
Interval	Count	Semi-Joins	
Panagio5s	Bouros1	and	Nikos	Mamoulis2	

1Ins%tute	of	Computer	Science,	Johannes	Gutenberg	University	Mainz,	Germany	
2Department	of	Computer	Science	&	Engineering,	University	of	Ioannina,	Greece	

bouros@uni-mainz.de, nikos@cs.uoi.gr

Introduc5on	

21st	Interna%onal	Conference	on	Extending	Database	Technology	(EDBT),	Vienna,	Austria,	March	26-29,	2018	

[1]		P.	Bouros	and	N.	Mamoulis.	A	Forward	Scan	based	Plane	Sweep	Algorithm	for	Parallel	Interval	Joins.	In	PVLDB,	10(11),	2017.	
[2]		D.	Piatov,	S.	Helmer,	and	A.	Dignös.	An	interval	join	op%mized	for	modern	hardware.	In	ICDE,	2016.	
[3]		C.	Sheng,	Y.	Tao,	and	J.	Li.	Exact	and	approximate	algorithms	for	the	most	connected	vertex	problem.	ACM	TODS	37(2),	2012.	
[4]		M.	Zhu,	D.	Papadias,	J.	Zhang,	and	D.	L.	Lee.	Top-k	Spa%al	Joins.	IEEE	TKDE	17(4),	2005.		
	

References	

Interval	Join	
	

Find	all	pairs	of	employees	whose	working	
periods	at	companies	R	and	S	overlap	

Applica5ons	
	

q  Temporal	databases	
q  Selec-ng	and/or	ranking	objects	

Baseline	Approaches	
Naïve	Algorithm:	
q  Compute	interval	join	
q  Sort	and	aggregate	join	results	
	
	
	
	
	
	
	
Simple	Coun5ng	Algorithm:	
q  Adapt	Interval	Join	algorithm	to	count	ICSJ	

results	instead	of	producing	IJ	results	

Smart	Coun5ng	Algorithm	

Execu5on	5me	(varying	|R|/|S|)	
	

Execu5on	5me	breakdown	(|R|	=	|S|)	
	

Related	work	
	

q  Plane-sweep	based	interval	joins	[1],	[2]	
q  Top-k	count	semi-joins	

§  Rela%onal	[3],	spa%al	[4]	

Observa5on:	to	compute	an	r.count	we	need:	
q  The	number	|AS|	of	ac%ve	intervals	from	S	

when	r.start	is	accessed	
q  The	number	of	intervals	form	S	which	

became	ac%ve	aher	r.start	and	before	r.end		
	

Approach:	use	a	global	counter	g	to	track	for	
how	many	intervals	s	∈	S	their	start	point	has	
been	seen	so	far	
q  When	the	start	point	of	a	s	∈	S	is	accessed	→

increase	|AS|;	increase	g		
q  When	the	end	point	of	a	s	∈	S	is	accessed	→

decrease	|AS|	
q  When	the	start	point	of	a	r	∈	R	is	accessed	→ �

ini%alize	r.count	=		|AS|-	g	
q  When	the	end	point	of	a	r	∈	R	is	accessed	→

finalize	r.count	=	r.count	+	g	

	

	
q  Use	a	hash	table	(or	array)	to	track	r.count	’s	
ü  Complexity:	O(|R|+|S|),	excluding	sor%ng	
	

 0.001

 0.01

 0.1

 1

 10

 100

 1000

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

 0.01

 0.1

 1

 10

 100

0.25 0.5 0.75 1

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

 1

 10

 100

 1000

0.25 0.5 0.75 1

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

 0.01

 0.1

 1

 10

 100

 1000

0.25 0.5 0.75 1

E
x

ec
u

ti
o

n
 t

im
e

[s
ec

s]

Naïve

 0.1

 1

 10

 100

 1000

Naïve Simple Smart

T
im

e
[s

ec
s]

Naïve
Simple
Smart

Simple

 0.1

 1

 10

 100

 1000

Naïve Simple Smart

T
im

e
[s

ec
s]

Naïve
Simple
Smart

Smart

 0.1

 1

 10

 100

 1000

Naïve Simple Smart

T
im

e
[s

ec
s]

Naïve
Simple
Smart

 0.001

 0.01

 0.1

 1

 10

 100

 1000

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

 0.01

 0.1

 1

 10

 100

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

 1

 10

 100

 1000

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

 0.01

 0.1

 1

 10

 100

 1000

0.25 0.5 0.75 1

E
x
ec

u
ti

o
n
 t

im
e

[s
ec

s]

|R |/ |S | |R |/ |S | |R |/ |S | |R |/ |S |
(a) FLIGHTS (b) BOOKS (c) GREEND (d) WEBKIT

Figure 2: Total execution time while varying the |R |/|S | ratio.

 0.1

 1

 10

 100

 1000

Naïve Simple Smart

T
im

e
[s

ec
s]

Joining
Sorting

 0.1

 1

 10

 100

 1000

Simple Smart

T
im

e
[s

ec
s]

Joining
Sorting

 0.1

 1

 10

 100

 1000

Naïve Simple Smart

T
im

e
[s

ec
s]

Joining
Sorting

 0.1

 1

 10

 100

 1000

Simple Smart

T
im

e
[s

ec
s]

Joining
Sorting

(a) FLIGHTS (b) BOOKS (c) GREEND (d) WEBKIT

Figure 3: Execution time breakdown for |R | = |S |.

while varying the |R |/|S | ratio and Figure 3 reports a breakdown
of the execution time for the |R | = |S | case. As expected, we
were able to run the Naïve method only when ICS � was very
selective, i.e., for datasets FLIGHTS and GREEND. Recall from
Section 3 that Naïve �rst evaluates the I � of the input collections;
on BOOKS and WEBKIT, it was impossible to accommodate the
enormous number of I � result pairs in main memory.4

Figure 2 demonstrates the e�ciency of the Smart Counting ap-
proach, which outperforms Simple Counting in all cases. In fact,
Simple is competitive to Smart only for very selective join setups
(see Figure 2(c)) while in all other cases, Smart is at least one
order of magnitude faster. To explain the performance cost di�er-
ences between Smart and Simple, we breakdown their execution
times. In Figure 3(c), the execution cost of Simple is dominated
by the generation and sorting of the points list L, because the
number of overlapping interval pairs is small, rendering the inner
loop at lines 19-20 of Algorithm 2 cheap. On other hand, when
there is a large number of overlapping intervals, Figure 3 unveils
that maintaining active sets and performing random accesses to
update C counters severely impacts the joining time of Simple.
In contrast, observe that the cost by Smart to compute the ICS �
result is always much lower than that of generating/sorting L.
This is expected because Smart is insensitive to the I � result, as
discussed in Section 3.2.

5 CONCLUSIONS
In this paper, we studied the evaluation of the interval count
semi-join operation; we presented an e�cient algorithm based
on plane sweep. Our algorithm has lower complexity compared
to state-of-the-art interval join algorithms if the number of join
results is large. We experimentally showed that its overhead on
top of sorting the data is minimal in all setups, which means that
it is especially tailored in cases where the join inputs are already
sorted (e.g., in streaming data applications). In the future, we
plan to further study the semantics and the evaluation of top-k

4We also experimented with a version of Naïve that �ushes the I � result pairs on
disk which was even slower.

interval joins. We also intend to investigate the applications of
interval joins and other temporal operations in streaming data.

ACKNOWLEDGEMENTS
This work was partially funded by the European Union’s Horizon
2020 research and innovation programme under grant agreement
No 657347.

REFERENCES
[1] Panagiotis Bouros and Nikos Mamoulis. 2017. A Forward Scan based Plane

Sweep Algorithm for Parallel Interval Joins. PVLDB 10, 11 (2017), 1346–1357.
[2] Francesco Cafagna and Michael H. Böhlen. 2017. Disjoint interval partitioning.

VLDB J. 26, 3 (2017), 447–466.
[3] Bhupesh Chawda, Himanshu Gupta, Sumit Negi, Tanveer A. Faruquie,

L. Venkata Subramaniam, and Mukesh K. Mohania. 2014. Processing Interval
Joins On Map-Reduce. In EDBT.

[4] Reynold Cheng, Sarvjeet Singh, Sunil Prabhakar, Rahul Shah, Je�rey Scott
Vitter, and Yuni Xia. 2006. E�cient join processing over uncertain data. In
CIKM.

[5] Anton Dignös, Michael H. Böhlen, and Johann Gamper. 2014. Overlap interval
partition join. In SIGMOD.

[6] Jost Enderle, Matthias Hampel, and Thomas Seidl. 2004. Joining Interval Data
in Relational Databases. In SIGMOD.

[7] Jaewoo Kang, Je�rey F. Naughton, and Stratis Viglas. 2003. EvaluatingWindow
Joins over Unbounded Streams. In ICDE.

[8] Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter M. Fischer,
Donald Kossmann, Franz Färber, and Norman May. 2013. Timeline index: a
uni�ed data structure for processing queries on temporal data in SAP HANA.
In SIGMOD.

[9] T. Y. Cli� Leung and Richard R. Muntz. 1992. Temporal Query Processing and
Optimization in Multiprocessor Database Machines. In VLDB.

[10] Andrea Monacchi, Dominik Egarter, Wilfried Elmenreich, Salvatore
D’Alessandro, and Andrea M. Tonello. 2014. GREEND: An energy consump-
tion dataset of households in Italy and Austria. In SmartGridComm. 511–516.

[11] Jack A. Orenstein. 1986. Spatial Query Processing in an Object-Oriented
Database System. In SIGMOD.

[12] Danila Piatov and Sven Helmer. 2017. Sweeping-Based Temporal Aggregation.
In SSTD. 125–144.

[13] Danila Piatov, Sven Helmer, and Anton Dignös. 2016. An interval join opti-
mized for modern hardware. In ICDE.

[14] Arie Segev and Himawan Gunadhi. 1989. Event-Join Optimization in Temporal
Relational Databases. In VLDB.

[15] Cheng Sheng, Yufei Tao, and Jianzhong Li. 2012. Exact and approximate
algorithms for the most connected vertex problem. ACM TODS 37, 2 (2012),
12:1–12:39.

[16] Manli Zhu, Dimitris Papadias, Jun Zhang, and Dik Lun Lee. 2005. Top-k Spatial
Joins. IEEE TKDE 17, 4 (2005), 567–579.

FLIGHTS	
	

BOOKS	
	

GREEND	
	

WEBKIT	
	

Company	R	
	

Company	S	
	

Interval	Count	Semi-Join	
	

For	each	employee	r	from	company	R,	count	
how	many	employees	from	company	S	
worked	at	a	period	of	%me	overlapping	with	
r’s	employment	

Experiments	
Setup	
	

q  In-memory	processing	
q  Gapless	hash	map	[2]	
q  Lazy	op-miza-on	[2]	for	

Naïve	and	Simple	Coun%ng	
	

Datasets	

Breakdown	(|R|=|S|)	
	

Background	

 0.1

 1

 10

 100

 1000

Naïve Simple Smart

T
im

e
[s

ec
s]

Joining
Sorting

 0.1

 1

 10

 100

 1000

Simple Smart

T
im

e
[s

ec
s]

Joining
Sorting

FLIGHTS	
	

BOOKS	
	

 0.1

 1

 10

 100

 1000

Naïve Simple Smart

T
im

e
[s

ec
s]

Joining
Sorting

 0.1

 1

 10

 100

 1000

Simple Smart

T
im

e
[s

ec
s]

Joining
Sorting

GREEND	
	

WEBKIT	
	

employee	 start	 end	
John	 1993	 2003	
Mary	 1995	 2008	
Tom	 2000	 2015	

employee	 start	 end	
Jane	 1994	 1996	
Bob	 1998	 2002	
Hugo	 2007	 2010	
Helen	 2014	 2017	

year	

Jane	Bob	 Hugo	 Helen	

John	
Mary	 Tom	

Interval	Join	based	on	plane	sweep	
①  Preprocessing:	
q  Each	interval	→	a	start	and	an	end	domain	

point	
q  Sort	endpoints	of	each	input	collec%on	
	
②  Join:	
Sweep	through	lists	(as	in	sort-merge)	
q  If	a	start	domain	point	(e.g.	from	R)	is	met,	

insert	interval	to	ac-ve	set	(e.g.	AR)	
scan	other	ac%ve	set	(e.g.	AS)	to	produce	
join	results	

q  If	an	end	domain	point	(e.g.	from	R)	is	met,	
delete	interval	from	ac%ve	set	(e.g.	AR)	

year	

Jane	Bob	 Hugo	 Helen	

John	
Mary	 Tom	

year	

Jane	Bob	 Hugo	 Helen	

John	
Mary	 Tom	

AR={John,	Mary},	results+={(John,	Bob),	(Mary,	Bob)}	

AS={Bob},	results+={(Tom,	Bob)}	

(John,	Jane)	
(Mary,	Jane)	
(John,	Bob)	
(Mary,	Bob)	
(Tom,	Bob)	
(Mary,	Hugo)	
(Tom,	Hugo)	
(Tom,	Helen)	

(John,	Jane)	
(John,	Bob)	
(Mary,	Jane)	
(Mary,	Bob)	
(Mary,	Hugo)	
(Tom,	Bob)	
(Tom,	Hugo)	
(Tom,	Helen)	

(John,	2)	
(Mary,	3)	
(Tom,	3)	

year	

Jane	Bob	 Hugo	 Helen	

John	
Mary	 Tom	

year	

Jane	Bob	 Hugo	 Helen	

John	
Mary	 Tom	

AR={John,	Mary},	John.count+=1,	Mary.count+=1	

AS={Bob},	Tom.count+=1	

✗ High	cost:	join	+	aggrega%on	

✗ Cost	similar	to	interval	join	
✗ Cost	sensi%ve	to	join	output	

year	

Jane	Bob	 Hugo	 Helen	

John	
Mary	 Tom	

year	

Jane	Bob	 Hugo	 Helen	

John	
Mary	 Tom	

|AS|	=	1,	g	=	2,	Tom.count	=	|AS|-g	=	-1	

|AS|	=	1,	g	=	4,	Tom.count	+=	g,	output(Tom.count,	3)	
	

