
A Two-layer Partitioning for Non-point Spatial Data
Dimitrios Tsitsigkos† Konstantinos Lampropoulos† Panagiotis Bouros§ Nikos Mamoulis† Manolis Terrovitis#

†University of Ioannina, §Johannes Gutenberg University Mainz, #Athena Research Center

{dtsitsigkos, klampropoulos, nikos}@cse.uoi.gr, bouros@uni-mainz.de, mter@imis.athena-innovation.gr

Abstract—Non-point spatial objects (e.g., polygons, linestrings,
etc.) are ubiquitous and their effective management is always
timely. We study the problem of indexing non-point objects in
memory. We propose a secondary partitioning technique for
space-oriented partitioning indices (e.g., grids), which improves
their performance significantly, by avoiding the generation and
elimination of duplicate results. Our approach is novel and of
a high impact, as (i) it is extremely easy to implement and (ii)
it can be used by any space-partitioning index. We show how
our approach can be used to boost the performance of spatial
range queries. We also show how we can avoid performing the
expensive refinement step of a range query for the majority of
objects and study the efficient processing of numerous queries
in batch and in parallel. Extensive experiments on real datasets
confirm the superiority of space-oriented partitioning over data-
oriented partitioning and the advantage of our approach against
alternative duplicate elimination techniques.

I. INTRODUCTION

The management of spatial data has been extensively stud-
ied for at least four decades [20]. Nowadays, memories have
become much bigger and cheaper and in most applications,
spatial object collections can easily fit in the memory of
even a commodity machine. In addition, modern processors
have multiple cores and facilitate parallel query processing.
Although a number of distributed systems for spatial data have
been developed in the past decade [1], [10], [32], [34], [24],
the problem of in-memory management of large-scale spatial
data has received relatively little attention.

In this paper, we study the problem of indexing non-point
spatial objects (e.g., polygons, linestrings, etc.) in memory,
for the efficient single- and multi-threaded evaluation of spatial
range queries. Large volumes of non-point data are ubiquitous,
hence, their effective management is always timely. Besides
Geographic Information Systems, domains that manage big
volumes of such data include graphics (e.g., management of
huge meshes [13]), neuroscience (e.g., building and indexing a
spatial model of the brain [25]), and location-based analytics
(e.g., managing spatial influence regions of mobile users in
order to facilitate effective POI recommendations [7]).

Motivation. Spatial access methods can be divided into
two categories; space-oriented partitioning (SOP) and data-
oriented partitioning (DOP) approaches. Indices of the first
category divide the space into spatially disjoint partitions. As
a result, objects that overlap with multiple partitions need to
be replicated (or clipped) in each of them. DOP methods allow
the extents of the partitions to overlap and ensure that their
contents are disjoint (i.e., each object is assigned to exactly one

Introductory examples

r1 r2 r3

r4
r5 r6

T0

T0 → {r1,r2}
T1 → {r2,r3}
T2 → {r3}
T4 → {r2}
T5 → {r2}
T6 → {r4}
T7 → {r4}
T10 → {r5}
T11 → {r6}
T15 → {r6}

W

ref. point

T1 T2 T3

T4 T5 T6 T7

T8 T9 T10 T11

T12 T13 T14 T15

primary
partitioningTile primary partitioning secondary partitioning

T0 {r1, r2} A = {r1, r2}

T1 {r2, r3} A = {r3}, C = {r2}

T2 {r3} C = {r3}

T4 {r2} B = {r2}

T5 {r2} D = {r2}

T6 {r4} A = {r4}

T7 {r4} C = {r4}

T10 {r5} A = {r5}

T11 {r6} A = {r6}

T15 {r6} B = {r6}

Fig. 1. Example of partitioning and object classes

partition). For disk-resident data, DOP approaches (such as
the R-tree [12] and its variants) are considered to be the best,
because they avoid data replication and they have a balanced
structure. However, SOP approaches (especially grids) are
gaining ground due to their efficiency in search and updates
in main memory [21], [14], [35], [22], [29], [27]. In addition,
query evaluation over grids is embarassingly parallelizable and
SOP is widely used in distributed spatial data management
systems [10], [32], [34].

In this paper, we focus on improving SOP indices by
addressing an inherent problem they have: potential duplicate
query results. In particular, a range query may overlap multiple
partitions which may include multiple replicas of the same
object. For example, consider the six rectangular objects
depicted in Figure 1, partitioned using a 4×4 grid. Some
objects are assigned to multiple tiles. Given a query range
(e.g., W), a replicated object (e.g., r2) may be identified as
query result multiple times (e.g., at tiles T0, T1, T4, and T5).

The classic approach to eliminate duplicates is to hash the
query results and identify duplicates at each bucket. This
method is very expensive, especially when the number of
results is large. An improved hashing technique for spatial
data that limits the size of the hash table was proposed in
[2]. The state-of-the-art technique for duplicate elimination,
used in most big spatial data management systems [24], is the
reference point approach [9]. For each query result ri, found
in a tile T , this approach computes a reference point of the
intersection between ri and the query window W (e.g., the
upper-left corner in Fig. 1). If the reference point is inside T ,
then ri is reported, otherwise it is ignored. Since the reference
point can only be inside one tile, no duplicate results are
reported. Although this method avoids hashing, we still have
to bear the cost of retrieving duplicate copies of the same
object and computing the reference point for each copy.

Contributions. In Sec. III, we propose a secondary par-

W

Ti apply W οn all
objects in Ti

eliminate
duplicates

W

Ti apply W οn selected
object classes in Ti

previous techniques

our approach

Fig. 2. Comparison between our approach and previous work

titioning technique for SOP indices, which improves their
performance significantly, by avoiding the generation and
elimination of duplicate results. Our approach is novel and
of a high impact, as (i) it is extremely easy to implement, (ii)
it can be used by any SOP index, and (iii) it can be directly
implemented in big spatial data management systems [24]. In
a nutshell, we divide the objects which are assigned to each
partition T into four classes A,B,C,D. Objects in class A
begin inside T in both dimensions, objects in class B start
inside T in dimension x only, objects in class C start inside
T in dimension y only, and objects in class D start before
T in both dimensions. Fig. 1 exemplifies how the objects are
divided into classes. For example, in tile T1, object r2 belongs
to class C, because r2 starts before T1 in the x dimension and
starts inside T in the y dimension. During query evaluation, for
each partition T which intersects the query range, we access
only the object classes in T that are guaranteed not to produce
duplicate results. For example, in tile T1 of Fig. 1, we will not
access class C, because query W starts before T1 in dimension
x; i.e., any object in class C of T1 that intersects W should
also intersect W in the previous tile T0. Hence, we avoid
verifying whether r2 intersects W before realizing that it is a
duplicate result. In Sec. IV-A, we explain in detail how range
queries are evaluated by our scheme and show how redundant
computations and duplicate checks can be avoided overall.
Fig. 2 illustrates the difference between our approach and
the deduplication process followed by previous work [9], [2];
while all previous approaches evaluate queries on all objects
of each partition and then eliminate possible duplicates, we
process only a subset of objects in each partition that cannot
be duplicates and we do not perform any deduplication.

Besides proposing a secondary partitioning technique for
duplicate avoidance in range queries, we show how to reduce
the number of required comparisons per rectangle to at most
one per dimension (Sec. IV-B). Furthermore, we propose
a data decomposition approach which further reduces the
number of comparisons (Sec. IV-C). Next, we focus on non-
rectangular objects, which are approximated and indexed using
their minimum bounding rectangles (MBRs). In Sec. V, we
show that for such objects, the expensive query refinement step
can be avoided in most cases by a simple post-filtering test
on the object MBRs. In Sec. VI, we investigate the evaluation
of multiple range queries in batch and in parallel, using our
secondary partitioning approach.

In Sec. VII, we evaluate our proposal experimentally using
large publicly available real datasets and synthetic ones of

the same scale as those used in recent work [24], [18], [26].
Our experiments (with workloads of queries and updates)
show that main-memory grids are superior to alternative SOP
and state-of-the-art DOP indices, which justifies our focus to
improve SOP indexing. More importantly, we show that when
we replace the state-of-the-art duplicate elimination technique
[9] by our secondary partitioning technique, the performance
of grid-based indexing is improved by up to a few times.
Overall, a grid index equipped with our secondary partitioning
technique is up to one order of magnitude faster compared
to the best performing DOP index (an in-memory R-tree
implementation from boost.org) for range queries of varying
sizes, achieving an impressive throughput of tens of thousands
of queries per second. We also show that our (directly paral-
lelizable) approach scales gracefully with the number of cores
(i.e., threads in a multi-core machine), making it especially
suitable for shared-nothing parallel environments where tree-
based indices are hard to deploy. Finally, we demonstrate that
in-memory spatial indexing can be orders of magnitude faster
compared to distributed spatial data management systems for
the scale of data used in our experiments.

II. RELATED WORK

In this section, we review related work on spatial indices
and distributed spatial data management systems.

A. Spatial Indexing

Spatial queries on non-point data are typically processed
in two steps [20], following a filtering-and-refinement frame-
work. During the filtering step, the query is applied on the
MBRs, which approximate the objects. During the refinement
step, the exact representations of the candidates are accessed
and tested against the query predicate. Spatial indices are
typically designed for the filtering step; hence, they manage
MBRs instead of exact geometries.

Depending on the nature of the partitioning, spatial indices
can be classified into two classes [23]. Indices based on space-
oriented partitioning (SOP) divide the space into disjoint
partitions and were originally designed for point data. A grid
[5], which divides the space into cells (partitions) using axis-
parallel lines, is the simplest SOP index. Hierarchical indices
that fall in this category are the kd-tree [4] and the quad-tree
[11]. SOP can also be used for non-point objects; in this case,
objects whose extent overlaps with multiple partitions need to
be replicated (or clipped) in each of them [28].

Due to object replication, the same query results may be
detected in multiple partitions and deduplication techniques
should be applied. Aref and Samet [2] improve the baseline
hash-based duplicate elimination technique by processing the
partitions in a specific order, which guarantees that duplicates
may appear only in a subset of partitions (called active border).
The size of the active border determines the space require-
ments of the hash table. The state-of-the-art deduplication
technique by Dittrich and Seeger [9] avoids the use of a hash
table; it computes a reference point of the intersection area
between each result and the query range. If the reference point

is inside the partition, then the result is reported, otherwise it is
eliminated as a duplicate. All deduplication approaches in the
literature, first compute the results and then check whether
they are duplicates. Our proposal is radically different; the
objects in each partition are divided into four classes (during
indexing). For each query, we process at each partition only the
object classes that cannot produce duplicates. Hence, we avoid
(i) needless comparisons to objects that would be duplicates
and (ii) the cost of deduplication checks.

Indices based on data-oriented partitioning (DOP) allow
the extents of the partitions to overlap and ensure that their
contents are disjoint (i.e., each object is assigned to exactly
one partition); hence, there is no need for result deduplication.
Variants of the R-tree [12] (e.g., the R*-tree [3]) are the
most popular methods in this class. The R-tree is a height-
balanced tree, which generalizes the B+-tree in the multi-
dimensional space and hierarchically groups object MBRs to
blocks. Each block is also approximated by an MBR, hence
the tree defines a hierarchy of MBR groups. The R-tree was
originally proposed for disk-resident data and the key focus is
minimizing the I/O cost during query processing. The CR-tree
[16] is an optimized R-tree for the memory hierarchy. BLOCK
[23] is a recently proposed main-memory DOP index, which
uses a hierarchy of grids.

Recently, following the trend for relational data, learned
indices for spatial data have been proposed [31], [18], [26].
The main idea is to learn the spatial distribution of the objects,
and then define a lightweight index, where search is guided
by models instead of a sparse index. Wang et al. [31] first
map the data to a 1D space, using their Z-order, and then
construct a multi-staged learned index for 1D data. In LISA
[18], the data are organized using a grid; the 1D order of the
cells and the data distribution determines the grouping of cells
and the corresponding learned models. RSMI [26] suggests
a rank space based ordering, which becomes scalable by a
recursive partitioning and learning strategy. These indices are
not directly comparable to our work, because they are designed
for point data (with no obvious extension to non-point data)
and their primary goal is to minimize the I/O cost.

B. Parallel and Distributed Data Management

With the advent of Hadoop, research on spatial data man-
agement has shifted to the development of distributed systems
for spatial data [6], [1], [10], [33], [32], [34]. Spatial data
in Hadoop-GIS [1] are partitioned using a hierarchical grid,
wherein high density tiles are split to smaller ones. The
nodes of the cluster share a global tile index which can be
used to find the HDFS files where the contents of the tiles
are stored. Spatial queries are implemented as MapReduce
workloads. In the SpatialHadoop system [10], different options
for partitioning based on different spatial indices are possible
(i.e., grid based, R-tree based, quad-tree based, etc.) A global
index for each dataset is stored at a Master node, indexing for
each HDFS file block the MBR of its contents. A local index
is built at each physical partition and used by map tasks.

Spark-based implementations of spatial data management
systems [33], [32], [34] apply similar partitioning approaches.
The main difference to Hadoop-based implementations is
that data, indices, and intermediate results are shared in the
memories of all nodes in the cluster as resilient distributed
datasets (RDDs) and can be made persistent on disk. Unlike
SpatialSpark [33] and GeoSpark [34] which are built on top
of Spark, Simba [32] has its own native query engine and
query optimizer, however, Simba does not support non-point
geometries. Pandey et al. [24] conduct a comparison between
in-memory spatial analytics systems and find that they scale
well in general, although each one has its own limitations.

Distributed spatial data management systems focus on data
partitioning and not on query evaluation at each partition. In
other words, emphasis is given on scaling out (i.e., making
the cost anti-proportional to the number of nodes), rather than
on per-node scalability (i.e., reducing the computational cost
per node) and multi-core parallelism. On the other hand, we
focus on in-memory spatial data management and scaling up
spatial query evaluation, by reducing the computational cost
and exploiting multi-core parallelism.

III. TWO-LAYER SPATIAL PARTITIONING

In this section, we present our secondary partitioning ap-
proach for SOP spatial indices. Even though our approach can
be used in any SOP index, we will present it in the context of a
regular grid index, which divides the space into N ·M disjoint
spatial partitions, called tiles.1 An object o is assigned to a tile
T iff MBR(o) and T intersect. For each tile T , we keep a list
of (MBR, object-id) pairs that are assigned to T . On the other
hand, the actual geometry of each object is stored only once
in an array or a hash-map and retrieved on-demand, given the
object’s id. Since the spatial distribution of objects may not be
uniform, there could be empty tiles. If the percentage of empty
tiles is very large, to save memory, we can use a hash-table to
map each non-empty tile to the set of rectangles assigned to it.
The above storage scheme is quite effective for main-memory
data because it supports queries and updates quite fast.

Secondary Partitioning. We propose that the set of MBRs
at each tile is further divided into four classes A, B, C, and
D (which are physically stored separately in memory). Each
MBR r can be represented by an interval of values at each
dimension. Let r.x = [r.xl, r.xu] be the projection of rectangle
r on the x axis and r.y = [r.yl, r.yu] r’s y-projection. Now,
consider a rectangle r which is assigned to tile T .

• r belongs to class A, if for every dimension d ∈ {x, y},
the begin value r.dl of r falls into projection T.d, i.e., if
T.dl ≤ r.dl.

• r belongs to class B if r.x begins inside T.x and r.y
begins before T.y, i.e., if T.xl ≤ r.xu and T.yl > r.yl.

• r belongs to class C if r.x begins before T.x and r.y
begins inside T.y, i.e., if T.xl > r.xl and T.yl ≤ r.yl.

1In Table V, we test how the quad-tree can benefit from our secondary
partitioning.

TT

Mini-joins

a) Define an order (direction) for each axis, for example x: left-to-right, y: top-to-bottom
b) Given a cell (tile) c, the rectangles which are assigned to c are divided to 4 classes:

• A: their x.start and y.start points are contained in the x-projection of c
• B: their x.start pt is contained in the x-projection of c, but their y.start is before c
• C: their y.start pt is contained in the y-projection of c, but their x.start is before c
• D: their x.start and y.start points are both before c

x

y

rectangles of type A rectangles of type B rectangles of type C rectangle of type D

T T

Fig. 3. The four classes of rectangles assigned to a tile T .

• r belongs to class D if both its x- and y-projections begin
before T , i.e., if T.xl > r.xl and T.yl > r.yl.

Figure 3 illustrates examples of rectangles in a tile T that
belong to the four different classes.2 During data partitioning,
for each tile T a rectangle r is assigned to, we identify its
class and place it to the corresponding division. Note that a
rectangle can belong to class A of just one tile, while it can
belong to other classes (in other tiles) an arbitrary number
of times. We denote the secondary partitions of tile T which
store the MBRs of classes A, B, C, and D, by TA, TB , TC ,
and TD, respectively. Table I summarizes the notation used
frequently in the paper.

TABLE I
TABLE OF NOTATIONS

Notation Description
W query window

r.d = [r.dl, r.du] projection of rectangle r at dimension d ∈ {x, y}
TX secondary partition of tile T holding MBRs in class

X ∈ {A,B,C,D}
prev(T, d) previous tile to T in dimension d ∈ {x, y}
LX
dl

(LX
du

) decomposed table holding 〈r.dl, id〉 (〈r.du, id〉)
pairs of class X and dimension d ∈ {x, y}

IV. RANGE QUERY EVALUATION

In this section, we show how the secondary partitions at
each tile T can be used to avoid the generation and elimination
of duplicate query results. We first consider rectangular range
queries W (window queries). For now, we focus on the
filtering step of the query, i.e., the objective is to just find
the object MBRs which intersect W . The refinement step will
be discussed in Section V.

First, the tiles which intersect W in a N × M regular
grid can be found in O(1) time, by algebraic operations.
Specifically, assuming that tile Ti,j is at the i-th row and at
the j-th column of the grid, the tiles which intersect W are
all tiles Ti,j , for which bW.xl/Nc ≤ i ≤ bW.xu/Nc and
bW.yl/Mc ≤ j ≤ bW.yu/Mc. We now explain in detail,
for each tile T that intersects W , which classes of rectangles
should be accessed and which computations are necessary for
determining whether each rectangle r intersects W . Our goal
is not only to avoid accessing irrelevant secondary partitions,
but also to minimize the computational cost for finding the
query results in the relevant partitions of T .

2We conventionally assume that the x dimension is from left to right and
the y dimension is from top to bottom.

A. Selecting relevant classes

For a tile T , let prev(T, d) denote the tile which is right
before T in dimension d and has exactly the same projection as
T in the other dimension. For example, in Figure 4, prev(T, x)
(resp. prev(T, y)) is the tile right before T in dimension x
(resp. y). Given a window query W , the following lemmas
determine the classes of rectangles in T which should be
disregarded, because they can only produce duplicate results.

Lemma 1: If the query range W intersects tile T and W
starts before T in dimension x, then secondary partitions TC

and TD should be disregarded.
Proof. Consider a rectangle r in class C or class D of

tile T , i.e., r ∈ TC or r ∈ TD. Rectangle r should also be
assigned to the previous tile prev(T, x) to T in dimension x,
because it belongs to class C or D of T . If r intersects W
in T , then r should also intersect W in prev(T, x), because
W also starts before T in dimension x. Hence, examining and
reporting r in tile T would produce a duplicate, since the same
result can also be identified in tile prev(T, x). �

Lemma 2: If W intersects tile T and W starts before T in
dimension y, then secondary partitions TB and TD should be
disregarded.

Lemma 2 can be proved by replacing x by y and C by
B in the proof of Lemma 1. The two lemmas are combined
to exclude all classes B, C, and D if W starts before T in
both dimensions. To illustrate the lemmas, consider tile T
in Figure 4. In addition, consider the MBRs of objects o1
and o2, which belong to secondary partitions TB and TC ,
respectively. MBR(o1) should be ignored when processing
T because it belongs to class B and W starts before T in
dimension y (Lemma 2). Indeed, MBR(o1) intersects W also
in tile prev(T, y) which is right above W . On the other hand,
W does not start before T in dimension x, i.e., Lemma 1
does not apply for tile T . This means that MBR(o2) ∈ TC

will be found to intersect W . Figure 4 shows, in the top-left
corner of each tile T intersected by W , the object classes
in T that should be examined (the remaining classes can be
disregarded). Observe that we have to consider all objects in
just one tile (the one containing point (W.xl,W.yl)). For the
majority of tiles, we only have to examine secondary partition
TA.

B. Minimizing the number of comparisons

We now turn our attention to minimizing the number of
comparisons needed for each secondary partition that has to
be checked (i.e., those not eliminated by Lemmas 1 and 2).
For a rectangle r in a tile T to intersect the query window
W , r.x should intersect W.x and r.y should intersect W.y.
Hence, to test whether x intersects W , we need at most four
comparisons (i.e., r and W do not intersect, iff r.xu < W.xl
or r.xl > W.xu or r.yu < W.yl or r.yl > W.yu).

A direct observation that saves comparisons is that, if a
tile T is covered by the window W in a dimension d, then
we do not have to perform intersection tests in dimension d
for all rectangles in the relevant secondary partitions in T . In
the example of Figure 4, we need to examine partitions TA

W

r.xl ≤ W.xu

r.xl ≤ W.xu

r.xl ≤ W.xu

r.yl ≤ W.yur.yl ≤ W.yur.yl ≤ W.yur.yl ≤ W.yu

r.xu ≥ W.xl

r.xu ≥ W.xl

r.xu ≥ W.xl

r.yu ≥ W.yl
r.yu ≥ W.yl r.yu ≥ W.yl

no comparisons no comparisons

r.yu ≥ W.yl

Tprev(T, x)

prev(T, y)

Fig. 4. Examples of object classes and comparisons

and TC of tile T (Lemma 2). For each rectangle r in these
partitions, we only have to verify if projections r.x and W.x
intersect, because r.y and W.y definitely intersect (since T.y
is covered by W.y).

For the dimension(s) where T is not covered by W , the
following lemmas can be used to further reduce the necessary
comparisons.

Lemma 3: If W ends in tile T and starts before T in
dimension d, then for a rectangle r ∈ T , r intersects W in
dimension d iff r.dl ≤W.du.

Symmetrically, we can show:
Lemma 4: If W starts in tile T and ends after T in dimension

d, then for a rectangle r ∈ T , r intersects W in dimension d
iff r.du ≥W.dl.

For example, in tile T of Figure 4, we only have to
test intersection in dimension x, as already explained. The
intersection test can be reduced to a simple comparison,
i.e., r intersects W iff r.xu ≥ W.xl, due to Lemma 4. To
demonstrate the impact of Lemmas 3 and 4, in each tile of the
figure, we show the necessary comparisons. For the two tiles
in the center, no comparisons are required because all MBRs
(in class A) are guaranteed to intersect W . For the remaining
two tiles, which intersect the border of W , we only have to
perform at most one comparison per dimension, because W
either starts or ends at these tiles (and some of these tiles
are totally covered by W in one dimension). Contrast this to
the four comparisons required in the general case for testing
whether two rectangles (e.g., r and W) intersect. Therefore,
for range queries that cover multiple tiles, we have:

Corollary 1: For a window query W that intersects more
than one tile per dimension, the number of required compar-
isons per rectangle in each relevant tile is at most two.

C. Storage decomposition

Conventionally, each MBR r is stored as a quintuple
〈id, r.xl, r.xu, r.yl, r.yu〉. To further reduce the query cost and
improve the data access locality, we propose the representation
of each MBR r by four pairs: 〈r.xl, id〉, 〈r.xu, id〉, 〈r.yl, id〉,
〈r.yu, id〉, following the Decomposition Storage Model (DSM)
[8], [30]. Hence, for each of the secondary partitions TX ∈
{TA, TB , TC , TD}, we can define four decomposed tables

TABLE II
REQUIRED DECOMPOSED TABLES FOR EACH SECONDARY PARTITION

partition required tables

TA LA
xl

, LA
xu

, LA
yl

, LA
yu

TB LB
xl

, LB
xu

, LB
yu

TC LC
xu

, LC
yl

, LC
yu

TD LD
xu

, LD
yu

LX
xl
, LX

xu
, LX

yl
, LX

yu
, which store the four pairs of each rectangle

in TX , respectively. The tables are sorted by their first column
and used to evaluate fast queries on tiles, where just one
endpoint of each MBR needs to be compared (according to
Lemmas 3 and 4).

In particular, for each tile T satisfying Lemma 3 in dimen-
sion d, we can perform binary search on each of its relevant
tables LX

dl
, having the 〈r.dl, id〉 tuples, to find the largest

r.dl, which satisfies r.dl ≤ W.du. All rectangles in the table
up to this value are guaranteed to satisfy the condition and
can be reported without any comparison.3 Symmetrically, we
can reduce the comparisons for rectangles in a tile T , which
satisfies Lemma 4, by taking advantage of the sorted tables
LX
du

. For example, for the tile T in Figure 4, we only have
to access and perform binary search to tables LA

xu
and LC

xu
,

which store the 〈r.xu, id〉 decompositions of the rectangles
in secondary partitions TA and TC , respectively. If we have
to perform two comparisons in a tile (e.g., r.xu ≥ W.xl and
r.yu ≥W.yl), we choose one of the two relevant decomposed
tables (e.g., Lxu

or Lyu
) to perform the search; then, for each

qualifying rectangle according to the selected comparison, we
verify the other comparison by accessing the entire MBR. We
select the table in the dimension which is covered the least by
W , in order to minimize the necessary verifications.

Finally, we observe that, for some object classes, it is not
necessary to store all decompositions. For example, the only
possible comparisons that can be applied to rectangles of class
D are r.xu ≥ W.xl and r.yu ≥ W.yl, because all MBRs
of class D start before the tile in both dimensions and they
are only compared with W in the tile that includes the start
point of W in both dimensions (Lemma 4). Hence, we only
need to keep tables LD

xu
and LD

yu
for each secondary partition

TD. Overall, we can reduce the storage requirements for the
decomposed tables as shown in Table II.

The decomposed data representation not only reduces the
number of comparisons but also accesses only the necessary
data for each verified comparison. In particular, rentangle
coordinates which are not relevant to the required verification
are not accessed at all, while in a record-based representation
irrelevant data are fetched to the memory cache. On the
other hand, the decomposed representation requires additional
storage and is more expensive to update (unless a batch update
strategy is employed); hence, it is mostly appropriate for
indexing static spatial object collections.

3Alternatively, we can scan from the beginning of the table until the
condition is violated.

D. Overall approach

Algorithm 1 describes the steps of window query evaluation.
Given a window W , we first identify the tiles T that intersect
W by simple algebraic operations, as discussed in the begin-
ning of this section. Then, for each tile T ∈ T , we identify
the secondary partitions PT that would not produce duplicates,
using Lemmas 1 and 2. For each such secondary partition
TX , we find all rectangles that intersect W , by applying the
techniques of Sec. IV-B to reduce the necessary computations.
We also use the decomposed tables presented in Sec. IV-C.
Note that the operations at each tile T (and each secondary
partition in T) are totally independent to each other and they
can be parallelized without the need of any synchronization.

Algorithm 1 Window query evaluation (filtering step)
Require: grid G, query window W

1: T = tiles in G that intersect W
2: for each tile T ∈ T do
3: PT = sub-partitions of T relevant to W . Lemmas 1 & 2
4: for each sub-partition TX ∈ PT do
5: find all r ∈ TX that intersect W . Sec. IV-B & IV-C
6: end for
7: end for

Although we focus on indexing 2D MBRs in this paper,
our secondary partitioning scheme can directly be used for
minimum bounding boxes (MBBs) of arbitrary dimensionality
m. In a nutshell, we need 2m classes to re-partition an m-
dimensional tile T , which indexes m-dimensional MBBs. For
each tile T , if MBB r intersects T , there are two cases for
each dimension d: either r begins inside T (r.dl ≥ T.dl) or
before T (r.dl < T.dl). Hence, there are 2m cases (classes)
in total. Lemmas 1 and 2 can be generalized to a lemma that
prunes all classes corresponding to cases of MBBs that begin
before T in each dimension d, if W begins before T in that
dimension. Lemmas 3 and 4 apply to any dimensionality and
the decomposition approach of Section IV-C can directly be
used to split each m-dimensional MBB to 2 ·m pairs. These
pairs can be used to search fast in tiles that are on the boundary
of the query range.

E. Non-rectangular ranges

Window queries are the most popular range queries. Still,
not all query ranges are rectangular. A characteristic non-
rectangular range query is the disk (or distance) range query,
where the objective is to find all objects with (minimum)
distance to a given query point q at most ε. To evaluate a
disk query on our two-layer partitioned dataset, we apply a
similar method to Algorithm 1; we first find the set of tiles
T that intersect with the disk (using algebraic/trigonometric
operations) and then find the objects in them that satisfy the
query predicate. As in window queries, for each tile T ∈ T ,
we check whether prev(T, d) in each dimension d is also in T .
If yes, then we disregard the corresponding class of rectangles
in T . Hence, if prev(T, x) ∈ T , then classes B and D are
disregarded, whereas if prev(T, y) ∈ S, then classes C and D
are disregarded. Figure 5 shows an example of a disk query

q

Disk queries
- A is always included
- if tile before in y does not intersect range, add B
- if tile before in x does not intersect range, add C
- If tile before in both dim do not, add D
- Problem: duplicates (B in one tile and C in another or D…)
- Solution below the diagonal (tile closer to q in y-axis):

if ABCD, for each r in class B or D ignore r if r overflows
to next-x tile

- Solution above the diagonal (tile closer to q in x-axis):
if ABCD, for each r in class C or D ignore r if r overflows
to next-y tile

- Exception: closest tile to the 45o radius

x

y

A

A,B

A,B,C,D

A,C

TT

type B type C

r1

r3
r2

T5

T4

T3

T2T1

Fig. 5. Example of disk query evaluation

centered at q. The tiles which intersect the disk are shown
by different patterns depending on the classes of rectangles
in them that have to be checked. For example, in tile T5 all
four classes will be examined (we call T5 an ABCD tile, in
the context of the disk query). Note that for the majority of
tiles which intersect the disk range, we only have to examine
rectangles in class A.

A subtle point here is that if we simply examine all
rectangles in the classes that correspond to each tile, we may
end up examining duplicates. For example, consider rectangle
r1, which will be examined in both tiles T1 (in class B) and
T2 (in class C). To avoid such duplicates, for each rectangle in
an ABCD tile T , if the tile is closer to q in the y-dimension
compared to the x-dimension, we ignore rectangles r in classes
C and D, for which r.yu > T.yu (these will be handled
in another tile). The case where T is closer to q in the x-
dimension is handled symmetrically.

For tiles which are totally covered by the disk range, we do
not verify any distances between the objects assigned to them
and q, as these are guaranteed to be query results. Distance
verification only has to be performed for objects in tiles which
partially intersect the disk.

The method described above for disk queries can be gen-
eralized for any non-rectangular query. We first find the set
of tiles T which intersect the query range. Then, for each
tile T ∈ S, we determine which classes of objects need to be
examined (i.e., exclude classes that would produce duplicates).
For each tile which is totally covered by the query region, we
just report its contents in the relevant classes as results and
for the remaining tiles we conduct an intersection test for each
rectangle before determining whether it is a result.

V. REFINEMENT STEP

We now discuss the evaluation of the refinement step of
range queries using our secondary partitioning scheme. We
begin by a general and important lemma, which is independent
to our approach.

Lemma 5 (Secondary filtering): Given a candidate object
whose MBR r intersects the query range, if at least one side
of r is inside the query range, then the object is guaranteed
to intersect the range and no refinement step for the object is
necessary.

The lemma is trivial to prove, based on the definition of
MBR. If one side of the MBR is inside the query range, then
there should be at least one point of the object inside the query
range, i.e., the object and the range intersect. For rectangular
query ranges W , we can simplify the test by checking whether
at least one of the projections r.x or r.y of r is covered by
the corresponding projection W.x or W.y of W . If this is
true, given that r intersects W , at least one point of the object
corresponding to r should be inside W . This test costs at
most four comparisons. For a disk query range, we can check
whether there are at least two corners of r whose distances to
the disk center are smaller than or equal to the disk radius (in
this case at least one side of r should be inside the disk). This
test costs at most four distance computations.

Efficient secondary filtering. We now show how we can
use our two-layer partitioning approach to reduce the cost of
applying the post-filtering tests (Lemma 5). Specifically, for
each T that intersects a query range W and for each dimension
d, we consider two cases: (i) W starts before T in dimension d,
i.e., W.dl < T.dl and (ii) W.dl ≥ T.dl. In the first case, due to
Lemmas 1 and 2, only classes of rectangles that start inside T
in dimension d are considered, which means for each rectangle
r ∈ T which is found to intersect W , we already know that
W.dl < r.dl. Hence, we only have to test if r.du ≤ W.du to
confirm whether r is covered by W in dimension d. On the
contrary, for the case where W.dl ≥ T.dl, we should apply
the complete coverage test (i.e., W.dl ≤ r.dl ∧ r.du ≤ W.du)
in dimension d.

For example, in Figure 4, we only have to perform the
complete coverage test for all rectangles that intersect W in
the top-left tile (prev(T, y)). In the tiles, where we access
classes A and B, we save one comparison in the x dimension,
in the tiles, where we access classes A and C, we save one
comparison in the y dimension, and in all other tiles (where we
access only class A), we save one comparison per dimension.

VI. BATCH QUERY PROCESSING

In the previous sections, we presented how our two-layer
index handles single query requests. Real systems however
receive and need to evaluate a large number of concurrent
queries. Under this, we next discuss how to efficiently process
batches of spatial range queries. Although our focus is primar-
ily in a single-threaded processing environment, parallel query
processing in modern multi-core hardware can also benefit
from the ideas discussed in this section. To this end, our
experimental analysis includes both single-threaded and multi-
threaded experiments.

Queries-based approach. A straightforward approach for
processing a workload of concurrent spatial range queries is
to directly evaluate every query independently. In a parallel
processing environment, we can easily adopt this approach by
assigning the queries to the available threads in a round robin
fashion. We call this simple approach queries-based. Its main
shortcoming is that it is cache agnostic; as every issued query
q typically overlaps multiple tiles of the grid, the computation

TABLE III
REAL-WORLD DATASETS USED IN THE EXPERIMENTS

dataset type card. avg. x-extent avg. y-extent
ROADS linestrings 20M 0.00001173 0.00000915
EDGES polygons 70M 0.00000491 0.00000383
TIGER mixed 98M 0.00000740 0.00000576

of q requires accessing data structures in different parts of
the main memory, i.e., the memory access pattern is prone to
cache misses. The problem is present also in parallel query
processing, as every thread goes through multiple rounds of
content switching.

Tiles-based approach. To address this shortcoming of
queries-based, we design a cache-conscious two-step ap-
proach. Given a large batch of queries Q, for each tile, we
first accumulate the subtasks of all queries in Q that intersect
the tile. Each subtask corresponds to accessing and processing
(the relevant to the query) secondary partitions in the tile.
Then, in a second step, we initiate one process at each tile,
which evaluates the corresponding subtasks. Essentially, query
processing is no longer driven by the queries, but from the
grid tiles and therefore, we call this approach tiles-based. This
method is favored by parallel processing, since each thread
(corresponding to a tile) can benefit from the processor’s cache
while processing the subtasks assigned to it. As we demon-
strate in Section VII the tiles-based approach scales better with
the number of parallel threads compared to queries-based.

VII. EXPERIMENTAL EVALUATION

Our analysis was conducted on a machine with 384 GBs
of RAM and a dual Intel(R) Xeon(R) CPU E5-2630 v4
clocked at 2.20GHz running CentOS Linux 7.6.1810. All
methods were implemented in C++, compiled using gcc
(v4.8.5) with flags -O3, -mavx and -march=native. For
our parallel processing tests, we used OpenMP and activated
hyper-threading, allowing us to run up to 40 threads.

Datasets. We experimented with publicly available Tiger 2015
datasets [10], summarized in Table III. The third dataset
resulted by merging all polygon and linestring Tiger 2015
objects, excluding zip codes, counties and states. The objects
in each dataset were normalized so that the coordinates in
each dimension take values inside [0, 1]. The last two columns
of the table are the relative (over the entire space) average
length for every object’s MBR at each axis. In order to
test the robustness of our index, we also experimented with
synthetically generated datasets with rectangles of uniform and
zipfian spatial distribution. Table IV shows the parameters used
in data generation. The coordinates in each dimension take
values inside [0, 1] and all generated rectangles in a dataset
have the same area. The width to height ratio of each rectangle
was generated randomly in the range [0.25, 4] in order to avoid
unnaturally narrow rectangles.

Methods. We implemented our secondary partitioning ap-
proach as part of a main-memory regular grid spatial index.
We designed two variants of the index. In the first variant,

TABLE IV
SYNTHETIC DATASETS (MBRS) USED IN THE EXPERIMENTS

parameter values default
cardinality 1M, 5M, 10M, 50M, 100M 10M
area 10−∞, 10−14, 10−12, 10−10, 10−8, 10−6 10−10

distribution Uniform or Zipfian (a = 1) —

TABLE V
COMPARED METHODS AND THEIR THROUGHPUT (WINDOW QUERIES)

type index details throughput [queries/sec]
ROADS EDGES

SOP

2-layer Section III 30981 9406
2-layer+ Section IV-C 36444 10855
1-layer grid with [9] 12597 4403
quad-tree [11] using [9] 10949 3640
quad-tree, 2-layer [11] + Section III 16883 5831

DOP

R-tree [17] (boost.org) 7888 2011
R*-tree [3] (boost.org) 6415 1610
BLOCK [23] < 1 < 1
MXCIF quad-tree [15] 8 2

termed 2-layer, for each tile T of the grid, we divide the
(MBR, id) pairs assigned to T into four secondary partitions
(TA, TB , TC , TD), as discussed in Section III. In the second
variant, termed 2-layer+, each secondary partition TX is
further divided into decomposed tables, as discussed in Section
IV-C.

We considered both SOP and DOP competitors to our
2-layer and 2-layer+, summarized in Table V. First regarding
SOPs, the 1-layer index is an in-memory grid with identical
primary partitioning as our 2-layer, but uses the reference point
approach [9] to perform duplicate elimination. Comparing
1-layer to 2-layer and 2-layer+ shows the benefit of our
secondary partitioning scheme and the techniques we propose
in Section IV for duplicate avoidance and minimization of
comparisons. The second SOP competitor is a quad-tree im-
plementation, which assigns each object MBR to all quadrants
it intersects. As soon as the contents of a quadrant exceed a
predefined maximum capacity (set to 1000, after tuning), the
quadrant is split to four; the rectangles are then re-distributed
in the four generated children and replicated if they span
the division borders. In order to avoid extensive splitting of
quad-tree nodes in the case of extremely skewed data, a
maximum tree depth (=12) is set. The reference point approach
[9] is also used for duplicate elimination. We also implemented
a version of quad-tree that uses our approach instead of [9].
Regarding DOPs, we used two implementations of in-memory
R-trees from the highly optimized Boost. Geometry library
(boost.org)4; an STR-bulkloaded [17] (denoted for simplicity
as R-tree) and an R*-tree [3]. Both trees have a fanout of
16 for inner and leaf nodes; this configuration is reported to
perform the best (we also confirmed this by testing). The next
DOP competitor is BLOCK; the implementation was kindly
provided by the authors of [23]. Finally, we also implemented
and tested the MXCIF quad-tree for non-point data [15],

4Recent benchmarks [19] showed the superiority of Boost.Geometry R-tree
implementations over the ones in libspatialindex.org

filtering secondary filtering refinement

ROADS EDGES

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Simple

RefAvoid

RefAvoid+

A
v
g
 q

u
er

y
 t

im
e

[µ
se

cs
]

 0

 100

 200

 300

 400

 500

 600

 700

Simple

RefAvoid

RefAvoid+

A
v
g
 q

u
er

y
 t

im
e

[µ
se

cs
]

window queries

 0

 5

 10

 15

 20

 25

 30

 35

 40

Simple

RefAvoid

A
v
g
 q

u
er

y
 t

im
e

[m
se

cs
]

 0

 20

 40

 60

 80

 100

 120

 140

Simple

RefAvoid

A
v
g
 q

u
er

y
 t

im
e

[m
se

cs
]

Disk queries
Fig. 6. Time breakdown in two-layer indexing

which does not replicate objects that span quadrants, but stores
each object at the lowest-level quadrant which covers the
object. All compared methods are listed in Table V.

Queries. We experimented with both window and disk queries
which apply on non-empty areas of the map (i.e., they always
return results). We vary their relative area as a percentage of
the entire data space, inside the {0.01, 0.05, 0.1, 0.5, 1} value
range (default value 0.1% of the area of the map). Queries on
synthetic data follow the same spatial distribution as the data.

A. Filtering vs. Refinement

In the first experiment we evaluate the effectiveness of
our extra pre-refinement filtering (Lemma 5). We used our
2-layer index and considered three variants of query evalua-
tion; filtering is identical in all three variants. Under Simple,
all candidates identified by the filtering step are passed to the
refinement step; RefAvoid employs Lemma 5 to reduce the
number of candidates to be refined; last, RefAvoid+ enhances
RefAvoid by using our secondary partitioning, as discussed at
the end of Section V. Figure 6 breaks down the average execu-
tion time for 10000 window and disk queries; note that for disk
queries RefAvoid+ is not applicable. The pre-refinement filter
is very effective; both RefAvoid and RefAvoid+ significantly
reduce the number of candidates to be refined by over 90%. To
achieve this however, they apply extra comparisons using the
MBRs; these comparisons are more expensive in the case of
disk queries because they involve costly distance computations
between the disk center and the corners of object MBRs. When
our secondary filtering technique is used, the bottleneck of
window queries is in the filtering step; hence, in the subsequent
experiments, we focus on the filtering step.

1-layer

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.250.50.75 1

Jo
in

 s
el

ec
ti

v
it

y
 [

%
]

BOOKS
FLIGHTS
GREEND

INFECTIOUS
TAXIS

WEBKIT

2-layer

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.250.50.75 1
Jo

in
 s

el
ec

ti
v

it
y

 [
%

]

BOOKS
FLIGHTS
GREEND

INFECTIOUS
TAXIS

WEBKIT 2-layer+

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.250.50.75 1

Jo
in

 s
el

ec
ti

v
it

y
 [

%
]

BOOKS
FLIGHTS
GREEND

INFECTIOUS
TAXIS

WEBKIT

ROADS EDGES

 0

 2

 4

 6

 8

 10

 12

 14

1 3 5 8 12

In
d
e
x
 t

im
e
 [

se
c
s]

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 5 6 14 20

In
d
e
x
 t

im
e
 [

se
c
s]

partitions per dimension [×1000] partitions per dimension [×1000]

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 3 5 8 12

In
d
e
x
 s

iz
e
 [

G
B

s]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 5 6 14 20

In
d
e
x
 s

iz
e
 [

G
B

s]

partitions per dimension [×1000] partitions per dimension [×1000]

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 3 5 8 12

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 5 6 14 20

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

partitions per dimension [×1000] partitions per dimension [×1000]

Fig. 7. Building and tuning grid-based indices (window queries)

B. Indexing and Tuning

We next investigate the index building cost and tuning. The
first four plots of Figure 7 compare the indexing times and the
sizes of the three grid-based indices on ROADS and EDGES
datasets, while varying the granularity of the grid partitioning.
Naturally, the indexing cost for all three indices rises as
we increase the granularity of the grid. As expected, 1-layer
and 2-layer have the same space requirements; regardless of
employing secondary partitioning or not, both indices store
exactly the same number of object MBRs (originals and
replicas). Note that the index sizes do not grow too much
with the grid granularity, which means that MBR replication
is not excessive. In terms of indexing time, 2-layer is only
slightly more expensive than 1-layer. On the other hand, the
indexing cost of 2-layer+ is higher than both 1-layer and
2-layer indices, because 2-layer+ essentially stores a second
(decomposed) copy of the rectangles inside every tile. The
construction costs for the two quadtrees (not shown) are 7s
and 28.2s, respectively, and their sizes are similar to those
of the corresponding 1-layer indices. The sizes of the packed
R-trees (not shown) are about the same as the sizes of the
corresponding 1-layer (and 2-layer) indices, indicating that the
replication ratio of our indices is low. In addition, the bulk
loading costs of the R-trees are 5.2s and 19.5s for the two
datasets, respectively, i.e., about 20% lower compared to the
construction cost of 2-layer+.

The last two plots of Figure 7 compare the window query
throughputs of 1-layer, 2-layer, and 2-layer+ for different grid
granularities. The three methods achieve their best throughputs
when several thousands of partitions per dimension are used.
Observe that employing our secondary partitioning signifi-
cantly enhances query processing; 2-layer and 2-layer+ always
outperform 1-layer by a wide margin (2x–3x). It is worth not-
ing that 1-layer uses the comparisons reduction optimization
described in Section IV-B, meaning that the performance gap
is due to our secondary partitioning and the storage decompo-
sition (by 2-layer+). Specifically, our approach outperforms the
state-of-the-art reference point method for result deduplication
[9] used by 1-layer by a factor of at least 2. For a wide range of
granularities (i.e., 1000 to 10000 partitions per dimension), the
throughput of all three methods does not change significantly
meaning that finding the best granularity is not crucial to query
performance. The fastest index is 2-layer+ as it trades the extra
used space for better query performance We observed similar
trends on the TIGER and on the synthetic datasets (not shown
due to lack of space). For the rest of our analysis, we used
the best granularity for 1-layer, 2-layer and 2-layer+.

C. Query and Update Performance
We now compare all indices in terms of query throughput

(window and disk queries), evaluate batch and parallel query
processing, and finally measure their update costs.

Window queries. First, we report in Table V the throughput
(queries/sec) achieved by each index for 10K window queries
(of average relative area 0.1% of the map) on ROADS and
EDGES. 2-layer and 2-layer+ outperform the competition
by a wide margin. Note that the performance of quad-tree
is greatly improved by our secondary partitioning, which
confirms that other SOPs besides grids can benefit from our
approach. However, as 2-layer is consistently more efficient
than the quad-tree using our approach, we do not consider
the latter in the rest of the experiments. R-tree is the most
efficient DOP competitor, outperforming R*-tree (from the
same library). BLOCK takes seconds to evaluate range queries
on our datasets, which can be attributed to the fact that it
is implemented for 3D objects. Similar, MXCIF quad-tree is
orders of magnitude slower than the R-tree. Under these, in the
rest of the tests we only include 1-layer, R-tree and quad-tree
indices as the key competitors to our 2-layer and 2-layer+.

The first two columns of Figure 8 show the throughput of
the five competitors for window queries of varying relative
area and selectivity on the three real datasets. For the ex-
periments of the second column, we collected the runtimes
of all queries (regardless of their areas) and averaged them
after grouping them by selectivity. Naturally, query processing
is negatively affected by both factors. We also observe that
2-layer and 2-layer+ are consistently much faster than the
competition on all datasets and query areas; in addition, the
relative difference between 2-layer and 2-layer+ is stable. For
each query, 2-layer and 2-layer+ access the relevant partitions
very fast (without the need of traversing a hierarchical index)
and manage to drastically reduce the required number of

R-tree quad-tree 1-layer 2-layer 2-layer+

ROADS

10
1

10
2

10
3

10
4

10
5

10
6

0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
1

10
2

10
3

10
4

10
5

10
6

[0,0.01]

(0.01,0.1]
(0.1,1]

(1,100]

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
0

10
1

10
2

10
3

10
4

0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
0

10
1

10
2

10
3

10
4

10
5

[0,0.01]

(0.01,0.1]
(0.1,1]

(1,100]

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

query relative area [%] query selectivity [%] query relative area [%] query selectivity [%]

Window queries Disk queries
EDGES

10
1

10
2

10
3

10
4

10
5

0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
1

10
2

10
3

10
4

10
5

10
6

[0,0.01]

(0.01,0.1]
(0.1,1]

(1,100]

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
-1

10
0

10
1

10
2

10
3

0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

[0,0.01]

(0.01,0.1]
(0.1,1]

(1,100]

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

query relative area [%] query selectivity [%] query relative area [%] query selectivity [%]

Window queries Disk queries
TIGER

10
1

10
2

10
3

10
4

10
5

0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
1

10
2

10
3

10
4

10
5

[0,0.01]

(0.01,0.1]
(0.1,1]

(1,100]

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
-1

10
0

10
1

10
2

10
3

0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

[0,0.01]

(0.01,0.1]
(0.1,1]

(1,100]

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

query relative area [%] query selectivity [%] query relative area [%] query selectivity [%]

Window queries Disk queries
Fig. 8. Query processing: real data

computations. Figure 9 compares all methods for window
queries on the synthetic datasets. In these experiments, we
additionally vary the database size and the areas of the
data objects. In terms of query throughput w.r.t. query area
and selectivity, the trends are similar as those for the real
data. In addition, the data cardinality does not affect the
relative performance of the methods. Finally, we observe
that 2-layer and 2-layer+ are more robust to the area of
the data objects compared to the competition. As the area
grows, the replication to tiles increases, and so 1-layer and
the quad-tree have to compute and eliminate more duplicate
results. In contrast, 2-layer and 2-layer+, with the help of our
secondary partitioning, completely avoid the generation and
elimination of duplicate results. On the other hand when
the data area shrinks (10−∞ represents the case of extremely
small rectangles that resemble points), the replication to tiles
decreases. 1-layer and the quad-tree still need to perform the
extra comparison of the de-duplication reference test, which
explains the stable advantage of 2-layer and 2-layer+.

Disk range queries. For disk range queries, we report results

on the real data in the last two columns of plots in Figure 8.
2-layer+ is not included in the comparison, because storage
decomposition cannot improve distance computations. For
disk queries on 1-layer and quad-tree, we cannot use the
reference point technique to eliminate duplicate results (and
duplicate elimination using hashing is too expensive). Thus,
we implemented disk queries on them as follows. We executed
a window query using the MBR of the query range and
eliminated any duplicates intersecting the window. For all
tiles/quadrants inside the disk range, we just reported all
window query results there as disk query results. For all
other tiles and quadrants we performed distance tests before
confirming and reporting the results. The plots show once
again the superiority of the 2-layer index.

Batch and Parallel Query Processing. Figure 10 compares
the two approaches (queries-based and tiles-based), discussed
in Section VI, for batch window query processing (10K queries
or 1% relative area, per batch) on ROADS and EDGES.5

5Similar findings are observed for TIGER, but the results are omitted due
to lack of space.

R-tree quad-tree 1-layer 2-layer 2-layer+

Uniform (default) Zipfian (default)

10
2

10
3

10
4

10
5

10
6

0.01 0.05 0.1 0.5 1

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
1

10
2

10
3

10
4

0.01 0.05 0.1 0.5 1

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

query relative extent [%] query relative extent [%]

10
2

10
3

10
4

10
5

10
6

 1 5 10 50 100

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
0

10
1

10
2

10
3

10
4

 1 5 10 50 100

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

data cardinality [×106] data cardinality [×106]

10
3

10
4

10
5

 10
-14

 10
-12

10
-10

10
-8

10
-6

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

10
0

10
1

10
2

10
3

 10
-∞

 10
-14

10
-12

10
-10

10
-8

10
-6

T
h
ro

u
g
h
p
u
t

[q
u
er

ie
s/

se
c]

data rectangle area data rectangle area

Fig. 9. Query processing: synthetic data (window queries)

A general observation from the plots is that tiles-based is
superior to queries-based when the dataset is large (i.e., dense)
and the queries are relatively large. In this case, the sizes
of the dedicated tables for each class per tile are large and
cache conscious tiles-based approach makes a difference. On
the other hand, the overhead of finding and accumulating the
subtasks per tile does not pay off when the number of queries
on each tile is too small or when the tiles do not contain
many rectangles. The advantage of tiles-based becomes more
prominent in parallel query processing. Figure 11 shows the
speedup of batch query evaluation on the two largest datasets
(again, 10K queries per batch) as a function of the number
of parallel threads. Note that tiles-based scales gracefully
with the number of threads (up to about 25 threads, where
it starts being affected by hyperthreading). On the other hand,
queries-based scales poorly due to the numerous cache misses.

Updates. To confirm the superiority of grid indices in updates,
we conducted an experiment using the real datasets, where we
first constructed the index by loading 90% of the data in batch
and then measuring the cost of incrementally inserting the last
10% of the data. Table VI compares the total update costs
of the competitor indices. R-tree is two orders of magnitude
slower than the baseline 1-layer index and the cost of updates
on 2-layer is only a bit higher compared to the update cost
on 1-layer. Updates on quad-tree are also slower compared to

ROADS EDGES

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

0.01 0.05 0.1 0.5 1

T
o

ta
l

q
u

er
y

 t
im

e
[s

ec
s]

query-based
tile-based

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0.01 0.05 0.1 0.5 1

T
o

ta
l

q
u

er
y

 t
im

e
[s

ec
s]

query-based
tile-based

query relative extent [%] query relative extent [%]

Fig. 10. Batch query processing (window queries)

ROADS EDGES

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30 35 40

S
p

ee
d

u
p

 [
x

]

query-based
tile-based

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 5 10 15 20 25 30 35 40

S
p

ee
d

u
p

 [
x

]

query-based
tile-based

threads # threads

Fig. 11. Batch query parallel processing (window queries)

1-layer and 2-layer, due to the tree traversal.

D. Comparison with GeoSpark

Finally, we compare our proposed 2-layer grid index with
GeoSpark [34], one of the best-performing distributed spatial
data management systems according to [24]. Our goal is to
show that, for the scale of benchmarking data [10] that we
and recent papers [24], [18], [26] use, in-memory indexing in
a multi-core processing machine is superior to using a system
designed for cluster computing. As our implementation is
designed to run on a single machine, we run GeoSpark in client
mode, meaning that the driver and Spark applications are both
on the same machine. In addition, we used R-tree indexing
in GeoSpark, which performs best in query evaluation. We
compared GeoSpark with 2-layer that uses a grid granularity of
1000x1000 and tested both single and multi-threaded versions
for range queries. The experiments were conducted using the
ROADS dataset on a machine with 64 GBs of RAM and a
Intel(R) Core i7-4930K CPU clocked at 3.40GHz.6 For each
method, we average the cost of 100 (end-to-end) window
queries, where the area of each query is 0.1% of the area
of the map. Figure 12 shows that 2-layer always outperforms
GeoSpark in terms of query performance by at least three
orders of magnitude. These results are consistent with the
findings of [24], where distributed spatial data management
systems are shown to have a throughput of at most several
hundred range queries per minute on data of similar scale.
In order to compare the two methods in a multi-threaded
scenario on equal terms, our approach evaluates the queries
independently (i.e., not in batch). We observe the same trend
as the number of cores increases.

6We do not own the platform where we ran the previous experiments, so
we could not install GeoSpark on that machine.

TABLE VI
TOTAL UPDATE COST (SEC)

dataset R-tree quad-tree 1-layer 2-layer
ROADS 5.34 0.76 0.059 0.068
EDGES 19.8 2.89 0.267 0.382
TIGER 33.91 4.63 0.459 0.634

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

se
c]

Threads

GeoSpark
2-layer

Fig. 12. Window query performance comparison

VIII. CONCLUSIONS

We presented a secondary partitioning approach that can
be applied to SOP indices, such as grids, and divides the
MBRs within each spatial partition to four classes. Our
approach reduces the number of comparisons during range
query evaluation and avoids the generation (and elimination)
of duplicate results. In addition, we proposed a secondary fil-
tering technique for spatial range queries, avoids a refinement
step for the majority of query results. Finally, we investigated
techniques for evaluating numerous range query requests in
batch and in parallel. Our experimental findings confirm the
superiority of our approach compared to the state-of-the-art
duplicate result elimination method [9]. We also show that a
grid equipped with our method outperforms other indices (such
as the quad-tree and R-tree) by up to one order of magnitude
and showed its scalability to multiple query evaluation in
parallel. A direction for future work is the application of
our approach to distributed spatial data management systems.
Moreover, we will study the evaluation of other popular query
types, such as nearest neighbor queries and spatial joins using
SOP indices that employ our secondary partitioning scheme.

ACKNOWLEDGMENTS

Partially funded by EU’s Horizon 2020 programme (Grant
Agreement No. 957345), the European Regional Development
Fund - GSRT (project MIS 5002437/3) and the Greek national
funds, under the Research-Create-Innovate call (projects:
T1EDK-04810 and T2EDK-02848). The authors gratefully
acknowledge the computing time on the supercomputer Mogon
at Johannes Gutenberg University Mainz (hpc.uni-mainz.de).

REFERENCES

[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. H. Saltz.
Hadoop-GIS: A high performance spatial data warehousing system over
mapreduce. Proc. VLDB Endow., 6(11):1009–1020, 2013.

[2] W. G. Aref and H. Samet. Hashing by proximity to process duplicates
in spatial databases. In CIKM, pages 347–354, 1994.

[3] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree:
An efficient and robust access method for points and rectangles. In
SIGMOD, pages 322–331, 1990.

[4] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[5] J. L. Bentley and J. H. Friedman. Data structures for range searching.
ACM Comput. Surv., 11(4):397–409, 1979.

[6] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on processing
spatial data with mapreduce. In SSDBM, pages 302–319, 2009.

[7] C. Cheng, H. Yang, I. King, and M. R. Lyu. Fused matrix factorization
with geographical and social influence in location-based social networks.
In AAAI, 2012.

[8] G. P. Copeland and S. Khoshafian. A decomposition storage model. In
SIGMOD, pages 268–279, 1985.

[9] J. Dittrich and B. Seeger. Data redundancy and duplicate detection in
spatial join processing. In ICDE, pages 535–546, 2000.

[10] A. Eldawy and M. F. Mokbel. SpatialHadoop: A mapreduce framework
for spatial data. In ICDE, pages 1352–1363, 2015.

[11] R. A. Finkel and J. L. Bentley. Quad trees: A data structure for retrieval
on composite keys. Acta Inf., 4:1–9, 1974.

[12] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In SIGMOD, pages 47–57, 1984.

[13] H. Hoppe. Progressive meshes. In SIGGRAPH, pages 99–108, 1996.
[14] D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch. Main memory

evaluation of monitoring queries over moving objects. Distributed and
Parallel Databases, 15(2):117–135, 2004.

[15] G. Kedem. The quad-cif tree: A data structure for hierarchical on-line
algorithms. In DAC, pages 352–357, 1982.

[16] K. Kim, S. K. Cha, and K. Kwon. Optimizing multidimensional index
trees for main memory access. In SIGMOD, pages 139–150, 2001.

[17] S. T. Leutenegger, J. M. Edgington, and M. A. López. STR: A simple
and efficient algorithm for r-tree packing. In ICDE, pages 497–506,
1997.

[18] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan. LISA: A learned index
structure for spatial data. In SIGMOD, pages 2119–2133, 2020.

[19] M. Loskot and A. Wulkiewicz, 2019.
https://github.com/mloskot/spatial index benchmark.

[20] N. Mamoulis. Spatial Data Management. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[21] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: scalable incremental
processing of continuous queries in spatio-temporal databases. In
SIGMOD, pages 623–634, 2004.

[22] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Conceptual parti-
tioning: An efficient method for continuous nearest neighbor monitoring.
In SIGMOD, pages 634–645, 2005.

[23] M. Olma, F. Tauheed, T. Heinis, and A. Ailamaki. BLOCK: efficient
execution of spatial range queries in main-memory. In SSDBM, pages
15:1–15:12, 2017.

[24] V. Pandey, A. Kipf, T. Neumann, and A. Kemper. How good are
modern spatial analytics systems? Proc. VLDB Endow., 11(11):1661–
1673, 2018.

[25] M. Pavlovic, D. Sidlauskas, T. Heinis, and A. Ailamaki. QUASII: query-
aware spatial incremental index. In EDBT, pages 325–336, 2018.

[26] J. Qi, G. Liu, C. S. Jensen, and L. Kulik. Effectively learning spatial
indices. Proc. VLDB Endow., 13(11):2341–2354, 2020.

[27] S. Ray, R. Blanco, and A. K. Goel. Supporting location-based services
in a main-memory database. In IEEE MDM, pages 3–12, 2014.

[28] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1990.

[29] D. Sidlauskas, S. Saltenis, C. W. Christiansen, J. M. Johansen, and
D. Saulys. Trees or grids?: indexing moving objects in main memory.
In SIGSPATIAL/ACM-GIS, pages 236–245, 2009.

[30] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil,
A. Rasin, N. Tran, and S. B. Zdonik. C-store: A column-oriented DBMS.
In VLDB, pages 553–564, 2005.

[31] H. Wang, X. Fu, J. Xu, and H. Lu. Learned index for spatial queries.
In MDM, pages 569–574, 2019.

[32] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba: Efficient
in-memory spatial analytics. In SIGMOD, pages 1071–1085, 2016.

[33] S. You, J. Zhang, and L. Gruenwald. Large-scale spatial join query
processing in cloud. In CloudDB, ICDE Workshops, pages 34–41, 2015.

[34] J. Yu, Z. Zhang, and M. Sarwat. Spatial data management in apache
spark: the geospark perspective and beyond. GeoInformatica, 23(1):37–
78, 2019.

[35] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries
over moving objects. In ICDE, pages 631–642, 2005.

	Introduction
	Related Work
	Spatial Indexing
	Parallel and Distributed Data Management

	Two-layer Spatial Partitioning
	Range Query Evaluation
	Selecting relevant classes
	Minimizing the number of comparisons
	Storage decomposition
	Overall approach
	Non-rectangular ranges

	Refinement Step
	Batch Query Processing
	Experimental Evaluation
	Filtering vs. Refinement
	Indexing and Tuning
	Query and Update Performance
	Comparison with GeoSpark

	Conclusions
	References

