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Baseline Approaches

Introduction
Company R Company S
employee start end employee start end
John 1993 |2003 Jane 1994 | 1996
Mary 1995 |2008 Bob 1998 | 2002
Tom 2000 | 2015 Hugo 2007 | 2010
Helen 2014 | 2017
John
Mary
Tom
Jane
Bob Hugo Helen .
year

Interval Join

Find all pairs of employees whose working
periods at companies R and S overlap

Interval Count Semi-Join

For each employee r from company R, count
how many employees from company S
worked at a period of time overlapping with
r's employment

Applications

. Temporal databases
 Selecting and/or ranking objects

Related work

 Plane-sweep based interval joins [1], [2]
J Top-k count semi-joins
= Relational [3], spatial [4]

Naive Algorithm:
J Compute interval join
. Sort and aggregate join results

(John, Jane) (John, Jane)

(Mary, Jane) (John, Bob)

(John, Bob) (Mary, Jane) (John, 2)
(Mary, Bob) (Mary, Bob) :> (Mary, 3)
(Tom, Bob) (Mary, Hugo) (Tom, 3)
(Mary, Hugo) (Tom, Bob)

(Tom, Hugo) (Tom, Hugo)

(Tom, Helen) (Tom, Helen)

X High cost: join + aggregation

Simple Counting Algorithm:
1 Adapt Interval Join algorithm to count ICSJ
results instead of producing |J results
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Interval Count Semi-Joins

Smart Counting Algorithm

Observation: to compute an r.count we need:

J The number |A®| of active intervals from S
when r.start is accessed

. The number of intervals form S which
became active after r.start and before r.end

Approach: use a global counter g to track for
now many intervals s & S their start point has

oeen seen so far

d When the start point of as & S is accessed =
increase | A°|; increase g

J When the end pointof a s € Sis accessed >
decrease | A°|

Jd When the start point of ar & R is accessed -
initialize r.count = |A®|-g

J When the end point of a r & R is accessed -

Background

Interval Join based on plane sweep

@ Preprocessing:

J Each interval - a start and an end domain
point

1 Sort endpoints of each input collection

@ Join:

Sweep through lists (as in sort-merge)

d If a start domain point (e.g. from R) is met,
insert interval to active set (e.g. A%)
scan other active set (e.g. A°) to produce
join results

d If an end domain point (e.g. from R) is met,
delete interval from active set (e.g. A%)

John :
Mary —
Tam
Jane —
Bob Hugo Helen .
year

AR={John, Mary}, results+={(John, Bob), (Mary, Bob)}

John |
Mary :
Tonn
Jane .
Bob— Hugo Helen .
year

A>={Bob}, results+={(Tom, Bob)}

John :
Mary — finalize r.count = r.count + g
Tam
J |
aneBob: Hugo Helen John !
> Mary |
year Tom!
AR={John, Mary}, John.count+=1, Mary.count+=1 JaneBob i Hugo Helen R
year
John | |AS| =1, g=2, Tom.count = |AS|-g =-1
Mary Tom: John :
Jane | Mary :
Bob— Hugo Helen S J Tom :
ane :
year Bob Hugo —— Helen
A>={Bob}, Tom.count+=1 year>
|AS| =1, g =4, Tom.count += g, output(Tom.count, 3)
X Cost similar to interval join [ Use a hash table (or array) to track r.count’s
XCOSt Sensiﬁve to Jo|n Output ‘/ COmp|eXIty O(‘R""‘Sl), EXCIUding Sorﬁng
Experiments
Setup Datasets
:l |n_mem0ry processing FLIGHTS BOOKS GREEND WEBKIT
Cardinality 445,827 2,312,602 110,115,441 2,347,346
:I GGpIESS hGSh map [2] Domain duration (secs) 2,750,280 31,507,200 283,356,410 461,829,284
N Lazy optimization [2] for Shortest interval (secs) 1,261 1 1 1
. - - Longest interval (secs) 42,301 31,406,400 59,468,008 461,815,512
Naive and Slmple Counl‘mg Avg. interval duration (secs) 8,791 2,201,320 16 33,206,300
Distinct domain points 41,975 5,330 182,028,123 174,471

Execution time (varying |R|/|S])

Breakdown (|R|=]|S|)
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