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Abstract.
many areas, such as spatial and road networks, social hetywe-
mantic Web. An important type of queries in graphs are reaitha
queries. In this paper, we consider the problem of answefind

a path” reachability queries. Given two nodesndt in a graph,
we want to find a path from to ¢. To this end, we propose a novel
representation of a graph as a set of paths that preserveabieabil-
ity information and introduc&-Index to index and provide efficient
access in this representation. Then, we extend the deptlséiarch
algorithm to work with the paths of the representation, éast of
the graph edges, for evaluating “find a path” reachabilitgrégs. Fi-
nally, we conduct a preliminary set of experiments thatéaté the
advantage of exploiting a set of paths for efficiently ansmeetfind

a path” reachability queries instead of using the edgeseofjitaph.

1 INTRODUCTION

Graph data management is important for several applicatieas.
Examples include spatial networks (i.e., road systemsjakoet-
works (i.e., user communities) and web log analysis. An irtgpt
type of graph queries, known as reachability queries, irealhether
there is a path connecting two nodes.

The problem of evaluating reachability queries has beeatietiin
the context of labeling schemes [1]. Each node in a graplsigreed
a set of labels such that the descendants of a node can b#iédent
easily based on node labels. These works determine whétber t
exists a path between two nodes, but they do not actuallytifden
that path.
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Figure 1. Approaches for evaluating “find a path” reachability querie
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Graphs are used for modelling complex problems in

There are two approaches for identifying a path that cosreai
nodes in case of a reachability query. The first approach isé&
a search algorithm [4] to traverse the graph until eithertttrget
node is reached or there are no other accessible nodes. dtredse
approach is to precompute and store the path information fre
transitive closure of the graph. Then, paths can be idedtifjgust a
single lookup. This second approach is clearly more effi¢team the
first one, where no precomputation of path information tgkase.
However, precomputing and storing such information co8is &ig-
ure 1 depicts these two solutions in evaluating “find a patisicha-
bility queries. The on-the-fly algorithmic solutions aredted at the
right “no precomputation” end of the line. Near the “full poen-
putation” end there exist approaches that try to deal wighcibst of
computing and storing path information from the transiti@sure of
the graph, either exploiting encoding schemes or graph eetation
(see related work in Section 2).

In this paper, we deal with the evaluation of “find a path” te&c
bility queries: given two nodes andt in a graph, find a path from
s to t, if any. We introduce a novel graph representatiorledadath
representation. Given a grapgh(V, E), the idea is to have a set of
paths that we can use in order to forgh Using this representation,
we actually precompute and store part of the complete pétimiva-
tion from the transitive closure of the graph, so that we ogrlait
this information for query evaluation. To efficiently acsgsath rep-
resentations, we maintain an inverted index caffethdex. Exploit-
ing path representation and iB-Index, we extend the depth-first
search algorithm to operate on the paths of the represemiastead
of the edges of the graph in order to evaluate “find a path”treac
ability queries efficiently. Compared to the approachesemed in
Figure 1, our approach is in the middle of the full-no precatap
tion range, since we neither have to compute the transitbsioe of
the graph nor have to store or encode all the paths betweetwany
nodes.

Contribution . The key contributions of this paper are:

e We propose a novel representation of a graph, called patk-rep
sentation, to store path information of the graph.

e We introduceP-Index to index and provide efficient access in path
representations.

e We extend depth-first search algorithm to exploit path regméa-
tion for answering “find a path ” reachability queries effitig.

e We present a preliminary experimental evaluation to shanat
vantages of our approach.

Outline. First, in Section 2 we review literature on evaluating “fand
path” reachability queries. Then, Section 3 presents otatiom for
graph-theoretic terms. In Section 4 we introduce the pathesen-
tation of a graph and present an index for it. In Section 5 geudis
an algorithm for answering “find a path” reachability queréxploit-
ing a path representation. Our experimental findings argepted in



Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

One way to evaluate “find a path” reachability queries on lysdp to
traverse the graph at query time using a depth-or breadthséarch
algorithm [4]. Another approach is Tarjan’s solution togdesource
path expression problem from [6, 7].

In [2] the authors propose an encoding scheme for storingn se
materialized view of the path information from the tranttlosure
of a graph. The work lies close to the “full precomputatiomtien
Figure 1 since it computes all possible paths between angtajoh
nodes but it does not actually stores them. The encodingrezias-
signs to each nodea set of triplegdestination, via, label), where
“via” denotes the first hop in the path from theto the destination
node. Thus, for each node that is accessible frothey create the
corresponding triple. At query time, they answer “find a patfach-
ability queries by performing a number of lookups on thezaing
scheme. Yet, the creation of the encoding scheme still regjud
compute the transitive closure of the graph. In [3] Bartod Zezula
provide a different approach in storing path informatiohey intro-
ducep-index: a multilevel balanced tree structure where eaclenod
is a graph segment created by a graph segmentation procédure
each node op-index (segment of the graph), they compute its tran-
sitive closure and store its complete path information. Gared to
[2], this work does not compute or store the path informafrom
the transitive closure of the whole graph but only from itgreents
and therefore is located less close to the “full precompriatend
of Figure 1. Yet, the search algorithm can only find paths betw
two nodes of length at most equal to a specific threshold, lnisia
construction parameter of the index.

In the context of labeling schemes, [1] proposes an intéatml-
ing scheme for DAGs. The first step is to compute the spanmagy t
of the graph and then considering also the graphs edgesdextlu
from the spanning tree, they assign to each nodesequencé. (v)
of intervals. In [9], Wang et al. introduce Dual-Labeling f&parse

DAGs. They also compute the spanning tree of the graph and the

compute the transitive closure of the graph edges outselsphn-
ning tree. Each node is assigned two labels: one accordirtigeto
spanning tree edges and another label for the rest of thesetige
[8] Tri%l et al. introduce GRIPP scheme for large DAGs. Thispa
assign to each node an interval label but unlike the prewicarks,
they do not compute the spanning tree of the DAG.

3 PRELIMINARIES

We begin by presenting our notation and some graph-thedsstns
and properties.

Definition 3.1 (Graph) A directed graphor simply agraphG, is a
pair (V, E), whereV is a set ofnodesand E C V' x V is a set of
ordered node pair$v;, v;) callededges

Definition 3.2 (Path) LetG(V, E) be a graph. Apathp(v1, . .., v)

is a sequence of distinct nod€s.,...,vx) € V such that
(vi,viy1) € E, for eachi € [1, k). By nodesp) and edgesg) we
denote the set of nodes and the set of edgegséspectively.

Example 3.1 Figure 2 presents an example of a gragh
p(A, B,C, E) is a path inG, with nodes(p) = {A, B,C, E} and
edges(p) = {(A, B), (B,C), (C, E)}.
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Figure 2. An example of a graph.

We can represent a graph by the set of its edges.

Definition 3.3 (Edge representation) Theedge representatiasf a
graphG(V, E), denoted by (G), is the set of its edges.

Adjacency list can be used to index the edge representafi@an o
graph.

Definition 3.4 (Adjacency list) Let G(V, E) be a graph an(G)

be its edge representation. For each nadef GG, theadjacency node
list of v, denoted by:dj[v], is the list of nodes such that(v,u) €
(@), ie., (Vv € V)(adj[v] = {u|(v,u) € E(G)}). Theadjacency
list of G, denoted byAD J(G), is the set of the adjacency node lists
of allnodes inG, i.e.,(ADJ(G) = {adj[v] | Vv € V}).

Example 3.2 Table 1 illustrates the adjacency list of gra@tin Fig-
ure 2.

Table 1. Adjacency list of graplG in Figure 2.

node | adjacent nodes
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4 PATH REPRESENTATION OF A GRAPH

In this section, we introduce a novel representation of plyrealled
path representatiarto store part of the path information of the graph.
The key idea is to combine the edges of the graph for definieg afs
paths that can be used to efficiently answer “find a path” reaitity
queries. To preserve the reachability information of a igigeaph,

its path representation includes all its edges. In otheds/éor each
edge(v, u) of the graph there is a path in the path representation that
includes(v, u).

Definition 4.1 (Path representation) The path representationf a
graph G(V, E), denoted byP(G), is a set of distinct path$® =

m

{p1,...pm} such thatU edges(p;) = E, i.e., G can be con-

i=1
structed by merging all the paths iA.



Note that, contrary to the edge representation of a gragh, ea- Figure 3 illustrates the pseudo-code of Algoritipaifs. Initially,

resentation is not unique. A given graph may be represersgd)u pdfs checks whether both the sourcand the target nodeare con-

several path representations. tained in a pathr of the representation with beforet (Lines 2-3).

] ) ) If so, then an answer path is found. Otherwise, it createstidek

Example 4.1 Consider graplt of Figure 2. Table 2 depicts a path ., path, to store, in each iteration of the search, the path from the

representation ofr: P(G) = {p1,p2,ps, pa}. source node to the current search node. In each iteration, the algo-
rithm gets the next path containing the top node of thecur Path
stack (Lines 7-8). Node: is considered the current search node.

Table 2. A path representation of graghi in Figure 2. Then, it visits each node that lies afteru in pathp (Lines 12-19)
until it reaches an already visited node (Line 18) or thei sthr
p1 | (A,B,C,E) in th . . .
p2 | (C.D,B,F) in the representation that contains firsand then the target node
p3 | (C, H) (Lines 14-15). The algorithm pops a node frem- Path after hav-
ps | (D, K) ing read all the paths that contain it (Lines 9-10).

To identify a path in the representation that contains argiarev
before the target, pdfs algorithm joins the correspondingiths|v]
Next, we introduceP-Index to index a path representation. In andpaths|t] lists of P-Index. Thepaths lists in P-Index are sorted
short, for each node of a graphG, P-Index stores a list of the paths by the path identifier and therefore the algorithm actuadiyfgrms
in P(G) that contairw. a merge-join. The join procedure terminates when a commdém pa

r that contains node beforet is found or one of theaths list is
Definition 4.2 (P-Index) LetG(V, E) be agraph and?(G)beone  taversed till its end.

of its path representations. For each nodef GG, the path listof v,
denoted byaths[v] is the list of pathg € P(G) that containv, i.e.,
(Vv € V)(pathsv] = {plp € P(G) A v € nodes(p)}). Thepath _
indexof G, denoted byP-IndexG), is the set of the path lists of all ~ NPut: graphG(V, E), path representatioR (G), P-Index(G),

Algorithm pdfs

nodes inG, i.e.,(P-IndexG) = {paths[v] | Vv € V}) nodess and¢
Output: a path froms to ¢
Example 4.2 Consider grapl@? in Figure 2 and its path representa- * P€gin .
tion in Table 2. Table 3 illustrates the-Index forG. 2 | if exists path € P(G) containings beforet then
3 L return SubPat h( r, s, t) ; // found path
4 createstackcur Path containing source nod€
Table 3. P-Index for the path representation in Table 2 of grapi 5 | mark s as visited;
Figure 2. 6 while cur Path is not emptydo
node [ paths containing node 7 read the top node: of cur Path,;
A P1 8 getthe next pattp in P(G) containingu;
B p1; P2 9 if have read all paths containing then
g gé’gi’m 10 pop u from cur Path;
E p17 B /I checked all possible paths through
Fo p2 11 else
g P3 12 foreach nodew in p afteru do
Pa 13 if v is not visitedthen
14 if exists pathr € P(G) containingv before
t then
15 L return curPath U SubPat h(r,v,t) ;
5 EVALUATING “FIND A PATH” /I found path
REACHABILITY QUERY 16 pushv in cur Path;
In this section, we present our method for answering “find th'pa 1 | mark v as visited;
reachability queries exploiting a path representation griegh. 18 else ifv is visitedthen
19 ignore rest of nodes im;
Definition 5.1 (“find a path” reachability query) LetG(V, E) be /I avoid graph cycle
a graph ands, t be two of its nodes. Afind a path” reachability L =
queryin G, denoted byFi ndAPat h(s,t), identifies a path starting ,5 | return null:

from nodes and ending at. 21 end

Next, we present Algorithnpdfs that exploitsP-Index to answer

Fi ndAPat h queries. In summary, Algorithipdfs:
Figure 3. Algorithm pdfs

e extends the depth-first search procedure, visiting for &nodot
only its adjacent nodes, but also the ones following it inpihéh
representation, and Example 5.1 Consider grapltz in Figure 2, its path representation
e exploits P-Index to determine efficiently whether there exists a P(G) in Table 2,P-IndexG) in Table 3 andri ndAPat h(B, K)
path in the representation containing a neded the target node. query. There exists no path #A(G) containing first source nodB



and then target nod& . Thereforepdfs creates stackur Path with average execution time for answering one ofth@00 Fi ndAPat h
the source nod®. p1 (A, B, C, E) is the first path containing. The ~ queries posed. The results indicate that the average éxedirhe
algorithm checks whether there exists a patPifz) containingC decreases ab,,.. grows. For exampledfs needsl.5 secs in aver-
before K or E before K and afterwards it inserts nodésand F in age to answer &i ndAPat h query exploiting the representation of
curPath. The next node to consider 5. There exists no path in max lengthl0, whereas in case of the representation.. = 40 the
‘P(G) containingE before K. Moreover,E is contained only i time drops at less tham5 sec. The main reason for this behavior is
and in fact at the end of the path. Thus, the algorithm remoees  that, as the maximum length of the paths increases, thesemse
E from cur Path, since there is no way to reach targéthroughE, tions include larger part of the path information of the dgrap addi-
and backtracks t@'. ForC, p; can not be used because the successotion, asL,,.. increases, the representations contain fewer and longer
nodekF is already visited. Therefore the algorithm reads the natttp  paths with more common nodes since they combine more edgies wi
containingC, i.e.,p2(C, D, B, F'). Before visitingD, pdfs identifies ~ each other. Therefore it is more possible to identify a pladt ton-
that pathp, contains nodeéD and then targek. Thus, the answer of tains a specific node before target one.
Fi ndAPat h(B, K) is thecur Path followed by the subpath g, On the other hand, as the maximum length of the paths incgease
fromDto K,i.e.,(B,C,D, K). and the representations include larger part of the pathrirdton
of the graph, the space needed to store the representations.g
Figure 5 shows the overhead in storing the path represensatis
6 EXPERIMENTS Lmaz increases. For example, the presentations of maximumHengt
10 contains2.4 times more edges in total than the edge representa-
tion of the graph has, whereas the one With,. = 30 has3.5 times
more.

We present a preliminary experimental evaluation of ouraggh.
Our intention is to demonstrate the advantage of exploitiqgath
representation of a graph, indexed Bylndex, over using the edge
representation of the graph, indexed by its adjacencyfdisanswer-
ing Fi ndAPat h queries. For the latter, we have implemented a stan-
dard depth-first algorithm (calledfs) that uses the adjacency list to
traverse a graph until a path between two given nodes is found
there are no more accessible nodes. Both algorithms areingpited

in C++, compiled with gcc and executed on a 3 Ghz Intel Core @ Du
CPU.

For our experiments, we generate random graphs exploitieg t
NetworkX library [5] and we construct their path represéntes. H
For the latter, we traverse the graph in a depth-first marstar- 0 ﬂ H ﬁ
ing from several random nodes. We terminate the proceduea at 10 20 30 40 50
graph edges are included in some path. We promote the cotistru maximum path lengttiy,,,.)
of long against that of short paths by using edges of the gnaqie
than once. In this wapdfs algorithm visits more nodes in each iter-
ation and in addition it is more possible to identify a patlthia path Figure 4. Average execution time varyinimaz, |V| fixed at10%, d fixed
representation of the graph that contains a specific nodmdéfie at4.
target one.

We identify three experimental parameters: (a) the numlber o
nodes|V'| and (b) the average degrde= |E|/|V| of the graph,
and (c) the maximum length,... of the paths in the path represen- 5
tation. The graphs of our dataset have frofn 000 to 1,000, 000
nodes and from 2 to 10 average degree. The maximum lengtte of th
paths in the representations varies frathto 50. Table 4 summa-
rizes the parameters involved, their ranges and their defalues.

We perform three kinds of experiments. In each experimentamg
a single parameter while we set the remaining ones to théutle
values. 1t

pdfs E==m

051

Average execution time (sec)

pdfs m—

Storage overhead

Table 4. Experimental parameters 10 20 30 40 50
maximum path lengthi(, )

parameter | values | default value
Lmax 10, 20, 30, 40, 50 30

14 10%,5-10%, 10,5 - 10°, 10° 10°

d=|E|/|V] 2,3,4,5,10 4 Figure 5. Storage overhead in path representations varfipg., |V|

fixed at10®, d fixed at4.

Varying the maximum length of the paths in a representation Varying the average degreeNext, we study the impact of the av-
First, we study the effect of the maximum length of the pathari-  erage degree of a graph. We construct an initial graph06f 000
sweringFi ndAPat h queries. For a graph a0, 000 nodes and an  nodes and of average degteand progressively insert new edges be-
average degree df we construct different representations by vary- tween the existing nodes to credtmore graphs of average degfee

ing the maximum length of their contained paths. Figure #stthe 4, 5 and10. The path representations created for each of these graphs



contain paths of length at most equaBto Then, we generatg 000

500, 000 one. Note that, for graphs with larger set of nodes and fixed

randomFi ndAPat h queries on the initial graph and evaluate them average degree, the paths in the representations havedemenon
over all5 graphs. Figure 6 presents the average execution time parodes and thus, it is less possible to identify a path in theesen-
query. The execution time affs increases for more dense graphs. In tation that contains a specific node before target one. Thentage

contrastpdfs not only outperformslfs in any case but also its exe-
cution time goes down akincreases. For examplis needs3.5 secs
to answer a query on the initial graph, but for the more dereetgof
average degre®it needs almosi.5 secs. On the other hand, it takes
2.5 secs in average fqudfs to evaluateFi ndAPat h queries on the
initial graph, but less thaf.5 sec on the graph of average degbee
This is due to the fact that, for more dense graphs, the nuoflibe
long paths in the representation increases whereas theemwhtine
short ones decreases.
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Figure 6. Average execution time varying average degieg/| fixed at
10% and L. fixed at30.

Varying the number of nodes Finally, we test how the number
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Figure 7. Average execution time varying’|, d fixed at4 and Linmqz
fixed at30.

of graph nodes affects the average execution timeiafdAPat h
queries. We creatg graphs with average degrdeand posel, 000

Fi ndAPat h queries on each. Figure 7 presents the average exec[;q]

tion time per query. Bothifs and pdfs are affected by the increase
of nodes. Their execution time goes up as the number of nddes
increases. However, the impact pdfs is less intense and moreover
its average execution time is lower. For example it takes 2¥esecs
for dfs to evaluate a query on a graphfgf, 000 nodes and ned5
secs on a larger one 600, 000 nodes. In contraspdfs needs less
than0.5 sec for the50, 000 nodes graph and almo8tsecs for the

of pdfs is presented also in Figure 8. The average number of nodes

processed per query Ipfs is far less than in case dfs.
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Figure 8. Average number of nodes process varyjig, d fixed at4 and
Lmaz fixed at30.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we consider the problem of evaluating “find thpa
reachability queries on graphs. We represent a graph asaahs,
called path representation, that include part of the pdthrimation
from the transitive closure of the graph and present P-inder-
dex and provide efficient access in path representatioren, &n ex-
tended depth-first search algorithm that operates on papihaits the
representation to efficiently answer “find a path” reachighijueries
between any two graph nodes. Our experiments indicate tenad
tage of considering a path representation instead of ubimgdges
of the graph. In the future, we plan to further investigate tion-
struction of the path representations of a graph and to diélatheir
incremental updates. In addition, we will apply the ideaxqfleiting
paths to answer other kinds of queries, e.g. finding shastesitical
paths.
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