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Abstract. Graphs are used for modelling complex problems in
many areas, such as spatial and road networks, social networks, Se-
mantic Web. An important type of queries in graphs are reachability
queries. In this paper, we consider the problem of answering“find
a path” reachability queries. Given two nodess and t in a graph,
we want to find a path froms to t. To this end, we propose a novel
representation of a graph as a set of paths that preserve the reachabil-
ity information and introduceP-Index to index and provide efficient
access in this representation. Then, we extend the depth-first search
algorithm to work with the paths of the representation, instead of
the graph edges, for evaluating “find a path” reachability queries. Fi-
nally, we conduct a preliminary set of experiments that indicate the
advantage of exploiting a set of paths for efficiently answering “find
a path” reachability queries instead of using the edges of the graph.

1 INTRODUCTION

Graph data management is important for several applicationareas.
Examples include spatial networks (i.e., road systems), social net-
works (i.e., user communities) and web log analysis. An important
type of graph queries, known as reachability queries, involve whether
there is a path connecting two nodes.

The problem of evaluating reachability queries has been studied in
the context of labeling schemes [1]. Each node in a graph is assigned
a set of labels such that the descendants of a node can be identified
easily based on node labels. These works determine whether there
exists a path between two nodes, but they do not actually identify
that path.

Figure 1. Approaches for evaluating “find a path” reachability queries.
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There are two approaches for identifying a path that connects two
nodes in case of a reachability query. The first approach is touse
a search algorithm [4] to traverse the graph until either thetarget
node is reached or there are no other accessible nodes. The second
approach is to precompute and store the path information from the
transitive closure of the graph. Then, paths can be identified by just a
single lookup. This second approach is clearly more efficient than the
first one, where no precomputation of path information takesplace.
However, precomputing and storing such information costs alot. Fig-
ure 1 depicts these two solutions in evaluating “find a path” reacha-
bility queries. The on-the-fly algorithmic solutions are located at the
right “no precomputation” end of the line. Near the “full precom-
putation” end there exist approaches that try to deal with the cost of
computing and storing path information from the transitiveclosure of
the graph, either exploiting encoding schemes or graph segmentation
(see related work in Section 2).

In this paper, we deal with the evaluation of “find a path” reacha-
bility queries: given two nodess andt in a graph, find a path from
s to t, if any. We introduce a novel graph representation, called path
representation. Given a graphG(V, E), the idea is to have a set of
paths that we can use in order to formG. Using this representation,
we actually precompute and store part of the complete path informa-
tion from the transitive closure of the graph, so that we can exploit
this information for query evaluation. To efficiently access path rep-
resentations, we maintain an inverted index calledP-Index. Exploit-
ing path representation and itsP-Index, we extend the depth-first
search algorithm to operate on the paths of the representation instead
of the edges of the graph in order to evaluate “find a path” reach-
ability queries efficiently. Compared to the approaches presented in
Figure 1, our approach is in the middle of the full-no precomputa-
tion range, since we neither have to compute the transitive closure of
the graph nor have to store or encode all the paths between anytwo
nodes.

Contribution . The key contributions of this paper are:

• We propose a novel representation of a graph, called path repre-
sentation, to store path information of the graph.

• We introduceP-Index to index and provide efficient access in path
representations.

• We extend depth-first search algorithm to exploit path representa-
tion for answering “find a path ” reachability queries efficiently.

• We present a preliminary experimental evaluation to show the ad-
vantages of our approach.

Outline. First, in Section 2 we review literature on evaluating “finda
path” reachability queries. Then, Section 3 presents our notation for
graph-theoretic terms. In Section 4 we introduce the path represen-
tation of a graph and present an index for it. In Section 5 we discuss
an algorithm for answering “find a path” reachability queries exploit-
ing a path representation. Our experimental findings are presented in



Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

One way to evaluate “find a path” reachability queries on graphs is to
traverse the graph at query time using a depth-or breadth-first search
algorithm [4]. Another approach is Tarjan’s solution to single source
path expression problem from [6, 7].

In [2] the authors propose an encoding scheme for storing a semi-
materialized view of the path information from the transitive closure
of a graph. The work lies close to the “full precomputation” end in
Figure 1 since it computes all possible paths between any twograph
nodes but it does not actually stores them. The encoding scheme as-
signs to each nodev a set of triples〈destination, via, label〉, where
“via” denotes the first hop in the path from thev to the destination
node. Thus, for each node that is accessible fromv they create the
corresponding triple. At query time, they answer “find a path” reach-
ability queries by performing a number of lookups on their encoding
scheme. Yet, the creation of the encoding scheme still requires to
compute the transitive closure of the graph. In [3] Bartoň and Zezula
provide a different approach in storing path information. They intro-
duceρ-index: a multilevel balanced tree structure where each node
is a graph segment created by a graph segmentation procedure. For
each node ofρ-index (segment of the graph), they compute its tran-
sitive closure and store its complete path information. Compared to
[2], this work does not compute or store the path informationfrom
the transitive closure of the whole graph but only from its segments
and therefore is located less close to the “full precomputation” end
of Figure 1. Yet, the search algorithm can only find paths between
two nodes of length at most equal to a specific threshold, which is a
construction parameter of the index.

In the context of labeling schemes, [1] proposes an intervallabel-
ing scheme for DAGs. The first step is to compute the spanning tree
of the graph and then considering also the graphs edges excluded
from the spanning tree, they assign to each nodev a sequenceL(v)
of intervals. In [9], Wang et al. introduce Dual-Labeling for sparse
DAGs. They also compute the spanning tree of the graph and then
compute the transitive closure of the graph edges outside the span-
ning tree. Each node is assigned two labels: one according tothe
spanning tree edges and another label for the rest of the edges. In
[8] Trißl et al. introduce GRIPP scheme for large DAGs. They also
assign to each node an interval label but unlike the previousworks,
they do not compute the spanning tree of the DAG.

3 PRELIMINARIES

We begin by presenting our notation and some graph-theoretic terms
and properties.

Definition 3.1 (Graph) A directed graph, or simply agraphG, is a
pair (V, E), whereV is a set ofnodesandE ⊆ V × V is a set of
ordered node pairs(vi, vj) callededges.

Definition 3.2 (Path) LetG(V, E) be a graph. Apathp(v1, . . . , vk)
is a sequence of distinct nodes(v1, . . . , vk) ∈ V such that
(vi, vi+1) ∈ E, for eachi ∈ [1, k). By nodes(p) and edges(p) we
denote the set of nodes and the set of edges inp respectively.

Example 3.1 Figure 2 presents an example of a graphG.
p(A,B, C, E) is a path inG, with nodes(p) = {A, B, C, E} and
edges(p) = {(A, B), (B, C), (C,E)}.
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Figure 2. An example of a graph.

We can represent a graph by the set of its edges.

Definition 3.3 (Edge representation)Theedge representationof a
graphG(V, E), denoted byE(G), is the set of its edgesE.

Adjacency list can be used to index the edge representation of a
graph.

Definition 3.4 (Adjacency list) Let G(V, E) be a graph andE(G)
be its edge representation. For each nodev of G, theadjacency node
list of v, denoted byadj[v], is the list of nodesu such that(v, u) ∈
E(G), i.e.,(∀v ∈ V )(adj[v] = {u|(v, u) ∈ E(G)}). Theadjacency
list of G, denoted byADJ(G), is the set of the adjacency node lists
of all nodes inG, i.e.,(ADJ(G) = {adj[v] | ∀v ∈ V }).

Example 3.2 Table 1 illustrates the adjacency list of graphG in Fig-
ure 2.

Table 1. Adjacency list of graphG in Figure 2.

node adjacent nodes
A B
B C, F
C D, E, H
D B, K
E
F
H
K

4 PATH REPRESENTATION OF A GRAPH

In this section, we introduce a novel representation of a graph, called
path representation, to store part of the path information of the graph.
The key idea is to combine the edges of the graph for defining a set of
paths that can be used to efficiently answer “find a path” reachability
queries. To preserve the reachability information of a given graph,
its path representation includes all its edges. In other words for each
edge(v, u) of the graph there is a path in the path representation that
includes(v, u).

Definition 4.1 (Path representation) The path representationof a
graph G(V, E), denoted byP(G), is a set of distinct pathsP =

{p1, . . . pm} such that
m⋃

i=1

edges(pi) = E, i.e., G can be con-

structed by merging all the paths inP .
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Note that, contrary to the edge representation of a graph, path rep-
resentation is not unique. A given graph may be represented using
several path representations.

Example 4.1 Consider graphG of Figure 2. Table 2 depicts a path
representation ofG: P(G) = {p1, p2, p3, p4}.

Table 2. A path representation of graphG in Figure 2.

p1 (A, B, C, E)
p2 (C, D, B, F )
p3 (C, H)
p4 (D, K)

Next, we introduceP-Index to index a path representation. In
short, for each nodev of a graphG, P-Index stores a list of the paths
in P(G) that containv.

Definition 4.2 (P-Index) LetG(V, E) be a graph andP(G) be one
of its path representations. For each nodev of G, thepath listof v,
denoted bypaths[v] is the list of pathsp ∈ P(G) that containv, i.e.,
(∀v ∈ V )(paths[v] = {p|p ∈ P(G) ∧ v ∈ nodes(p)}). Thepath
indexof G, denoted byP-Index(G), is the set of the path lists of all
nodes inG, i.e.,(P-Index(G) = {paths[v] | ∀v ∈ V })

Example 4.2 Consider graphG in Figure 2 and its path representa-
tion in Table 2. Table 3 illustrates theP-Index forG.

Table 3. P-Index for the path representation in Table 2 of graphG in
Figure 2.

node paths containing node
A p1

B p1, p2

C p1, p2, p3

D p2, p4

E p1

F p2

H p3

K p4

5 EVALUATING “FIND A PATH”
REACHABILITY QUERY

In this section, we present our method for answering “find a path”
reachability queries exploiting a path representation of agraph.

Definition 5.1 (“find a path” reachability query) Let G(V, E) be
a graph ands, t be two of its nodes. A“find a path” reachability
queryin G, denoted byFindAPath(s, t), identifies a path starting
from nodes and ending att.

Next, we present Algorithmpdfs that exploitsP-Index to answer
FindAPath queries. In summary, Algorithmpdfs:

• extends the depth-first search procedure, visiting for a nodev, not
only its adjacent nodes, but also the ones following it in thepath
representation, and

• exploitsP-Index to determine efficiently whether there exists a
path in the representation containing a nodev and the target node.

Figure 3 illustrates the pseudo-code of Algorithmpdfs. Initially,
pdfs checks whether both the sources and the target nodet are con-
tained in a pathr of the representation withs beforet (Lines 2-3).
If so, then an answer path is found. Otherwise, it creates thestack
curPath to store, in each iteration of the search, the path from the
source nodes to the current search node. In each iteration, the algo-
rithm gets the next pathp containing the top nodeu of thecurPath
stack (Lines 7-8). Nodeu is considered the current search node.
Then, it visits each nodev that lies afteru in pathp (Lines 12-19)
until it reaches an already visited node (Line 18) or there isa pathr
in the representation that contains firstv and then the target nodet
(Lines 14-15). The algorithm pops a node fromcurPath after hav-
ing read all the paths that contain it (Lines 9-10).

To identify a path in the representation that contains a given nodev
before the targett, pdfs algorithm joins the correspondingpaths[v]
andpaths[t] lists ofP-Index. Thepaths lists inP-Index are sorted
by the path identifier and therefore the algorithm actually performs
a merge-join. The join procedure terminates when a common path
r that contains nodev beforet is found or one of thepaths list is
traversed till its end.

Algorithm pdfs

Input : graphG(V, E), path representationP(G), P-Index(G),
nodess andt

Output : a path froms to t
begin1

if exists pathr ∈ P(G) containings beforet then2

return SubPath(r, s, t); // found path3

createstackcurPath containing source nodes;4

mark s as visited;5

while curPath is not emptydo6

read the top nodeu of curPath;7

get the next pathp in P(G) containingu;8

if have read all paths containingu then9

pop u from curPath;10

// checked all possible paths through u

else11

foreach nodev in p afteru do12

if v is not visitedthen13

if exists pathr ∈ P(G) containingv before14

t then
return curPath ∪ SubPath(r, v, t);15

// found path

pushv in curPath;16

mark v as visited;17

else ifv is visitedthen18

ignore rest of nodes inp;19

// avoid graph cycle

return null;20

end21

Figure 3. Algorithm pdfs

Example 5.1 Consider graphG in Figure 2, its path representation
P(G) in Table 2,P-Index(G) in Table 3 andFindAPath(B,K)
query. There exists no path inP(G) containing first source nodeB
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and then target nodeK. Therefore,pdfs creates stackcurPath with
the source nodeB. p1(A,B, C, E) is the first path containingB. The
algorithm checks whether there exists a path inP(G) containingC
beforeK or E beforeK and afterwards it inserts nodesC andE in
curPath. The next node to consider isE. There exists no path in
P(G) containingE beforeK. Moreover,E is contained only inp1

and in fact at the end of the path. Thus, the algorithm removesnode
E from curPath, since there is no way to reach targetK throughE,
and backtracks toC. ForC, p1 can not be used because the successor
nodeE is already visited. Therefore the algorithm reads the next path
containingC, i.e.,p2(C, D, B, F ). Before visitingD, pdfs identifies
that pathp4 contains nodeD and then targetK. Thus, the answer of
FindAPath(B,K) is thecurPath followed by the subpath ofp4

from D to K, i.e.,(B, C, D, K).

6 EXPERIMENTS

We present a preliminary experimental evaluation of our approach.
Our intention is to demonstrate the advantage of exploitinga path
representation of a graph, indexed byP-Index, over using the edge
representation of the graph, indexed by its adjacency list,for answer-
ingFindAPath queries. For the latter, we have implemented a stan-
dard depth-first algorithm (calleddfs) that uses the adjacency list to
traverse a graph until a path between two given nodes is foundor
there are no more accessible nodes. Both algorithms are implemented
in C++, compiled with gcc and executed on a 3 Ghz Intel Core 2 Duo
CPU.

For our experiments, we generate random graphs exploiting the
NetworkX library [5] and we construct their path representations.
For the latter, we traverse the graph in a depth-first manner,start-
ing from several random nodes. We terminate the procedure when all
graph edges are included in some path. We promote the construction
of long against that of short paths by using edges of the graphmore
than once. In this waypdfs algorithm visits more nodes in each iter-
ation and in addition it is more possible to identify a path inthe path
representation of the graph that contains a specific node before the
target one.

We identify three experimental parameters: (a) the number of
nodes|V | and (b) the average degreed = |E|/|V | of the graph,
and (c) the maximum lengthLmax of the paths in the path represen-
tation. The graphs of our dataset have from10, 000 to 1, 000, 000
nodes and from 2 to 10 average degree. The maximum length of the
paths in the representations varies from10 to 50. Table 4 summa-
rizes the parameters involved, their ranges and their default values.
We perform three kinds of experiments. In each experiment wevary
a single parameter while we set the remaining ones to their default
values.

Table 4. Experimental parameters

parameter values default value
Lmax 10, 20, 30, 40, 50 30
|V | 104 , 5 · 104, 105 , 5 · 105, 106 105

d = |E|/|V | 2, 3, 4, 5, 10 4

Varying the maximum length of the paths in a representation.
First, we study the effect of the maximum length of the paths in an-
sweringFindAPath queries. For a graph of100, 000 nodes and an
average degree of4, we construct5 different representations by vary-
ing the maximum length of their contained paths. Figure 4 shows the

average execution time for answering one of the1, 000 FindAPath
queries posed. The results indicate that the average execution time
decreases asLmax grows. For examplepdfs needs1.5 secs in aver-
age to answer aFindAPath query exploiting the representation of
max length10, whereas in case of the representationLmax = 40 the
time drops at less than0.5 sec. The main reason for this behavior is
that, as the maximum length of the paths increases, the representa-
tions include larger part of the path information of the graph. In addi-
tion, asLmax increases, the representations contain fewer and longer
paths with more common nodes since they combine more edges with
each other. Therefore it is more possible to identify a path that con-
tains a specific node before target one.

On the other hand, as the maximum length of the paths increases
and the representations include larger part of the path information
of the graph, the space needed to store the representations grows.
Figure 5 shows the overhead in storing the path representations as
Lmax increases. For example, the presentations of maximum length
10 contains2.4 times more edges in total than the edge representa-
tion of the graph has, whereas the one withLmax = 30 has3.5 times
more.
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Figure 4. Average execution time varyingLmax, |V | fixed at105, d fixed
at4.
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Figure 5. Storage overhead in path representations varyingLmax, |V |
fixed at105, d fixed at4.

Varying the average degree. Next, we study the impact of the av-
erage degree of a graph. We construct an initial graph of100, 000
nodes and of average degree2 and progressively insert new edges be-
tween the existing nodes to create4 more graphs of average degree3,
4, 5 and10. The path representations created for each of these graphs
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contain paths of length at most equal to30. Then, we generate1, 000
randomFindAPath queries on the initial graph and evaluate them
over all 5 graphs. Figure 6 presents the average execution time per
query. The execution time ofdfs increases for more dense graphs. In
contrast,pdfs not only outperformsdfs in any case but also its exe-
cution time goes down asd increases. For exampledfs needs3.5 secs
to answer a query on the initial graph, but for the more dense graph of
average degree5 it needs almost5.5 secs. On the other hand, it takes
2.5 secs in average forpdfs to evaluateFindAPath queries on the
initial graph, but less than0.5 sec on the graph of average degree5.
This is due to the fact that, for more dense graphs, the numberof the
long paths in the representation increases whereas the number of the
short ones decreases.
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Figure 6. Average execution time varying average degreed, |V | fixed at
105 andLmax fixed at30.

Varying the number of nodes. Finally, we test how the number
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of graph nodes affects the average execution time ofFindAPath
queries. We create5 graphs with average degree4 and pose1, 000
FindAPath queries on each. Figure 7 presents the average execu-
tion time per query. Bothdfs andpdfs are affected by the increase
of nodes. Their execution time goes up as the number of nodes|V |
increases. However, the impact onpdfs is less intense and moreover
its average execution time is lower. For example it takes over 2.5 secs
for dfs to evaluate a query on a graph of50, 000 nodes and near35
secs on a larger one of500, 000 nodes. In contrast,pdfs needs less
than0.5 sec for the50, 000 nodes graph and almost3 secs for the

500, 000 one. Note that, for graphs with larger set of nodes and fixed
average degree, the paths in the representations have fewercommon
nodes and thus, it is less possible to identify a path in the represen-
tation that contains a specific node before target one. The advantage
of pdfs is presented also in Figure 8. The average number of nodes
processed per query bypdfs is far less than in case ofdfs.
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Figure 8. Average number of nodes process varying|V |, d fixed at4 and
Lmax fixed at30.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we consider the problem of evaluating “find a path”
reachability queries on graphs. We represent a graph as a setof paths,
called path representation, that include part of the path information
from the transitive closure of the graph and present P-indexto in-
dex and provide efficient access in path representations. Then, an ex-
tended depth-first search algorithm that operates on paths exploits the
representation to efficiently answer “find a path” reachability queries
between any two graph nodes. Our experiments indicate the advan-
tage of considering a path representation instead of using the edges
of the graph. In the future, we plan to further investigate the con-
struction of the path representations of a graph and to deal with their
incremental updates. In addition, we will apply the idea of exploiting
paths to answer other kinds of queries, e.g. finding shortestor critical
paths.
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