜃 and 10 for 𝑘). Fi-

nally, we also assess the accuracy of the lower and upper relevance

bounds in Section 3.3 from the min/max bounds in Sections 3.2.

4.2 Computing and maintaining stats & bounds
In our first set of experiments, we study the merit of the bounds

employed by our framework. We start off with the min/max end-

point statistics detailed in Section 3.2 and showcase the overhead of

storing and maintaining them in each partition of HINT
15

Table 2

reports the relative overhead for storing and maintaining the statis-

tics, for each dataset. For the insertion updates, we indexed offline

the first 90% of each dataset and then, added the remaining 10% of

the intervals in HINT, while for the deletion updates, we removed

10% of the indexed intervals. We observe that both the space and

the maintenance overheads are very low, always below 6%. The

highest overhead is witnessed in BTC and TAXIS where the HINT

hierarchy contains more levels (and therefore, more partitions as

well) than BOOKS and WEBKIT.

We also study the accuracy of the 𝐿𝐵(𝑃) and 𝑈𝐵(𝑃) relevance
bounds that our framework computes. Figures 7, 8 report the aver-

age absolute error for the 𝐿𝐵(𝑃) and𝑈𝐵(𝑃) estimations in all four

11
https://www.odaa.dk

12
https://webkit.org

13
https://www.kaggle.com/datasets/swaptr/bitcoin-historical-data

14
https://www1.nyc.gov/site/tlc/index.page

15
For the interval tree, there is no overhead, as the statistics can directly derived from

the 𝐿𝑠𝑡 and 𝐿𝑒𝑛𝑑 lists in each node.

https://github.com/sigmod25intrel/code/
https://github.com/pbour/hint/
https://www.odaa.dk
https://webkit.org
https://www.kaggle.com/datasets/swaptr/bitcoin-historical-data
https://www1.nyc.gov/site/tlc/index.page
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Figure 7: Accuracy of computed relevance bounds on the interval tree
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Figure 8: Accuracy of computed relevance bounds on HINT

datasets. We observe that our framework manages to estimate the

highest and lowest relevance in a partition with high accuracy for

both indices and under all relevance definitions; the absolute error is

typically below 0.1 - recall that 𝑅𝑒𝑙𝑟 (𝑠, 𝑞), 𝑅𝑒𝑙𝑟𝑑 (𝑠, 𝑞) and 𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞)
draw values inside [0, 1]. These findings directly reflect on query

performance enhancement showcased in the next experiments.

4.3 Best approach for query processing
The next set of experiments investigate the best approach, i.e.,

bounds and algorithm. For 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, this question translates to

determining which of the lower and upper relevance bounds should

be used, while for𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, also the best index traversal approach.

We include in our analysis, a baseline which operates without

any relevance bounds and simply extends the process for range

selection queries (Algorithms 1 and 2); all intervals overlapping

with the query are identified and then verified, as described in the

beginning of Section 3. Figures 9, 10 report on the query processing

performance. Overall, the tests show the benefit of using relevance

bounds and the merit of our framework. The depth-first and bottom-

up baselines are always outperformed by at least one method which

uses bounds, in both query types, by up to 3 orders of magnitude.

For 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (the first row of plots in each figure), we observe

that utilizing𝑈𝐵(𝑃) typically improves more the performance over

the baseline, compared to just using 𝐿𝐵(𝑃). Exceptions arise when
the queries return a large number of intervals, i.e., when 𝑅𝑒𝑙𝑟𝑞 is

applied on datasets with longer intervals such as BOOKS and WE-

BKIT, where |𝑠 | ≫ |𝑞 | holds, or when 𝑅𝑒𝑙𝑟𝑞 is applied on datasets

with short intervals such as BTC and TAXIS, where |𝑞 | ≫ |𝑠 |. In
these cases, the computed lower bounds approach 1, which enables

the methods to massively output intervals without further compar-

isons and without computing their actual relevance. Nevertheless,

the best option is to use both relevance bounds; such an approach

successfully combines the pruning power of 𝑈𝐵(𝑃) shown in all

tests, with the advantage of 𝐿𝐵(𝑃) in these special cases. Note that

this finding applies for both the interval index and HINT.

For 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, the choice of bounds and method is more dataset-

oriented. As a general observation, best-first processing of par-

titions typically benefits from using both upper and lower rele-

vance bounds for prioritization. Yet, the best-first powered by 𝐿𝐵(𝑃)
and 𝑈𝐵(𝑃) does not always outperform the native depth-first and

bottom-up methods of interval tree and HINT, respectively, pow-

ered by𝑈𝐵(𝑃). Specifically, the best-first method is the fastest on

datasets with long intervals; the native traversals are better on

datasets with short intervals. This phenomenon is due to the num-

ber of relevant partitions per query. This number is higher in BTC,

TAXIS compared to BOOKS, WEBKIT, as their indices contain more

levels (compared to BOOKS) or cover a smaller domain (compared

to WEBKIT). Under this, the cost of sorting the relevant partitions

is slowing down best-first. In view of these findings, we use for both

indices, the best-first method with 𝐿(𝐵) and𝑈𝐵(𝑃) on BOOKS and

WEBKIT and their native method with𝑈𝐵(𝑃) for BTC and TAXIS.

4.4 Index comparison
Finally, we evaluate the performance of the two studied indices

under their best setting. We start off by comparing them against a

table-scan baseline to conceive the magnitude of the performance

enhancement achieved by our framework. Table 3 shows the results

for the default experimental parameters; the table clearly shows

that our framework (both indices) achieves several orders of magni-

tude faster query processing than a straightforward approach that

iterates over all input intervals and computes their relevance.

Next, we extensively compare the two indices and study how the

experimental parameters of the query extent, the threshold 𝜃 and

the number of request results𝑘 affect query performance. Figures 11

and 12 report the throughput for the 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 and 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦,
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Figure 9: Query processing on the interval tree
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Figure 10: Query processing on HINT

respectively. First of all, we observe that query processing is nega-

tively affected (i.e., the throughput of both methods drops) when

increasing the extent of the query interval because the number of

relevant partitions to be examined also rises. For 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, the

methods are accelerated when the value of 𝜃 increases because in

this case, the pruning power of the upper relevance bounds is en-

hanced and the size of result set gets smaller. In contrast, when the

number of requested results increases for 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, the queries

become more expensive and more partitions are examined to fill the

result set. The extensive tests in Figures 11 and 12 also unveil that

HINT is, in general, faster than the interval tree for both threshold-

based and ranking relevance queries. This result aligns with the

findings in [14, 16] for selection (range and stabbing) queries.

5 RELATEDWORK
We discuss access methods and ranking techniques for intervals.
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Figure 11: Index comparison: 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦; first row for BOOKS, second for WEBKIT, third for BTC, fourth for TAXIS
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Figure 12: Index comparison: 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦; first row for BOOKS, second for WEBKIT, third for BTC, fourth for TAXIS
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Table 3: Comparison (throughput) against a table scan
BOOKS

method 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞 𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞

Table scan 165 160

Interval tree 423821 457105 6696 50280 68093 2728

HINT 1410706 1480266 408371 161300 238222 235655

WEBKIT

method 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞 𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞

Table scan 584 560

Interval tree 262768 311903 16084 135640 455143 22041

HINT 508101 484103 386997 317411 436873 588916

BTC

method 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞 𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞

Table scan 917 900

Interval tree 437744 360936 438420 214074 221829 458476

HINT 637283 488649 804783 1238550 460774 604134

TAXIS

method 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞 𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞

Table scan 12 12

Interval tree 3916 4338 4640 3258 3455 3455

HINT 11087 12125 13873 4021 4531 4436

5.1 Indexing intervals
The interval tree [22] (see Section 2.2.1) is a data structure that

offers optimal worst-case space and time guarantees. A relational

interval tree RI-tree for disk-resident data was proposed in [28].

The segment tree [18] is another binary search tree for intervals

with 𝑂 (𝑛 log𝑛) space and time requirements, which however was

designed for stabbing (or point) selection queries where the goal

is to determine the intervals that contain a specific value. Simple

1D partitioning (i.e., a grid) can also be used to divide the domain

into uniform partitions and replicate intervals to all partitions they

overlap. To avoid duplicate results when the query range spans

multiple partitions, a reference value method [21] can be used.

Other solutions for indexing intervals are the timeline index [27],

the period index [6] and the RD-index [11]. The timeline index [27]

is a general-purpose access method for temporal (versioned) data,

implemented as SAP-HANA tables. A table called the event list

stores a ⟨𝑡𝑖𝑚𝑒, 𝑖𝑑, 𝑖𝑠𝑆𝑡𝑎𝑟𝑡⟩ triple for the endpoints of all intervals,
where 𝑡𝑖𝑚𝑒 is either the start or end of an interval, specified accord-

ingly by the boolean 𝑖𝑠𝑆𝑡𝑎𝑟𝑡 flag. In addition, at certain timestamps,

called checkpoints, the entire set of active objects is materialized, i.e.,

those with an interval that contain the checkpoint. Selection queries

𝑞 = [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑] are evaluated by comparing the contents of the

closest checkpoint before 𝑞.𝑠𝑡𝑎𝑟𝑡 and the entries in the event list

after the checkpoint against the query range. The period [6] and the

RD-index [11] are self-adaptive structures which split the domain

into coarse partitions, and then further divide each partition hierar-

chically, in order to organize the contained intervals based on their

positions and durations. They are specialized to range and duration

queries. The RD-index [11] essentially improves upon the period

index by supporting arbitrary distributions of interval durations

and allowing to index the intervals either first by duration or time.

Moreover, RD-index does not replicate intervals, yielding a smaller

memory footprint and better query performance.

HINT was proposed in [14] and then extended in [16] to support

interval range queries with arbitrary predicates from Allen’s tem-

poral algebra (e.g., before, meets, covers, etc.). As shown in [11, 16],

HINT outperforms alternative access methods for interval range

queries without other predicates (such as duration). HINT also has

low space complexity in practice due to its storage optimizations.

5.2 Ranking queries over interval data
Besides range and duration selection queries, additional query types

have been studied on interval data that apply some sort of ranking.

Pilourdault et al. [31] define join operations that find interval pairs

satisfying one of Allen’s temporal relation (e.g., meets). Since there
could be too few interval pairs satisfying this relation exactly, they

accept pairs that do so approximately and assign scores to them (e.g.,

a pair 𝑟, 𝑠 such that 𝑟 ends just before 𝑠 starts is better than a pair

such that 𝑟 ends much earlier than 𝑠). The proposed MapReduce

solution for this problem cannot be used to evaluate relevance

queries, as the objectives are totally different (i.e., ranking interval

pairs vs. query-based retrieval, ranking based on similarity to a

temporal relation vs. ranking based on the length of intersection).

Amagata [2] observed that interval overlap queries, such as

“show taxis which were active between 17:00 and 22:00 yesterday”,

“find books which were borrowed in the last week”, may retrieve

too many results to be postprocessed by the user. To remedy this,

Amagata [2] suggests to obtain only a small sample of the results

and develop an independent range sampling technique that operates

on a variant of the interval tree. In this paper, we follow a different

approach, where we provide the user with an option to retrieve the

most relevant results using overlap-based definitions of relevance.

Xu and Lu [38] consider intervals associated with weights. They

study the problem of retrieving the 𝑘 intervals that intersect a

query interval and have the highest weights. To solve this problem

they use an interval tree to retrieve the intervals that overlap with

the query range and select the 𝑘 best in them. Amagata et al. [3]

propose a more efficient solution that extends a segment tree to sort

the intervals along each path based on weight and limit the number

of required accesses. Our search problem is different, because our

relevance score depends on the intersection between data intervals

and the query interval and not on some independent weight. Hence,

the methods proposed in [3, 38] are not applicable. However, we

share the same motivation that ranking of interval query results

can facilitate their postprocessing and analysis.

Another related problem is the evaluation of probabilistic queries

in uncertain databases [12, 37]. Assuming that values are approx-

imated by probabilistic density functions (PDFs), given a range

query, the objective is to find the values inside the query range

with a probability at least 𝜃 . This is aligned with our 𝑅𝑒𝑙𝑟𝑑 (𝑠, 𝑞) def-
inition, for the special case where PDFs are uniform. However, the

authors in [37] and follow-up papers do not study other definitions

and they focus on arbitrary multi-dimensional PDFs, proposing

specialized data structures for such data, whereas our approach can

be applied using off-the-shelf interval indices.
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6 CONCLUSIONS
In this paper, we proposed relevance queries for intervals, which

find use in many applications that manage large collections of tem-

poral data (temporal databases, uncertain databases, etc.). Relevance

queries limit the potentially numerous results of range queries that

are hard to postprocess and interpret, by filtering or ranking the

intervals with high relevance score to the query. We proposed a

unified framework for processing queries under different defini-

tions of relevance on any interval index that divides the intervals

into partitions. At the heart of our framework lies a method for

computing provable upper and lower relevance bounds for entire

index partitions. We applied our framework on two popular in-

terval indexes (interval tree and HINT); our experiments on four

large real interval collections demonstrate that it achieves orders

of magnitude higher throughput over a baseline approach. In the

future, we plan to study the application of our framework for the

efficient evaluation of top-𝑘 interval joins [31]. In addition, we plan

to integrate relevance queries in PostgreSQL, which includes na-

tive ranged data types, and extend its query optimizer to consider

interval-based selection and ranking predicates.
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