JG|U

joHannes GUTENBERG
UNIVERSITAT MAINZ

Baseline Approaches

Introduction
Company R Company S
employee start end employee start end
John 1993 |2003 Jane 1994 | 1996
Mary 1995 |2008 Bob 1998 | 2002
Tom 2000 | 2015 Hugo 2007 | 2010
Helen 2014 | 2017
John
Mary
Tom
Jane
Bob Hugo Helen .
year

Interval Join

Find all pairs of employees whose working
periods at companies R and S overlap

Interval Count Semi-Join

For each employee r from company R, count
how many employees from company S
worked at a period of time overlapping with
r's employment

Applications

. Temporal databases
 Selecting and/or ranking objects

Related work

 Plane-sweep based interval joins [1], [2]
J Top-k count semi-joins
= Relational [3], spatial [4]

Naive Algorithm:
J Compute interval join
. Sort and aggregate join results

(John, Jane) (John, Jane)

(Mary, Jane) (John, Bob)

(John, Bob) (Mary, Jane) (John, 2)
(Mary, Bob) (Mary, Bob) :> (Mary, 3)
(Tom, Bob) (Mary, Hugo) (Tom, 3)
(Mary, Hugo) (Tom, Bob)

(Tom, Hugo) (Tom, Hugo)

(Tom, Helen) (Tom, Helen)

X High cost: join + aggregation

Simple Counting Algorithm:
1 Adapt Interval Join algorithm to count ICSJ
results instead of producing |J results

nikos@dcs.uo1l.gr

Panagiotis Bouros! and Nikos Mamoulis?

lInstitute of Computer Science, Johannes Gutenberg University Mainz, Germany

’Department of Computer Science & Engineering, University of loannina, Greece
bouros@uni-mainz.de,

Interval Count Semi-Joins

Smart Counting Algorithm

Observation: to compute an r.count we need:

J The number |A®| of active intervals from S
when r.start is accessed

. The number of intervals form S which
became active after r.start and before r.end

Approach: use a global counter g to track for
now many intervals s & S their start point has

oeen seen so far

d When the start point of as & S is accessed =
increase | A°|; increase g

J When the end pointof a s € Sis accessed >
decrease | A°|

Jd When the start point of ar & R is accessed -
initialize r.count = |A®|-g

J When the end point of a r & R is accessed -

Background

Interval Join based on plane sweep

@ Preprocessing:

J Each interval - a start and an end domain
point

1 Sort endpoints of each input collection

@ Join:

Sweep through lists (as in sort-merge)

d If a start domain point (e.g. from R) is met,
insert interval to active set (e.g. A%)
scan other active set (e.g. A°) to produce
join results

d If an end domain point (e.g. from R) is met,
delete interval from active set (e.g. A%)

John :
Mary —
Tam
Jane —
Bob Hugo Helen .
year

AR={John, Mary}, results+={(John, Bob), (Mary, Bob)}

John |
Mary :
Tonn
Jane .
Bob— Hugo Helen .
year

A>={Bob}, results+={(Tom, Bob)}

John :
Mary — finalize r.count = r.count + g
Tam
J |
aneBob: Hugo Helen John !
> Mary |
year Tom!
AR={John, Mary}, John.count+=1, Mary.count+=1 JaneBob i Hugo Helen R
year
John | |AS| =1, g=2, Tom.count = |AS|-g =-1
Mary Tom: John :
Jane | Mary :
Bob— Hugo Helen S J Tom :
ane :
year Bob Hugo —— Helen
A>={Bob}, Tom.count+=1 year>
|AS| =1, g =4, Tom.count += g, output(Tom.count, 3)
X Cost similar to interval join [Use a hash table (or array) to track r.count’s
XCOSt Sensiﬁve to Jo|n Output ‘/ COmp|eXIty O(‘R""‘Sl), EXCIUding Sorﬁng
Experiments
Setup Datasets
:l |n_mem0ry processing FLIGHTS BOOKS GREEND WEBKIT
Cardinality 445,827 2,312,602 110,115,441 2,347,346
:I GGpIESS hGSh map [2] Domain duration (secs) 2,750,280 31,507,200 283,356,410 461,829,284
N Lazy optimization [2] for Shortest interval (secs) 1,261 1 1 1
. - - Longest interval (secs) 42,301 31,406,400 59,468,008 461,815,512
Naive and Slmple Counl‘mg Avg. interval duration (secs) 8,791 2,201,320 16 33,206,300
Distinct domain points 41,975 5,330 182,028,123 174,471

Execution time (varying |R|/|S])

Breakdown (|R|=]|S|)

Naive L] Simple EESSE Smart N
1000 | | |] 100 1000 Joining — 1000 Joining —
2 100 Fo e e e) f : i Sorting M | Sorting NN |
2 - | 8 10 pm—— w0y _wor
R U R | R R e z 2
£ E | | 2 2
s 0 L L s ‘a6 0 R " g L
= 0 i i - B . AU S =
Z 001 | . = | |
0.001 0.01 | 0.1 e e - 0.1
025 05 0.5 1 0.25 0.5 0.75 1 Naive Simple Smart Simple Smart
FLIGHTS BOOKS FLIGHTS BOOKS
1000 1000 | 1000 Joining — | 1000 Joining |
B | £ ’ f Sorting mm—m | f Sorting W= |
3 | B g 100 100 | 100 b
o 100 wmo) | % | % |
5 510} : | : | |
= | = | > 10} > 10}
§ | S 01 Ly Ly
1 0.01 ! 0.1 0.1
025 05 075 1 025 05 075 1 Naive Simple Smart Simple Smart
GREEND WEBKIT GREEND WEBKIT
References
1] P. Bouros and N. Mamoulis. A Forward Scan based Plane Sweep Algorithm for Parallel Interval Joins. In PVLDB, 10(11), 2017.
2] D. Piatov, S. Helmer, and A. Dignos. An interval join optimized for modern hardware. In ICDE, 2016.
3] C.Sheng, Y. Tao, and J. Li. Exact and approximate algorithms for the most connected vertex problem. ACM TODS 37(2), 2012.
4] M. Zhu, D. Papadias, J. Zhang, and D. L. Lee. Top-k Spatial Joins. IEEE TKDE 17(4), 2005.

21st International Conference on Extending Database Technology (EDBT), Vienna, Austria, March 26-29, 2018

