An interactive environment for creating and validating syntactic
rules

Panagiotis Bouros; Aggeliki Fotopoulou, Nicholas Glaros
Institute for Language and Speech Processing (ILSP),
Artemidos 6 & Epidavrou,

GR-151 25, Athens, Greece
{pbour,afotop,nglaros}@ilsp.gr

Abstract

Syntactic analysis is a key component in
many Natural Language Processing applica-
tions. This is especially true when consider-
ing advanced spelling checkers, where the usage
of contextual rules at the syntax level can sig-
nificantly increase the spelling error detection
and correction capability of such systems. The
advantage of the contextual approach over the
isolated-word approach becomes more clear in
morphologically rich languages, in which it is
very likely that a spelling error free word can,
in fact, represent a misspelled word within a
given context. In such cases, even a minimal set
of syntactic rules can be proved very effective
in obtaining high spelling performance levels.
However, determining a consistent set of rules
for spelling checking purposes is not always a
straightforward task. In this paper, we design
and implement an interactive linguistic environ-
ment for managing the grammatical and syn-
tactic resources of an advanced spelling checker
system for Greek.

1 Introduction

Checking human free text has always been a very
important and challenging issue to address. There
is a lot of work already done for lexical analysis
of text in order to identify and tag, using dictio-
naries, the lexical units contained in a text.

This word-by-word approach is quite efficient
for the automatic check of spelling errors, which
render a word totally invalid or non-existent. This
type of spelling errors is most prominent in lan-
guages with poor morphology. However, in highly
inflectional languages, it is very common that a
spelling error in a lexical type produces another
lexical type, which is valid on its own. For ex-
ample, in the sentence: "I listens to the music.”,
there are no misspelled words on their own, yet,
the syntax is still incorrect, because the verb type,
according to the subject, should be ”listen”.

Clearly, the latter type of spelling errors is to-
tally missed out by the word-by-word approach

* Current affiliation is National and Kapodistrian Uni-

versity of Athens (NKUA), Department of Informatics and
Telecommunications.

as well as by all spelling checkers that rely on
it. On the contrary, this is precisely not the
case when a rule-based syntactic analysis of ev-
ery phrase of the text being checked (phrase-by-
phrase approach) is employed. Resolving this
kind of spelling errors takes more than simply
going through a lexicon to match a given token.
This leads us to advanced spelling systems, the
design and implementation of which is still chal-
lenging and necessary for morphologically rich
languages.

Building advanced spellers, based on statisti-
cal approaches, may require the use of a corpus
in order to extract n-grams (Knight 99), (Beau-
jard & Jardino 99) (in most cases up to 3-grams)
and then apply statistical models to compute the
occurrence probability of the n-grams and of the
corresponding parent sentence. Of course, if the
lexical pattern of a sentence is correct, but never
occurred before, there lies the problem of mischar-
acterizing it as incorrect. This problem is only
partially addressed by smoothing techniques.

On the other hand, the fundamentals of a syn-
tactic analysis framework are a morphological lex-
icon and a set of syntactic rules. Each rule of the
set defines a number of word environments, i.e.
grammatical patterns, which are formed by ac-
ceptable combinations of grammatical categories.
In this manner, after tagging the words of a given
sentence, the checking procedure attempts to ver-
ify the presence of the defined grammatical pat-
terns on specific segments of the tagged sentence,
thus concluding on possible rule-violations own-
ing to spelling errors.

The work presented in this paper is directly
connected with the syntactic analysis. In partic-
ular, we tackle the problem of creating, manag-
ing, monitoring and testing syntactic rules from
within an easy and user-friendly interactive en-
vironment. For this purpose, we have designed
and implemented a special tool for the graphi-
cal, most of all, creation of rules for the advanced

spelling checker of (ILSP) (Symfonia) (Stathis
& Carayannis 99) and, moreover, for monitor-
ing their application and interaction on exist-
ing text corpora. Symfonia employs a context-
based spelling check technique, in addition to
the isolated word-based approach. Cases where
words sound similarly but are spelt differently,
e.g. /d6sis/ "86onc” noun feminine (nominative
of plural or genitive of singular) : payment and
/86sis/ "ddoec” verb (2nd person of singular in
Future Simple or 2nd person of singular in Sub-
junctive) : give, and in which the spelling depends
on the grammatical identity of the word, can be
resolved.

The rest of the paper is organized as follows.
Section 2 discusses the objectives of the proposed
environment, while section 3 presents its archi-
tecture. Section 4 describes the working environ-
ment of the tool and lists its functional features.
Section 5 demonstrates a real world scenario of us-
ing the tool. Finally, in section 6 some concluding
remarks and prompts for further work are given.

2 Objectives - Specifications

The main purpose of the work presented in this
paper is to provide a supportive environment
for fast generating a consistent set of syntactic
rules optimized for advanced spelling checking
processes. Through a user-friendly interface, this
tool allows language specialists to create, view,
edit, real-time test monitor and validate syntac-
tic rules, while leaving them out of the underlying
computer programming technicalities.

As far as rule generation and editing is con-
cerned, the environment provides a graphical rule
representation mechanism. We consider that a
tree graphical representation is suitable for pre-
senting the word environments, the decision and
generally the context of a syntactic rule. More-
over, in order for the tool to be speller technology-
independent, we provide an XML (xml)-based
mechanism for storing the rule tree representa-
tions. Furthermore, the tool automatically tran-
scribes the user-defined rules into ready-to exe-
cute speller code (according to the speller being
targeted), thus, providing a test-bed for the fast
generation of a robust syntax analyzer.

By means of rich enough monitoring informa-
tion, the system enables the user to evaluate the
application of rules either individually or in com-
bination with other user-specified rules. Empha-

XML
Sraphical Rule Create <rule>
<description/>
- </rule>

7/
:
&

»

7
Main Screen
N
N

%,
5
\,
4 reporf N
- <:> Rules Kemel Monitog
Lexicon :

Figure 1: System architecture

Rules Kemel

sis is given on the production of a detailed report
depicting the lexical analysis of the text, as well
as details on the application of the user selected
subset of rules, in order to identify or handle po-
tential misusage, conflicts etc.

3 Architecture

Figure 1 illustrates the architecture of the imple-
mented tool. Each syntactic rule created by the
Graphical Rule Creator is stored in an XML doc-
ument and integrated in the Rules Kernel. The
Rules Kernel is an extension of the kernel used
by Symfonia speller with extra features for sup-
porting insertion, handling and monitoring of the
rules’ application. Graphical Rule Creator is also
used for editing and updating a syntactic rule.
Furthermore, in order to provide additional han-
dling functionality on the Rules Kernel, we have
introduced the Rule Handle component.

Finally, the Rules Kernel Monitor is responsible
for testing and reporting on the usage of a sub-
set of the rules, integrated into the kernel, across
real unformatted text. The monitor procedure
relies on the speller’s built-in lexicon for the lexi-
cal analysis and on the Rules Kernel for syntactic
analysis, in order to generate a detailed report.

4 Working Environment -
Functionalities

Figure 2 displays the main screenshot of the im-
plemented tool, being the first window interact-
ing with the user. This window consists of the list
of rules that are integrated into the kernel. For
every rule, its name, description and status are
indicated. The status of a rule is either enabled
or disabled, meaning that can be either taken into
account by the monitor procedure or not. More-
over, all functionalities of the developed system
are available through the menu options and the
toolbar icons of this window. A detailed presen-

7+ - Symfonia Monitor Tool - -0l x|
Rule Mal Monitor Tool Yiew Help

DEEL|XRB|>E|?

Mame: | Description | Status |
Rule 1 H k&En zivan dwopa Kal NpEnal va qupipava we Npag yEwos, apiBpd KainT... Enabled
Rule 2 H A&En npénal wa gival Ovopa ko 0l pripg, ge Poon ng kéEag nou nponyo... | Disabled
Rule 3 Awevepyd, Disabled
Rule 4 H A&En npéna wa ivar prjpo pe Baon 1o popio 1 1o eyikkimid nou nponyeita, | Enabled
Rule5 Awevepyde. Disabled
Rule 6 Awavepydc, Disabled
Rule 7 To pripa NpEne va gval atoy evikd moTe vo quppovel Je Tov apiBpd Tou .. Enabled
Rule 8 To pApa npEna va zival atov nanBuymke pe Bagn ng yamoviké Tou héfeg. Enabled
Rule 9 H A&En npéna wa givar eniflemo yiom nporpyeimal n A2En nou sival opBpo ko ... | Enabled
Rule 10 H 3&En npénal va sivar apBpo, B16m r k&5n nou éneTar givar dvopa. Enabled
Rule 11 H A&En npéna wa ivar avTovupia, Som n AZEn nou eneTar gval prgo, Enabled
Rule 12 H ¢En npénal va elvar pripa, Siom n A£En nou nponyeital dva prpa korak.., | Disabled
Rule 13 H h&En npénal va gival dpBpa pe idio yéwos, apBpd ko nmian pe v héEn... | Enabled
Rule 14 H A¢En npénal va eivan apBpo pe 1010 yévoe, apiBud kKai nTioan pe Ty AéEn.,, | Enabled
Rule 15 Aizugpiidmids yia To O, Enabled
Rule 16 H A&En npéna wa gival apBpo pe 010 yewor, opBpd Ko nTion pe 1o ovopa.., | Enabled
Ready v

Figure 2: Main screen
restmanewrie 2

Rule Enwironment Lexi

e =l Clear fisks
- Pranoun

O Le

-~ frdverh

Lexi desicion

oLewit

- Lexi¥ conssponding to
) Environment
= Lexi
= According to g
L Aticle
=) Lexi
- According to go
L Noun/Advective

Add rule

-
x
i
g
|4]

Figure 3: Rule tree

tation of the working environment and the imple-
mented functionalities can be found in (Bouros
05).

4.1 Rule Handling

Rule handling mainly pertains to the manage-
ment of the Rules Kernel component. Thus, it
permits addition of new rules, editing of the defi-
nition and of the status of an existing rule or sim-
ply its removal from the kernel. All these changes
are reflected in the list of Figure 2.

1. Create a new rule. In order to create a new
syntactic rule the user takes advantage of the
rule graphic tree representation presented in
Figure 3. Each rule is focused on a single
lexi' called LexiX.

! The term lexi (lexis in plural) is used in this paper to

roiemoperties ﬂ
Mumber of words before Lesis: [
Numberof words after Lesté: [0 <Back

Rule descrption: |
Rule explanation: | Help

Figure 4: Specifying rule properties

Lexi according to grammatical characteristics x|

Ll
Grammslcsgon: [Formn =]
Cese [7]
Bender a3
O
Tense l—;[
Vi [
e [
e [

Figure 5: Specifying lexi’s grammatical characteristics

LexiX corresponds to: x|

[Characteristics ——————————— Add

<Back

Grammatical categony:
Case:

Gender

Person:

Tense:

Woice: [o

sspect g

i I L I

Mumber: |0

Figure 6: Specifying LexiX correspondence

First of all, the user should provide the de-
scription and the explanation of the rule. Ex-
planation can contain parameters, denoted
by $x for the LexiX or $+/- number, for a
specific word of a sentence. These parame-
ters are replaced by the corresponding words
during the rule usage. User should also spec-
ify the number of words contained in rule en-
vironment before and after the LexiX posi-
tion. The above rule properties are specified
in the rule properties dialog depicted in Fig-
ure 4.

Next the user defines the valid combinations
of grammatical characterizations, i.e. lexis,
for LexiX, as well as the lexi which the new
rule should conclude to. The definition of
grammatical characteristics of each lexi is
done through the dialog in Figure 5. The user
can also restrict the application of the rule to
a specific set of words. Through the dialog
in Figure 6, the user can specify the adjacent
words whose grammatical characteristics will
be inherited to LexiX.

Finally, the user can specify the alternative
environments of the new syntactic rule. Each
environment is a set of lexis defined by their

denote the set of grammatical characteristics of a word - On
the other hand words are simply the tokens of a sentence.

grammatical characteristics (using Figure 5
dialog). The number of lexis contained in
each environment must be equal to the total
number of words specified in the rules prop-
erties dialog in Figure 4.

After completing the definition of the syntac-
tic rule, the user integrates the new rule into
the kernel. This is an automatic operation,
which also constructs the XML rule file.

2. Edit an existing rule. The procedure of
editing an existing rule is alike to the one
of creating a new rule. Editing starts af-
ter the system has parsed the XML rule file
and reproduced the tree representation of the
rule (Figure 3). The user can modify the
rule properties, characteristics and alterna-
tive environments and then choose to update
the Rules Kernel and the corresponding XML
file.

3. Remove an existing rule. Removal of an
existing rule can be done through the respec-
tive menu option or toolbar icon located in
the main screen (Figure 2).

4. Disable/enable an existing rule. By de-
fault, the status of a new rule is set to en-
abled. The status can be altered from the
main screen in Figure 2 either to disabled or
enabled.

5. Export of existing rules. Apart from
XML format, a single or the entire set of the
syntactic rules can be exported in a high level
programming language code. The user has
the option from within the environment to e-
mail the resulted source code to the program-
mers group of the targeted syntactic speller.

4.2 Monitor

Efficient syntactic rules-based spell checking leads
to the problem of generating and choosing syn-
tactic rules that on the one hand optimize the
performance of the spelling checker engine and
on the other constitute a consistent set of rules.
In trying to resolve this problem, there are many
cases when a rule or a number of rules should be
checked against a different set of rules, for identi-
fying and minimizing potential rules conflicts and
insufficiencies.

For this purpose, the system provides a monitor
functionality for the evaluation of Rules Kernel

x

Input. -Check
’7 at file: Browse. Back
-~ Optio:

I” Create Report

™ Enoneous sentences file: Browse...

Select syntactic nules to be checked

1:HAZER (v, Gvoa Kal npnel val ouigavel ws npas vavut; Pl ke nm:un ke GipBp0 noU Aponyel -
2 H fi8in npéne: vt sival dwopa km éx. prpe, pe Bian Tie #EE21e nou nponyal
3 Avavapvnc

4 H ﬂcin npgnet va elval prna ie Bdon 1o wémo A To eviimud now nponyelta

5 Avevepyos.

& Avavepvoc

o prinet it Tou Unokey
& Ta pilpas npene\ Yo glven oTow nﬂnBuvum ue Euun e yerravikée Tou e
o #En GpBpo kon neen 1 A8 no
érh:\'ccl

et
i nou np rwzx rinctkin cwsonBed o mUpASK TN oy
13 H it npéney v elvon \:(uBuu we (510 yévoo, apBud ko miken ue Ty f¢En now Eneto e sivan dvou - |

Figure 7: Checking procedure settings

Enor: Im

Feplacs with: |t

Suggestions
Ty

Ignore

Igriore all

i)

Replace

Fiule End

Figure 8: Interactive check dialog

while being on text documents. The system also
takes advantage of the lexicon of (Symfonia) in
order to perform the additional grammatical and
lexical analysis required.

Rules checking can be done either interactively
or automatically. In the first case, the user has to
select one of the automatically generated system
suggestions that attempt to correct the syntax er-
ror encountered. In the second case, the system
by default adopts the first suggestion.

Nevertheless, in both cases the starting point
is the same. Figure 7 presents the settings dialog
of the checking procedure. In this dialog the user
specifies the input text containing the sentences
that should be checked and the set of syntactic
rules that will be used, by picking them out from
the rules list on the bottom of the dialog. The list
contains all the rules integrated into the Rules
Kernel except from the rule checking for simple
spelling errors. This is a check that always takes
place. Moreover the user can choose if the system
will produce a report of the check and a document
containing the erroneous sentences. In the latter
option, the name of the output document should
also be specified.

After having specified the settings, the rules
checking begins. The procedure stops when an er-
ror is encountered and when in interactive mode.

The user is informed about the spelling mistake
by Figure 8 dialog. This dialog is identical to
the one used in the Symfonia advanced spelling
checker. It denotes the misspelled word and pro-
poses a number of alternative words. The user
can either ignore this error or all of its subse-
quent occurrences, or replace the misspelled word
or simply choose to end the checking procedure.
In addition, the user can read the explanation of
the rule used to detect the error.

A report regarding the checking of the docu-
ment is produced at the end of the procedure if
the user has requested so. The information con-
tained in a report file is sentence-wise organized.
In the beginning of the document, there is a list
of the rules selected in Figure 7 to be taken into
account. Then, for each sentence of the input
document and for each error detected, a section
is given that contains the grammatical analysis
of the sentence words: lemma and grammatical
category, the rules used in the checking of this
sentence and the one that identified the error. In
addition, the report lists the alternatives words
proposed by the rule that detected the error, and
also in case of an interactive check, it denotes the
action of the user taken place in Figure’s 8 dialog.

5 Real-World scenario

Let us assume that we wish to solve the ambiguity
between the greek words for "more” and ”which”:
"mo” and ”row”. Although these two words have
the same phonetic transcription /pjo/, the first
one is an adverb and the second is a pronoun.
We create a syntactic rule with the following en-
vironment:

Lexil LexiX Lexi2

If LexiX is characterized by the ambiguity "mo” -
"nowo” and Lexil is an article and Lexi2 is either
an adjective or a noun or an adverb, then LexiX
is an adverb, i.e. "mo”. Figure 3 illustrates the
rule tree representing the created rule.

The previous rule resolves the ambiguity by
rendering LexiX as an adverb. We can also de-
fine another rule for specifying that LexiX should
be a pronoun, i.e. "mow”. The environment of

the required rule would be:
LexiX Lexil Lexi2 Lexi3 Lexi4 Lexib

LexiX is "roto” if Lexil is an article, Lexi2 an ad-
noun, Lexi3 a noun, Lexi4 a particle and Lexi5 a
verb. In addition, some or all of Lexil, Lexi2, Lexi3
and Lexi4 can be missing.

6 Conclusion

Designing highly robust proofing tools for inflec-
tional languages (Amaral et al.) 1is still an
open issue. Omne fundamental approach to ad-
dress this problem is to use grammar and syntax
rules-based checking on a phrase-by-phrase basis.
This, in turn, leads us to the problem of gener-
ating and choosing syntactic rules that not only
optimize the performance of the spelling checker
engine, but they also constitute a consistent set
of rules. To this end, a purely linguistic tool was
developed that lets language knowledgeable but
computer programming unaware people to devise,
build and test in real-time spelling checking pro-
cesses whatever grammar and syntax rules they
like, by means of graphical tree representations.
At the same time plenty of monitoring informa-
tion is provided by user-friendly interface in all
phases of every syntactic rule life-cycle. Testing of
the rules on large text corpora is also supported.
The tool was implemented for the Greek language
and for the Symfonia speller of ILSP. The en-
vironment has proven its value (e.g. rapid rule
creation, efficient identification of potential rules
conflicts etc.) after having thoroughly tested and
evaluated by ILSP linguists group. Further work
can be focused in converting the tool to a platform
that can accommodate other spellers and support
other morphologically rich languages.

References

(Amaral et al.) Carlos Amaral, Helena Figueira, Afonso Mendes,
Pedro Mendes, and Claudia Pinto. A Workbench for Developing
Natural Language Processing Tools.

(Beaujard & Jardino 99) Christel Beaujard and Michele Jardino.
Classification of not labelled words by statistical methods. Math-
ematics, Informatics and Social Science, (147):7-23, 1999. in
french.

(Bouros 05) Panagiotis Bouros. Technical report, Symfonia Monitor
Tool manual, 2005. in greek.

(ILSP) ILSP. Institute of Language and Speech Processing,
http://www.ilsp.gr.

(Knight 99) Kevin Knight. A Statistical MT Tutorial Workbook.
prepared in connection with the JHU summer workshop, April
1999.

tathis arayannis 99 . Stathis and G. Carayannis. title (in

Stathis & C C. Stath 1G. C 1
greek). In 2nd ELETO Conference: Hellenic Language and
Terminology, 1999. in greek.

(Symfonia) Symfonia. An
http://www.ilsp.gr/correct.html.

intelligent spelling checker,

(xml) xml. Extended

http://www.w3.org/XML/.

Markup Language,

